Lannigan DA, Bennington JB, Cragoe EJ, Knauf PA. Phenamil, an amiloride analogue, inhibits differentiation of Friend murine erythroleukemic cells.
THE AMERICAN JOURNAL OF PHYSIOLOGY 1988;
254:C122-9. [PMID:
3422134 DOI:
10.1152/ajpcell.1988.254.1.c122]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amiloride has been reported to inhibit Friend murine erythroleukemic (MEL) cell commitment to differentiate by inhibiting the MEL cell plasma membrane Na+-Ca2+ antiporter (R. L. Smith, I. G. Macara, R. Levenson, D. Housman, and L. Cantley. J. Biol. Chem. 257: 773-780, 1982). We therefore screened a series of amiloride analogues to determine whether a more potent and specific inhibitor of MEL cell differentiation could be found. In our experiments, as in those of Lubin (J. Cell. Physiol. 124: 539-544, 1985), amiloride itself did not inhibit MEL cell differentiation. However, we did find that the amiloride analogue phenamil reversibly inhibits dimethyl sulfoxide (DMSO)-induced MEL cell commitment to differentiate with a K1/2 of 2.5-5.0 microM (in plasma clot assay). At an extracellular concentration of 15 microM, phenamil inhibits commitment to differentiate by approximately 90% in the plasma clot assay while having a minimal effect on growth. Phenamil is not metabolized but is rapidly taken up by MEL cells. Phenamil was most effective as an inhibitor when present during the first 12 h of DMSO treatment, indicating that phenamil affects the early commitment process rather than later steps involved in hemoglobin synthesis. Phenamil does not, however, inhibit the early differentiation-induced decrease in [Na+]i and the concomitant drop in the Na+-K+ pump rate. A specific binding site for phenamil is suggested because some analogues in which the phenamil structure is slightly modified are unable to inhibit differentiation.
Collapse