1
|
Mozafari N, Umek T. Assessing Oligonucleotide Binding to Double-Stranded DNA. Methods Mol Biol 2020; 2036:91-112. [PMID: 31410792 DOI: 10.1007/978-1-4939-9670-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sequence-specific targeting of double-stranded DNA (dsDNA) using synthetic oligonucleotides (ONs) has been under investigation in different therapeutic approaches. Several methods can be used to evaluate ONs effect and binding capacity to their target sequence. Here we describe some of the methods, which have been frequently used for assessing ONs binding to dsDNA.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Tea Umek
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
2
|
Involvement of G-quadruplex structures in regulation of human RET gene expression by small molecules in human medullary thyroid carcinoma TT cells. Oncogene 2014; 34:1292-9. [PMID: 24662821 DOI: 10.1038/onc.2014.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022]
Abstract
The RET (rearranged during transfection) proto-oncogene encodes a receptor tyrosine kinase for members of the glial cell line-derived neurotrophic factor family of extracellular signaling molecules. The activating germline point mutations in the RET, which are known to induce oncogenic activation of RET tyrosine kinase, are associated with the development of medullary thyroid carcinoma (MTC) and pathogenesis of multiple endocrine neoplasia type 2 (MEN2). The polypurine/polypyrimidine tract in the proximal promoter region of the human RET gene (-51 to -33 relative to transcription start site) is essential for basal transcriptional activity of this gene. This tract consists of a guanine-rich sequence containing five runs of at least three contiguous guanines separated by one or more bases, conforming to a general motif capable of forming an intramolecular G-quadruplex. Here, we show that specific G-quadruplex structures formed in the RET promoter region act to repress the transcription of this gene, and transcription of this gene can be controlled by ligand-mediated G-quadruplex stabilization. In this study, NSC194598, a derivative of indeno[1,2,3-de]quinazoline, was found to be a novel G-quadruplex interactive agent that interfered with transcriptional activation of mutated RET gene in human medullary thyroid carcinoma TT cells. This compound significantly reduced endogenous RET protein levels and increased apoptosis in these cells. Our results provide further support for the idea that G-quadruplex structures may have a critical role in transcriptional regulation of the RET gene in vivo, providing insight into a novel strategy for transcriptional repression of this gene by small molecules.
Collapse
|
3
|
Sun D, Guo K, Shin YJ. Evidence of the formation of G-quadruplex structures in the promoter region of the human vascular endothelial growth factor gene. Nucleic Acids Res 2011; 39:1256-65. [PMID: 20959293 PMCID: PMC3045601 DOI: 10.1093/nar/gkq926] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022] Open
Abstract
The polypurine/polypyrimidine (pPu/pPy) tract of the human vascular endothelial growth factor (VEGF) gene is proposed to be structurally dynamic and to have potential to adopt non-B DNA structures. In the present study, we further provide evidence for the existence of the G-quadruplex structure within this tract both in vitro and in vivo using the dimethyl sulfate (DMS) footprinting technique and nucleolin as a structural probe specifically recognizing G-quadruplex structures. We observed that the overall reactivity of the guanine residues within this tract toward DMS was significantly reduced compared with other guanine residues of the flanking regions in both in vitro and in vivo footprinting experiments. We also demonstrated that nucleolin, which is known to bind to G-quadruplex structures, is able to bind specifically to the G-rich sequence of this region in negatively supercoiled DNA. Our chromatin immunoprecipitation analysis further revealed binding of nucleolin to the promoter region of the VEGF gene in vivo. Taken together, our results are in agreement with our hypothesis that secondary DNA structures, such as G-quadruplexes, can be formed in supercoiled duplex DNA and DNA in chromatin in vivo under physiological conditions similar to those formed in single-stranded DNA templates.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
4
|
Abstract
Polypurine/polypyrimidine (pPu/pPy) tracts, which exist in the promoter regions of many growth-related genes, have been proposed to be very dynamic in their conformation. In this chapter, we describe a detailed protocol for DNase I and S1 nuclease footprinting experiments with supercoiled plasmid DNA containing the promoter regions to probe whether there are conformational transitions to B-type DNA, melted DNA, and G-quadruplex structures within this tract. This is demonstrated with the proximal promoter region of the human vascular endothelial growth factor (VEGF) gene, which also contains multiple binding sites for Sp1 and Egr-1 transcription factors.
