1
|
Suprun EV, Radko SP, Kozin SA, Mitkevich VA, Makarov AA. Electrochemical Analysis in Studying β-Amyloid Aggregation. BIOCHEMISTRY (MOSCOW) 2023; 88:S88-S104. [PMID: 37069116 DOI: 10.1134/s0006297923140067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
β-amyloid (Aβ) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aβ aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aβ aggregation have intensively being investigated using synthetic Aβ peptides by methods based on monitoring of aggregates, including determination of their size and structure. In this review, an orthogonal approach to the study of Aβ aggregation is considered, which relies on electrochemical registration of the loss of peptide monomers. Electrochemical analysis of Aβ (by voltammetry and amperometric flow injection analysis) is based on registration of the oxidation signal of electroactive amino acid residues of the peptide on an electrode surface. The Aβ oxidation signal disappears, when the peptide is included in the aggregate. The advantages and disadvantages of electrochemical analysis for the study of spontaneous and metal-induced aggregation of Aβ, comparative analysis of various peptide isoforms, and study of the process of complexation of metal ions with the metal-binding domain of Aβ are discussed. It is concluded that the combined use of the electrochemical method and the methods based on detection of Aβ aggregates makes it possible to obtain more complete information about the mechanisms of peptide aggregation.
Collapse
Affiliation(s)
- Elena V Suprun
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey P Radko
- Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Beliaeva M, Seebeck FP. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from Caldithrix abyssi. JACS AU 2022; 2:2098-2107. [PMID: 36186560 PMCID: PMC9516567 DOI: 10.1021/jacsau.2c00365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/29/2023]
Abstract
Ergothioneine is a histidine derivative with a 2-mercaptoimidazole side chain and a trimethylated α-amino group. Although the physiological function of this natural product is not yet understood, the facts that many bacteria, some archaea, and most fungi produce ergothioneine and that plants and animals have specific mechanisms to absorb and distribute ergothioneine in specific tissues suggest a fundamental role in cellular life. The observation that ergothioneine biosynthesis has emerged multiple times in molecular evolution points to the same conclusion. Aerobic bacteria and fungi attach sulfur to the imidazole ring of trimethylhistidine via an O2-dependent reaction that is catalyzed by a mononuclear non-heme iron enzyme. Green sulfur bacteria and archaea use a rhodanese-like sulfur transferase to attach sulfur via oxidative polar substitution. In this report, we describe a third unrelated class of enzymes that catalyze sulfur transfer in ergothioneine production. The metallopterin-dependent ergothioneine synthase from Caldithrix abyssi contains an N-terminal module that is related to the tungsten-dependent acetylene hydratase and a C-terminal domain that is a functional cysteine desulfurase. The two modules cooperate to transfer sulfur from cysteine onto trimethylhistidine. Inactivation of the C-terminal desulfurase blocks ergothioneine production but maintains the ability of the metallopterin to exchange sulfur between ergothioneine and trimethylhistidine. Homologous bifunctional enzymes are encoded exclusively in anaerobic bacterial and archaeal species.
Collapse
Affiliation(s)
- Mariia
A. Beliaeva
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Florian P. Seebeck
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
3
|
Cordell GA, Lamahewage SNS. Ergothioneine, Ovothiol A, and Selenoneine-Histidine-Derived, Biologically Significant, Trace Global Alkaloids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092673. [PMID: 35566030 PMCID: PMC9103826 DOI: 10.3390/molecules27092673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
Abstract
The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.
Collapse
Affiliation(s)
- Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Sujeewa N. S. Lamahewage
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA;
- Department of Chemistry, University of Ruhuna, Matara 81000, Sri Lanka
| |
Collapse
|
4
|
Suprun EV. Protein post-translational modifications – A challenge for bioelectrochemistry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Tanaka N, Kawano Y, Satoh Y, Dairi T, Ohtsu I. Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Sci Rep 2019; 9:1895. [PMID: 30760790 PMCID: PMC6374457 DOI: 10.1038/s41598-018-38382-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/27/2018] [Indexed: 01/27/2023] Open
Abstract
Ergothioneine (ERG), a unique thiol compound, is suggested to function as an antioxidant and cytoprotectant. Despite several recent attempts to produce ERG using various organisms, its yield was still very low and the costs remained high. Since the level of ERG produced depends strictly on the availability of three distinct precursor amino acids (l-cysteine (Cys), l-histidine, and l-methionine (Met)), metabolic engineering for enhancement of the flux toward ERG biosynthesis is required. Herein, we took advantage of a high-Cys production system using Escherichia coli cells, in which Cys biosynthesis and excretion were activated, and applied it to the fermentative production of ERG from glucose. The Cys overproduction in E. coli cells carrying the egtBCDE genes from Mycobacterium smegmatis was effective for ERG production. Furthermore, coexpression of the egtA gene, which encodes γ-glutamylcysteine synthetase that synthesizes the γ-glutamylcysteine used as a sulfur source of ERG biosynthesis, enhanced ERG production even though E. coli intrinsically has γ-glutamylcysteine synthetase. Additionally, disruption of the metJ gene that encodes the transcriptional repressor involved in Met metabolism was effective in further increasing the production of ERG. Finally, we succeeded in the high-level production of 1.31 g/L ERG in a fed-batch culture process using a jar fermenter.
