1
|
Matyshevska OP, Grigorieva MV, Danilova VM, Komisarenko SV. Ubiquitin and its role in proteolisis: the 2004 Nobel prize in chemistry. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the early 1980-s, Aaron Ciechanover, Avram Hershko, and Irwin Rose discovered one of the most important cyclic cellular processes – a regulated ATP-dependent protein degradation, for which they were awarded the 2004 Nobel Prize in Chemistry. These scientists proved the existence of a non-lysosomal proteolysis pathway and completely changed the perception of intracellular protein degradation mechanisms. They demonstrated pre-labelling of a doomed protein in a cell with a biochemical marker called ubiquitin. Polyubiquitylation of a protein as a signal for its proteolysis was a new mechanism discovered as a result of collaborative efforts of three scientists on isolation of enzymes involved in this sequential process, clarification of the biochemical stages, and substantiating the energy dependence mechanism. The article contains biographical data of the Nobel laureates, the methods applied, and the history of the research resulted in the discovery of the phenomenon of proteasomal degradation of ubiquitin-mediated proteins. Keywords: PROTAC, regulated protein degradation, ubiquitin, І. Rose, А. Ciechanover, А. Hershko
Collapse
|
2
|
COOPER EH, ALPEN EL. The Effects of Ionizing Radiation on Rat Thoracic-duct Lymphocytes in Vitro. ACTA ACUST UNITED AC 2009; 1:344-59. [PMID: 13811781 DOI: 10.1080/09553005914550461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
|
4
|
Sable HZ. Biosynthesis of ribose and deoxyribose. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 28:391-460. [PMID: 5334064 DOI: 10.1002/9780470122730.ch7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Affiliation(s)
- Jerard Hurwitz
- Program of Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
6
|
FEINENDEGEN LE, BOND VP, SHREEVE WW, PAINTER RB. RNA and DNA metabolism in human tissue culture cells studied with tritiated cytidine. Exp Cell Res 1998; 19:443-59. [PMID: 13821948 DOI: 10.1016/0014-4827(60)90054-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
MOORE EC, HURLBERT RB. Reduction of cytidine nucleotides to deoxycytidine nucleotides by mammalian enzymes. ACTA ACUST UNITED AC 1998; 55:651-63. [PMID: 14475641 DOI: 10.1016/0006-3002(62)90843-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
|
9
|
WEINFELD H, SANDBERG AA. EFFECTS OF COLCHICINE ON THE INCORPORATION OF NUCLEIC ACID PRECURSORS INTO RAT LIVER RIBOSENUCLEIC ACID. Biochem Pharmacol 1996; 13:1627-37. [PMID: 14248391 DOI: 10.1016/0006-2952(64)90217-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Greenberg GR, Hilfinger JM. Regulation of synthesis of ribonucleotide reductase and relationship to DNA replication in various systems. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:345-95. [PMID: 8650308 DOI: 10.1016/s0079-6603(08)60150-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- G R Greenberg
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
11
|
Lien EJ. Ribonucleotide reductase inhibitors as anticancer and antiviral agents. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1987; 31:101-26. [PMID: 3326028 DOI: 10.1007/978-3-0348-9289-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Dick JE, Wright JA. Human diploid fibroblasts with alterations in ribonucleotide reductase activity, deoxyribonucleotide pools and in vitro lifespan. Mech Ageing Dev 1984; 26:37-49. [PMID: 6379327 DOI: 10.1016/0047-6374(84)90163-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three drug resistant human diploid fibroblast clones were isolated which contained elevated levels of ribonucleotide reductase activity when compared to wild type fibroblasts. The drug resistant cells do not appear to possess an enzyme with altered affinity for hydroxyurea. The increase in enzyme activity can entirely account for cellular drug resistance. In keeping with the observed changes in reductase activity in drug resistant fibroblasts, deoxyribonucleotide pools were also found to be altered. Most significantly, there was a 1.8-fold expansion of the dCTP pool size, suggesting that elevation in intracellular dCTP concentrations plays an important role in cellular resistance. Furthermore, the drug resistant fibroblasts exhibited substantial reductions in their replicative abilities, suggesting that the regulation of ribonucleotide reductase and the accompanying deoxyribonucleotide pools in human diploid cells is involved in aspects of cellular senescence.
Collapse
|
13
|
Wright JA, Cory JG. Alterations in the components of ribonucleotide reductase in hydroxyurea-resistant hamster cells. Biosci Rep 1983; 3:741-8. [PMID: 6354297 DOI: 10.1007/bf01120985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two components of mammalian ribonucleotide reductase have been separated by blue dextran-Sepharose chromatography from a hydroxyurea-resistant cell line, NCR-30A2, and its parental wild type. Analysis of reductase activity in these cells and the enzyme components reveals that there are three alterations involving ribonucleotide reductase activity in NCR-30A2 cells. There is an elevation in the effector-binding (EB) component, an elevation in the non-heme-iron-containing (NHI) component, and an alteration in the NHI component that renders the enzyme less sensitive to inhibition by hydroxyurea. These findings easily account for the resistance of NCR-30A2 cells to the antitumor agent hydroxyurea, and to other drugs with a similar mode of action.