Collapse
|
5
|
Motallebipour M, Rada-Iglesias A, Westin G, Wadelius C. Two polypyrimidine tracts in the nitric oxide synthase 2 gene: similar regulatory sequences with different properties. Mol Biol Rep 2009; 37:2021-30. [PMID: 19669598 DOI: 10.1007/s11033-009-9653-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/21/2009] [Indexed: 11/24/2022]
Abstract
We reported previously that the polymorphic polypyrimidine CCTTT-microsatellite in the regulatory region of nitric oxide synthase 2 (NOS2) bound nuclear proteins in vitro. In the present work, we aimed to characterize and investigate a potential regulatory role of the CCTTT-microsatellite in NOS2 expression. Therefore, we performed gel-shift, S1-nuclease, and chromatin immunoprecipitation (ChIP) assays. In vitro experiments showed that the microsatellite formed triplex-DNA both with and without superhelical constraint. We also found that the CCTTT-microsatellite and an apparently similar CT-repeat in the first intron of NOS2 were specifically cleaved by S1-nuclease, when cloned into a supercoiled plasmid. In vitro data suggested that the CCTTT-microsatellite bound both polypyrimidine tract-binding protein (PTBP1) and heterogeneous nuclear ribonucleoprotein K (hnRNPK). On the contrary, ChIP revealed binding of PTBP1 and hnRNPK rather to the CT-repeat in the first intron than to the CCTTT-microsatellite. Enrichment for RNA polymerase II and acetylated histones H3 and H4 was also detected at the intronic site. We suggest that both PTBP1 and hnRNPK binds the single strand of the triplex-DNA formed at the CT-repeat in the first intron and that this interaction could be involved in the regulation of NOS2 expression.
Collapse
Affiliation(s)
- Mehdi Motallebipour
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | | | | | | |
Collapse
|
6
|
Sun D, Hurley LH. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J Med Chem 2009; 52:2863-74. [PMID: 19385599 DOI: 10.1021/jm900055s] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of DNA supercoiling in transcriptional regulation has been known for many years, and more recently, transcription itself has been shown to be a source of this superhelicity. To mimic the effect of transcriptionally induced negative superhelicity, the G-quadruplex/i-motif-forming region in the c-Myc promoter was incorporated into a supercoiled plasmid. We show, using enzymatic and chemical footprinting, that negative superhelicity facilitates the formation of secondary DNA structures under physiological conditions. Significantly, these structures are not the same as those formed in single-stranded DNA templates. Together with the recently demonstrated role of transcriptionally induced superhelicity in maintaining a mechanosensor mechanism for controlling the firing rate of the c-Myc promoter, we provide a more complete picture of how c-Myc transcription is likely controlled. Last, these physiologically relevant G-quadruplex and i-motif structures, along with the mechanosensor mechanism for control of gene expression, are proposed as novel mechanisms for small molecule targeting of transcriptional control of c-Myc.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
7
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with triplex DNA. DNA Cell Biol 2002; 21:163-88. [PMID: 12015895 DOI: 10.1089/10445490252925422] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As previously shown, type III intermediate filaments (IFs) select from a mixture of linear mouse genomic DNA fragments mobile and repetitive, recombinogenic sequences that have also been identified in SDS-stable crosslinkage products of vimentin and DNA isolated from intact fibroblasts. Because these sequences also included homopurine.homopyrimidine (Pu.Py) tracts known to adopt triple-helical conformation under superhelical tension, and because IF proteins are single-stranded (ss) and supercoiled DNA-binding proteins, it was of interest whether they have a particular affinity for triplex DNA. To substantiate this, IF-selected DNA fragments harboring a (Pu.Py) segment and synthetic d(GA)(n) microsatellites were inserted into a vector plasmid and the constructs analyzed for their capacity to interact with IF proteins. Band shift assays revealed a substantially higher affinity of the IF proteins for the insert-containing plasmids than for the empty vector, with an activity decreasing in the order of vimentin > glial fibrillary acidic protein > desmin. In addition, footprint analyses performed with S1 nuclease, KMnO(4), and OsO(4)/bipyridine showed that the (Pu.Py) inserts had adopted triplex conformation under the superhelical strain of the plasmids, and that the IF proteins protected the triple-helical insert sequences from nucleolytic cleavage and chemical modification. All these activities were largely reduced in extent when analyzed on linearized plasmid DNAs. Because intramolecular triplexes (H-DNA) expose single-stranded loops, and the prokaryotic ssDNA-binding proteins g5p and g32p also protected at least the Pu-strand of the (Pu.Py) inserts from nucleolytic degradation, it seemed likely that the IF proteins take advantage of their ssDNA-binding activity in interacting with H-DNA. However, in contrast to g5p and E. coli SSB, they produced no clear band shifts with single-stranded d(GA)(20) and d(TC)(20), so that the interactions rather appear to occur via the duplex-triplex and triplex-loop junctions of H-DNA. On the other hand, the IF proteins, and also g32p, promoted the formation of intermolecular triplexes from the duplex d[A(GA)(20).