Collapse
Affiliation(s)
- Naoyuki Tanaka
- Gradutate of School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yusuke Kawano
- Gradutate of School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuharu Satoh
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, N13 & W8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Iwao Ohtsu
- Gradutate of School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
6
|
Yakubu RR, Nieves E, Weiss LM. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:169-198. [PMID: 31347048 DOI: 10.1007/978-3-030-15950-4_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass Spectrometry (MS) has revolutionized the way we study biomolecules, especially proteins, their interactions and posttranslational modifications (PTM). As such MS has established itself as the leading tool for the analysis of PTMs mainly because this approach is highly sensitive, amenable to high throughput and is capable of assigning PTMs to specific sites in the amino acid sequence of proteins and peptides. Along with the advances in MS methodology there have been improvements in biochemical, genetic and cell biological approaches to mapping the interactome which are discussed with consideration for both the practical and technical considerations of these techniques. The interactome of a species is generally understood to represent the sum of all potential protein-protein interactions. There are still a number of barriers to the elucidation of the human interactome or any other species as physical contact between protein pairs that occur by selective molecular docking in a particular spatiotemporal biological context are not easily captured and measured.PTMs massively increase the complexity of organismal proteomes and play a role in almost all aspects of cell biology, allowing for fine-tuning of protein structure, function and localization. There are an estimated 300 PTMS with a predicted 5% of the eukaryotic genome coding for enzymes involved in protein modification, however we have not yet been able to reliably map PTM proteomes due to limitations in sample preparation, analytical techniques, data analysis, and the substoichiometric and transient nature of some PTMs. Improvements in proteomic and mass spectrometry methods, as well as sample preparation, have been exploited in a large number of proteome-wide surveys of PTMs in many different organisms. Here we focus on previously published global PTM proteome studies in the Apicomplexan parasites T. gondii and P. falciparum which offer numerous insights into the abundance and function of each of the studied PTM in the Apicomplexa. Integration of these datasets provide a more complete picture of the relative importance of PTM and crosstalk between them and how together PTM globally change the cellular biology of the Apicomplexan protozoa. A multitude of techniques used to investigate PTMs, mostly techniques in MS-based proteomics, are discussed for their ability to uncover relevant biological function.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Aslebagh R, Wormwood KL, Channaveerappa D, Wetie AGN, Woods AG, Darie CC. Identification of Posttranslational Modifications (PTMs) of Proteins by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:199-224. [DOI: 10.1007/978-3-030-15950-4_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Misson L, Burn R, Vit A, Hildesheim J, Beliaeva MA, Blankenfeldt W, Seebeck FP. Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD. ACS Chem Biol 2018; 13:1333-1342. [PMID: 29658702 DOI: 10.1021/acschembio.8b00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Collapse
Affiliation(s)
- Laëtitia Misson
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Reto Burn
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Allegra Vit
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Julia Hildesheim
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Mariia A. Beliaeva
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Florian P. Seebeck
- Department for Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, Basel, Switzerland
| |
Collapse
|
9
|
Naowarojna N, Cheng R, Chen L, Quill M, Xu M, Zhao C, Liu P. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. Biochemistry 2018; 57:3309-3325. [PMID: 29589901 DOI: 10.1021/acs.biochem.8b00239] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.