Collapse
|
14
|
Sato A, Cory JG. In vitro generation of ribonucleotide reductase with altered sensitivity to the inhibitors hydroxyurea and deoxynucleoside triphosphates. Biosci Rep 1981. [DOI: 10.1007/bf01116278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Atsushi Sato
- Department of Biochemistry, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| | - Joseph G. Cory
- Department of Biochemistry, University of South Florida College of Medicine, Tampa, FL 33612, U.S.A
| |
Collapse
|
15
|
|
16
|
Cory JG, Sato A, Lasater L. Specific inhibition of the subunits of ribonucleotide reductase as a new approach to combination chemotherapy. ADVANCES IN ENZYME REGULATION 1981; 19:139-50. [PMID: 7039256 DOI: 10.1016/0065-2571(81)90013-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Mailänder B, Bacher A. Biosynthesis of riboflavin. Structure of the purine precursor and origin of the ribityl side chain. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33390-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Cory JG, Mansell MM, Whitford TW. Control of ribonucleotide reductase in mammalian cells. ADVANCES IN ENZYME REGULATION 1976; 14:45-62. [PMID: 987694 DOI: 10.1016/0065-2571(76)90007-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Follmann H. Die enzymatische Ribonucleotid-Reduktion: Biosyntheseweg der Desoxyribonucleotide. Angew Chem Int Ed Engl 1974. [DOI: 10.1002/ange.19740861704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Follmann H. Enzymatic reduction of ribonucleotides: biosynthesis pathway of deoxyribonucleotides. Angew Chem Int Ed Engl 1974; 13:569-79. [PMID: 4214088 DOI: 10.1002/anie.197405691] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Fukushima T, Shiota T. Biosynthesis of Biopterin by Chinese Hamster Ovary (CHO K1) Cell Culture. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42439-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Bradbeer O. Biosynthesis of deoxyribonucleotides in Ochromonas malhamensis. THE JOURNAL OF PROTOZOOLOGY 1971; 18:95-8. [PMID: 5547077 DOI: 10.1111/j.1550-7408.1971.tb03288.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
|
24
|
Baugh CM, Krumdieck CL. Biosynthesis of riboflavine in Corynebacterium species: the purine precursor. J Bacteriol 1969; 98:1114-9. [PMID: 5788699 PMCID: PMC315303 DOI: 10.1128/jb.98.3.1114-1119.1969] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Corynebacterium species lacks the ability to convert either xanthine or guanine to adenine. This defect and the use of the purine nucleoside antibiotic decoyinine, which blocks the conversion of xanthosine monophosphate --> guanosine monophosphate, permit an experimental design in which the interconversion of purines is largely prevented. Cultures of this organism were grown in the presence of decoyinine and various purine supplements. Data obtained by comparing the radioactivity incorporated from guanine-2-(14)C or xanthine-2-(14)C into bacterial guanine, xanthine, and riboflavine indicate that guanine or a close derivative of guanine is the purine precursor of riboflavine.
Collapse
|
25
|
King CD, Van Lancker JL. Molecular mechanisms of liver regeneration. VII. Conversion of cytidine to deoxycytidine in rat regenerating livers. Arch Biochem Biophys 1969; 129:603-8. [PMID: 5772971 DOI: 10.1016/0003-9861(69)90220-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
Beck WS. Deoxyribonucleotide synthesis and the role of vitamin B12 in erythropoiesis. VITAMINS AND HORMONES 1969; 26:413-42. [PMID: 4305972 DOI: 10.1016/s0083-6729(08)60764-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Karlström O, Larsson A. Significance of ribonucleotide reduction in the biosynthesis of deoxyribonucleotides in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1967; 3:164-70. [PMID: 4865566 DOI: 10.1111/j.1432-1033.1967.tb19512.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Ellem KA. A dual-label technique for comparing the rates of synthesis of nucleic acid fractions separated by methylated albumin-kieselguhr chromatography from cells in different states of activity. BIOCHIMICA ET BIOPHYSICA ACTA 1967; 149:74-87. [PMID: 4295783 DOI: 10.1016/0005-2787(67)90692-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Price T, Darmstadt R, Hinds H, Zamenhof S. Mechanism of Synthesis of Deoxyribonucleic Acid in Vivo. J Biol Chem 1967. [DOI: 10.1016/s0021-9258(18)96329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Larsson A, Reichard P. Enzymatic Reduction of Ribonucleotides. ACTA ACUST UNITED AC 1967. [DOI: 10.1016/s0079-6603(08)60955-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
31
|