(TC)(20)T] and d(GA)(20) and d(TC)(20) single strands, with preference of the Py (Pu.Py) triplex motif, substantiating an affinity of the proteins for the triplex structure as such. This triplex-stabilizing effect of IF proteins also applies to the H-DNA of (Pu.Py) insert-containing plasmids, as demonstrated by the preservation of intramolecular triplex-vimentin complexes upon linearization of their constituent supercoiled DNAs, in contrast to poor complex formation from free, linearized plasmid DNA and vimentin. Considering that (Pu.Py) sequences are found near MAR/replication origins, in upstream enhancer and promoter regions of genes, and in recombination hot spots, these results might point to roles of IF proteins in DNA replication, transcription, recombination, and repair.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck-Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|
8
|
Susulic VS, LaVallette L, Duzic E, Chen L, Shuey D, Karathanasis SK, Steiner KE. Expression of the human beta(3)-adrenergic receptor gene in SK-N-MC cells is under the control of a distal enhancer. Endocrinology 2001; 142:1935-49. [PMID: 11316759 DOI: 10.1210/endo.142.5.8151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms of transcriptional regulation of the human beta(3)-adrenergic receptor were studied using SK-N-MC cells, a human neuroblastoma cell line that expresses beta(3)- and beta(1)-adrenergic receptors endogenously. Deletions spanning different portions of a 7-kb 5'-flanking region of the human beta(3)-adrenergic receptor gene were linked to a luciferase reporter and transfected in SK-N-MC, CV-1, and HeLa cells. Maximal luciferase activity was observed when a 200-bp region located between -6.5 and -6.3 kb from the translation start site was present. This region functioned only in SK-N-MC cells. Electrophoretic mobility shift assays of nuclear extracts from SK-N-MC, CV-1, and HeLa cells using double stranded oligonucleotides spanning different portions of the 200-bp region as probes and transient transfection studies revealed the existence of three cis-acting regulatory elements: A) -6.468 kb-AGGTGGACT--6.458 kb, B) -6.448 kb-GCCTCTCTGGGGAGCAGCTTCTCC-6.428 kb, and C) -6.405 kb-20 repeats of CCTT-6.385 kb. These elements act together to achieve full transcriptional activity. Mutational analysis, antibody supershift, and electrophoretic mobility shift assay competition experiments indicated that element A binds the transcription factor Sp1, element B binds protein(s) present only in nuclear extracts from SK-N-MC cells and brown adipose tissue, and element C binds protein(s) present in both SK-N-MC and HeLa cells. In addition, element C exhibits characteristics of an S1 nuclease-hypersensitive site. These data indicate that cell-specific positive cis-regulatory elements located 6.5 kb upstream from the translation start site may play an important role in transcriptional regulation of the human beta(3)-adrenergic receptor. These data also suggest that brown adipose tissue-specific transcription factor(s) may be involved in the tissue-specific expression of the beta(3)-adrenergic receptor gene.
Collapse
Affiliation(s)
- V S Susulic
- Metabolic Diseases Department, Wyeth-Ayerst Laboratories, Inc., CN 8000, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 1998; 62:111-21. [PMID: 9443873 PMCID: PMC1376805 DOI: 10.1086/301680] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Friedreich ataxia (FRDA), an autosomal recessive, neurodegenerative disease is the most common inherited ataxia. The vast majority of patients are homozygous for an abnormal expansion of a polymorphic GAA triplet repeat in the first intron of the X25 gene, which encodes a mitochondrial protein, frataxin. Cellular degeneration in FRDA may be caused by mitochondrial dysfunction, possibly due to abnormal iron accumulation, as observed in yeast cells deficient for a frataxin homologue. Using RNase protection assays, we have shown that patients homozygous for the expansion have a marked deficiency of mature X25 mRNA. The mechanism(s) by which the intronic GAA triplet expansion results in this reduction of X25 mRNA is presently unknown. No evidence was found for abnormal splicing of the expanded intron 1. Using cloned repeat sequences from FRDA patients, we show that the GAA repeat per se interferes with in vitro transcription in a length-dependent manner, with both prokaryotic and eukaryotic enzymes. This interference was most pronounced in the physiological orientation of transcription, when synthesis of the GAA-rich transcript was attempted. These results are consistent with the observed negative correlation between triplet-repeat length and the age at onset of disease. Using in vitro chemical probing strategies, we also show that the GAA triplet repeat adopts an unusual DNA structure, demonstrated by hyperreactivity to osmium tetroxide, hydroxylamine, and diethyl pyrocarbonate. These results raise the possibility that the GAA triplet-repeat expansion may result in an unusual yet stable DNA structure that interferes with transcription, ultimately leading to a cellular deficiency of frataxin.