Collapse
Affiliation(s)
- Nathchar Naowarojna
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Ronghai Cheng
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Li Chen
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Melissa Quill
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Meiling Xu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| | - Changming Zhao
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Pinghua Liu
- Department of Chemistry , Boston University , Boston , Massachusetts 02215 , United States
| |
Collapse
|
10
|
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
11
|
Burn R, Misson L, Meury M, Seebeck FP. Anaerobic Origin of Ergothioneine. Angew Chem Int Ed Engl 2017; 56:12508-12511. [DOI: 10.1002/anie.201705932] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Reto Burn
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Laëtitia Misson
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Meury
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Florian P. Seebeck
- Department for Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
12
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
13
|
Peck SC, van der Donk WA. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 2016; 22:381-394. [PMID: 27783267 DOI: 10.1007/s00775-016-1399-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Mass Spectrometric Analysis of Post-translational Modifications (PTMs) and Protein–Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:205-35. [DOI: 10.1007/978-3-319-06068-2_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Afjehi-Sadat L, Garcia BA. Comprehending dynamic protein methylation with mass spectrometry. Curr Opin Chem Biol 2013; 17:12-9. [PMID: 23333572 DOI: 10.1016/j.cbpa.2012.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/23/2012] [Accepted: 12/30/2012] [Indexed: 01/08/2023]
Abstract
Protein methylation is a post-translational modification (PTM) which modulates cellular and biological processes including transcription, RNA processing, protein interactions and protein dynamics. Methylation, catalyzed by highly specific methyltransferase enzymes, occurs on several amino acids including arginine, lysine, histidine and dicarboxylic amino acids like glutamate. Mass spectrometry (MS)-based techniques continue to be the methods of choice for the study of protein PTMs. These approaches are powerful and sensitive tools that have been used to identify, quantify and characterize protein methylation. In addition, metabolic labeling strategies can be coupled to MS detection in order to measure dynamic and differential in vivo protein methylation rates. In this review, different applications of mass spectrometry technologies and methods to study protein methylation are discussed.
Collapse
Affiliation(s)
- Leila Afjehi-Sadat
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, 1009C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
16
|
Wetie AGN, Sokolowska I, Woods AG, Darie CC. Identification of Post-Translational Modifications by Mass Spectrometry. Aust J Chem 2013. [DOI: 10.1071/ch13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.
Collapse
|
17
|
Seebeck FP. In Vitro Reconstitution of Mycobacterial Ergothioneine Biosynthesis. J Am Chem Soc 2010; 132:6632-3. [DOI: 10.1021/ja101721e] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian P. Seebeck
- Abteilung Physikalische Biochemie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| |
Collapse
|
18
|
Klimasauskas S, Weinhold E. A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 2007; 25:99-104. [PMID: 17254657 DOI: 10.1016/j.tibtech.2007.01.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/15/2006] [Accepted: 01/12/2007] [Indexed: 11/26/2022]
Abstract
AdoMet-dependent methyltransferases catalyze highly specific methyl group transfers from the ubiquitous cofactor S-adenosyl-L-methionine to a multitude of biological targets in the cell. Recently, DNA methyltransferases have been used for the sequence-specific, covalent attachment of larger chemical groups to plasmid and bacteriophage DNA using two classes of synthetic AdoMet analogs. These synthetic cofactors, in combination with the myriad AdoMet-dependent methyltransferases available in nature, provide new molecular tools for precise, targeted functionalization and labeling of large natural DNAs and, in all likelihood, RNAs and proteins. This paves the way for numerous novel applications in the functional analysis of biological methylation, biotechnology and medical diagnostics.
Collapse
Affiliation(s)
- Saulius Klimasauskas
- Laboratory of Biological DNA Modification, Institute of Biotechnology, LT-02241 Vilnius, Lithuania.
| | | |
Collapse
|
19
|
Broquist HP. S-adenosylmethionine: epsilon-N-L-lysine methyltransferase. Methods Enzymol 1986; 123:303-8. [PMID: 2939320 DOI: 10.1016/s0076-6879(86)23035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Borum PR, Broquist HP. Purification of S-adenosylmethionine: epsilon-N-L-lysine methyltransferase. The first enzyme in carnitine biosynthesis. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Enzyme Nomenclature: Recommendations (1972) of the International Union of Pure and Applied Chemistry and the International Union of Biochemistry. Supplement 1: Corrections & Additions (1975). BIOCHIMICA ET BIOPHYSICA ACTA 1976; 429:1-45. [PMID: 1260028 DOI: 10.1016/0005-2744(76)90027-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Participation of an Intermediate Sulfoxide in the Enzymatic Thiolation of the Imidazole Ring of Hercynine to Form Ergothioneine. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42435-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|