Turner MK, Abrams R, Lieberman I. Meso-α,β-diphenylsuccinate and Hydroxyurea as Inhibitors of Deoxycytidylate Synthesis in Extracts of Ehrlich Ascites and L Cells. J Biol Chem 1966. [DOI: 10.1016/s0021-9258(18)96340-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Larsson A, Neilands JB. Significance of ribonucleotide reduction in the biosynthesis of the deoxyribose moiety of regenerating rat liver deoxyribonucleic acid. Biochem Biophys Res Commun 1966; 25:222-6. [PMID: 5971767 DOI: 10.1016/0006-291x(66)90584-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Daneholt B, Brattgård SO. A comparison between RNA metabolism of nerve cells and glia in the hypoglossal nucleus of the rabbit. J Neurochem 1966; 13:913-21. [PMID: 5927761 DOI: 10.1111/j.1471-4159.1966.tb10287.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Krumdieck C, Shaw E, Baugh CM. The Biosynthesis of 2-Amino-4-hydroxy-6-substituted Pteridines. J Biol Chem 1966. [DOI: 10.1016/s0021-9258(18)96928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
ITZHAKI S, WHITTLE ED. METABOLIC STUDIES ON THE SUGARS OF NUCLEIC ACID. 3. 14C-LABELLING OF RIBOSE AND DEOXYRIBOSE IN RAT TISSUES IN VIVO. BIOCHIMICA ET BIOPHYSICA ACTA 1964; 91:190-8. [PMID: 14240636 DOI: 10.1016/0926-6550(64)90241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
36
|
COLLIER JR. The incorporation of uridine into the deoxyribonucleic acid of the Ilyanassa embryo. Exp Cell Res 1963; 32:442-7. [PMID: 14099815 DOI: 10.1016/0014-4827(63)90184-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Unrau AM, Canvin DT. BIOSYNTHESIS OF PLANT CONSTITUENTS: I. THE COMPLETE DEGRADATION OF 2-DEOXY-D-RIBOSE AND SOME 2-DEOXY-D-HEXOSES. CAN J CHEM 1963. [DOI: 10.1139/v63-085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple procedure is described whereby the complete stepwise degradation of 2-deoxy-D-ribose was achieved. Yields as high as 90% or better of the available carbon was obtained. The 2-deoxy pentose was reduced (KBH4) to the corresponding polyol and the latter oxidatively cleaved with periodate. Formic acid (C4) was converted to CO2quantitatively by oxidation with HgO. Formaldehyde and β-hydroxypropionaldehyde were oxidized with bromine. Formic acid (C5) thus formed was converted to CO2in quantitative yields and the hydroxy acid decarboxylated with permanganate; thusly C3was obtained. The acetic acid (from C1and C2) was extracted with ether and subsequently degraded by the Schmidt–Phares procedure. The procedure was further used to degrade some 2-deoxy hexoses.
Collapse
|
38
|
Ghosh D, Bernstein I. Isotopic tracer studies on the biosynthesis of deoxyribose in the rat. ACTA ACUST UNITED AC 1963. [DOI: 10.1016/0926-6550(63)90302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Thomson RY, Scotto GT, Brown GB. On the Conversion of Cytidine to Deoxycytidine in the Rat. J Biol Chem 1962. [DOI: 10.1016/s0021-9258(19)70848-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
|
41
|
Robbins PW, Hammond JB. Evidence for the Formation of Pseudouridine by the Rearrangement of a Uridine Derivative. J Biol Chem 1962. [DOI: 10.1016/s0021-9258(18)60340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
NORTON SJ, RAVEL JM, SHIVE W. Effect of deoxyribonucleosides on deoxyribonucleic acid synthesis in vitamin B12-deficient Lactobacillus leichmannii. ACTA ACUST UNITED AC 1962; 55:222-4. [PMID: 14480434 DOI: 10.1016/0006-3002(62)90953-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
LUCY JA, WEBB M, BIGGERS JD. Biosynthesis of pentoses and amino sugars in embryonic chick cartilage cultivated on a chemically defined medium. ACTA ACUST UNITED AC 1961; 54:259-65. [PMID: 14467166 DOI: 10.1016/0006-3002(61)90364-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Cohen SS, Barner HD, Lichtenstein J. The Conversion of a Phage-induced Ribonucleic Acid to Deoxyribonucleotides in Vitro. J Biol Chem 1961. [DOI: 10.1016/s0021-9258(18)64196-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
|
46
|
|
47
|
ABRAMS R, LIBENSON L, EDMONDS M. Conversion of cytidine 5′-phosphate to deoxycytidine 5′-phosphate in cell-free mammalian extracts. Biochem Biophys Res Commun 1960; 3:272-4. [PMID: 13681125 DOI: 10.1016/0006-291x(60)90238-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
GRANT P. The influence of folic acid analogs on development and nucleic acid metabolism in Rana pipiens embryos. Dev Biol 1960; 2:197-251. [PMID: 13828970 DOI: 10.1016/0012-1606(60)90007-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Siedler A, Schweigert B. The Effect of Ribonucleotides on the Deoxyribonucleic Acid Metabolism of Lactobacillus acidophilus R-26. J Biol Chem 1960. [DOI: 10.1016/s0021-9258(19)67934-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
LOVTRUP S. Synthesis of desoxyribonucleic acid during amphibian embryogenesis at different temperatures. ACTA ACUST UNITED AC 1959; 141:545-70. [PMID: 14418509 DOI: 10.1002/jez.1401410307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|