Collapse
Affiliation(s)
- S I Bidichandani
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
10
|
Rininsland F, Johnson TR, Chernicky CL, Schulze E, Burfeind P, Ilan J. Suppression of insulin-like growth factor type I receptor by a triple-helix strategy inhibits IGF-I transcription and tumorigenic potential of rat C6 glioblastoma cells. Proc Natl Acad Sci U S A 1997; 94:5854-9. [PMID: 9159164 PMCID: PMC20870 DOI: 10.1073/pnas.94.11.5854] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Homopurine (AG) and homopyrimidine (CT) oligodeoxyribonucleotides predicted to form triple-helical (triplex) structures have been shown to specifically suppress gene expression when supplied to cultured cells. Here we present evidence that homopurine RNA (effector) sequences designed to form a triplex with a homopurine. homopyrimidine sequence 3' to the termination codon of the insulin-like growth factor type I receptor (IGF-IR) structural gene can efficiently suppress IGF-IR gene transcription. Transfection vectors were constructed to drive transcription of either AG or CT variant triplex-forming strands. To increase the probability of obtaining stable transfectants with adequate expression of effector sequences, these were designed to be transcribed together with cDNA sequences conferring neomycin resistance as a fusion transcript. Rat C6 glioblastoma cells transfected with the AG variant showed dramatic reduction of IGF-IR transcripts compared with untransfected cells. The AG transfectants also exhibited marked down-regulation of the IGF-I, and an enhanced accumulation of serine protease inhibitor nexin-I mRNA. Similar changes in gene expression were observed following transfection of C6 cells with constructs transcribing antisense RNA to IGF-IR transcripts, but were not observed in C6 cells transfected with either the CT triplex variant or with vector lacking triplex-forming sequences. Moreover, C6 cells transfected with AG triplex variant displayed a dramatic inhibition of tumor growth when injected into nude mice. The results suggest that a triple-helix strategy can be used to inhibit transcription elongation of the IGF-IR gene, and emphasize the efficacy of triplex-mediated gene inhibition in an animal model.
Collapse
Affiliation(s)
- F Rininsland
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Single-strand-specific nucleases, which act on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids, are multifunctional enzymes and are ubiquitous in distribution. They find wide application as analytical tools in molecular biology research, although enzymes such as P1 nuclease are also used for production of flavor enhancers such as 5' IMP and 5' GMP. Because these enzymes are mainly used as analytical tools, very little attention was paid to aspects relating to their structure-function relationships. However, during the last few years considerable developments have taken place in this area. Single-strand-specific nucleases, their purification, characteristics, biological role, and applications have been reviewed.
Collapse
Affiliation(s)
- S U Gite
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | |
Collapse
|
12
|
|
13
|
Abstract
GAP-43 is a highly conserved neuronal protein whose expression is spatially and temporally regulated. Because this regulation may occur, at least in part, at the level of transcription, we have begun to characterize the regions upstream of the GAP-43 transcription unit which direct its neuronal-specific expression. Functional analyses of GAP-43 promoter-reporter constructs have been performed in stably transfected cell lines, including PC12, C6 and RAT2. These data indicate that as little as 600 bp of GAP-43 5'-flanking DNA sequence directs the expression in a neuronal-specific manner. A shorter construct containing 230 bp of 5'-flanking DNA sequence defines a GAP-43 minimal promoter that is active in both neuronal and glial but not in non-neural cell lines. An upstream region, previously shown by other investigators to have promoter activity, was able to stimulate transcription when linked to the downstream minimal promoter. However, this upstream region was by itself unable to direct transcription of the reporting gene. In addition, we have demonstrated that two polypurine tracts within the 5'-flanking DNA sequence of the GAP-43 gene adopt a non-duplex configuration in plasmids, and, when studied in the context of chromosomal integration, these regions have a stimulatory effect on transcription.
Collapse
Affiliation(s)
- R G Starr
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | |
Collapse
|
14
|
Arquès DG, Michel CJ. Analytical expression of the purine/pyrimidine codon probability after and before random mutations. Bull Math Biol 1993; 55:1025-38. [PMID: 8281128 DOI: 10.1007/bf02460698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recently, we proposed a new model of DNA sequence evolution (Arquès and Michel. 1990b. Bull. math. Biol. 52, 741-772) according to which actual genes on the purine/pyrimidine (R/Y) alphabet (R = purine = adenine or guanine, Y = pyrimidine = cytosine or thymine) are the result of two successive evolutionary genetic processes: (i) a mixing (independent) process of non-random oligonucleotides (words of base length less than 10: YRY(N)6, YRYRYR and YRYYRY are so far identified; N = R or Y) leading to primitive genes (words of several hundreds of base length) and followed by (ii) a random mutation process, i.e., transformations of a base R (respectively Y) into the base Y (respectively R) at random sites in these primitive genes. Following this model the problem investigated here is the study of the variation of the 8 R/Y codon probabilities RRR, ..., YYY under random mutations. Two analytical expressions solved here allow analysis of this variation in the classical evolutionary sense (from the past to the present, i.e., after random mutations), but also in the inverted evolutionary sense (from the present to the past, i.e., before random mutations). Different properties are also derived from these formulae. Finally, a few applications of these formulae are presented. They prove the proposition in Arquès and Michel (1990b. Bull. math. Biol. 52, 741-772), Section 3.3.2, with the existence of a maximal mean number of random mutations per base of the order 0.3 in the protein coding genes. They also confirm the mixing process of oligonucleotides by excluding the purine/pyrimidine contiguous and alternating tracts from the formation process of primitive genes.
Collapse
Affiliation(s)
- D G Arquès
- Université de Franche-Comté, Besançon, France
| | | |
Collapse
|
15
|
Lu G, Ferl RJ. Homopurine/homopyrimidine sequences as potential regulatory elements in eukaryotic cells. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1529-37. [PMID: 8288020 DOI: 10.1016/0020-711x(93)90508-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. Homopurine/homopyrimidine (PuPy) repetitive duplex sequences can form intramolecular triplexes (H-DNA) or intermolecular triplexes with a third strand in a sequence-specific manner. 2. Such sequences are present in natural genomes within 5'- and 3'-flanking sequences and coding regions of genes. Triplex DNA structures have been detected in vitro and in vivo and have been immunolocalized to chromosomes by triplex-specific monoclonal antibody approaches. 3. Intermolecular triplex formation represses gene expression at the transcriptional level and is also useful in genomic mapping, gene cloning, sequence-specific drug delivery, and selective modulation of gene expression.
Collapse
Affiliation(s)
- G Lu
- Horticultural Sciences Department, University of Florida, Gainesville 32611
| | | |
Collapse
|
16
|
Bagga R, Brahmachari SK. Polypurine-polypyrimidine sequences adopt unwound structure in pBR322 form V DNA as probed by single-hit analysis of HpaII sites. J Biomol Struct Dyn 1993; 10:879-90. [PMID: 7686373 DOI: 10.1080/07391102.1993.10508681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Structure at the polypurine-polypyrimidine sequences flanking the HpaII sites (CCGG) in pBR322 form V DNA was probed employing single-hit analysis using HpaII restriction endonuclease. Reduced cleavage efficiency of HpaII sites flanked by polypurine-polypyrimidine sequences suggested that under high torsional stress these sequences adopt unwound structures rendering these sites insensitive to restriction enzyme cleavage. In addition to polypurine-polypyrimidine sequences. HpaII sites flanked by alternating purine-pyrimidine sequence, a potential motif of left handed Z-DNA, were also found to be resistant to HpaII cleavage. Results obtained from various studies implicating structure sensitivity of restriction endonucleases and methylases were compiled and a direct correlation was observed between the occurrence of altered sites in a domain and its G/C content in pBR322 form V DNA.
Collapse
Affiliation(s)
- R Bagga
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
17
|
|
18
|
Grigoriev M, Praseuth D, Robin P, Hemar A, Saison-Behmoaras T, Dautry-Varsat A, Thuong N, Hélène C, Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50743-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Cheng YK, Pettitt BM. Stabilities of double- and triple-strand helical nucleic acids. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1992; 58:225-57. [PMID: 1380719 DOI: 10.1016/0079-6107(92)90007-s] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this selected literature survey, we have seen that the stabilities of duplexes and triplexes are governed by the vertical base stacking, the horizontal specific base-paired H-bonding and the environmental parameters. The entropic contribution in the solvation/desolvation process is important in driving the aggregation of NA strands and duplex formation, but base stacking and specific H-bonding maintain the helical order. Triplex formation shares most of the physical environmental prerequisites with those of duplex NAs. However, some additional environmental conditions are often needed. Only in low pH solution is the polycytidylic strand protonated and, thus, it is possible for the strand to bind to a G.C duplex sequence to give the C+(G.C) triplex. High ionic strength is often necessary for the screening of inter-phosphate repulsion due to the high linear charge density in triplexes. The presence of specific counterions is important for complexation. In the absence of negative supercoiling, existence of an intramolecular triplex is rare except under very acidic conditions for the formation of C+(G.C)-type intramolecular triplex. As expected, the stabilities of both inter- and intramolecular triplexes increase with sequence length. The thermodynamic principles of helix-coil transition of oligo-duplex may be described by the van't Hoff relationship, which assumes a two-state cooperative melting profile. Thus, the enthalpy, entropy and free energy of transition can be evaluated from the experimental melting curves (e.g. OD, DSC). For polynucleotides, because of the non-two-state nature of transition, the simple van't Hoff relationship is no longer valid, and direct calorimetry is needed to obtain reliable thermodynamic parameters. The pH and salt concentration dependence of duplex stability can be formulated and derived from a van't Hoff equation. Base-stacking patterns are simple in duplexes but not so in triplexes due to the diversity in triplet schemes. The sequence dependence of base stacking for duplexes has been characterized and employed to predict the stability of an arbitrary sequence. In conclusion, the stability of duplex is relatively well-characterized by thermodynamic data in terms of both base stacking and specific H-bonding. Thermodynamic studies of triplexes have been far fewer in number. Oligonucleotides have found application in the detection and localization of a mRNA or its gene, the detection of bacterial or viral sequences, and the inhibition of the translation of mRNA and the transcription and replication of DNA (Englisch and Gauss, 1991). In a different approach, oligonucleotides have been targeted directly to a DNA duplex motif of a gene in order to inhibit the expression at the beginning of the transcriptional process.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y K Cheng
- Chemistry Department, University of Houston, TX 77204-5641
| | | |
Collapse
|
20
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
21
|
Abstract
A DNA structure is defined as paranemic if the participating strands can be separated without mutual rotation of the opposite strands. The experimental methods employed to detect paranemic, unwound, DNA regions is described, including probing by single-strand specific nucleases (SNN), conformation-specific chemical probes, topoisomer analysis, NMR, and other physical methods. The available evidence for the following paranemic structures is surveyed: single-stranded DNA, slippage structures, cruciforms, alternating B-Z regions, triplexes (H-DNA), paranemic duplexes and RNA, protein-stabilized paranemic DNA. The problem of DNA unwinding during gene copying processes is analyzed; the possibility that extended paranemic DNA regions are transiently formed during replication, transcription, and recombination is considered, and the evidence supporting the participation of paranemic DNA forms in genes committed to or undergoing copying processes is summarized.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes/ultrastructure
- DNA/drug effects
- DNA/metabolism
- DNA/ultrastructure
- DNA Helicases/metabolism
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Single-Stranded/drug effects
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA, Superhelical/drug effects
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Endonucleases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- Nucleic Acid Denaturation
- Plasmids
- Transcription, Genetic
Collapse
Affiliation(s)
- G Yagil
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Glover JN, Pulleyblank DE. Protonated polypurine/polypyrimidine DNA tracts that appear to lack the single-stranded pyrimidine loop predicted by the "H" model. J Mol Biol 1990; 215:653-63. [PMID: 2231725 DOI: 10.1016/s0022-2836(05)80175-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three synthetic oligomers: 5'd(AG)8.dA.d(CT)(8)3'(A), 5'd(TC)7.d(TTA).d(GA)(8)3'(B) and d(GA)17(C) were cloned into the plasmid vector p915 in order to study the effects of sequence symmetry on pH-dependent structural transitions in polypurine/polypyrimidine DNA. When present in linear molecules all three sequences undergo transitions to protonated states. These are kinked to different degrees as determined by a non-denaturing gel mobility shift assay. Chemical probe analysis shows that the protonated states adopted by the linear forms of A and C exhibit certain features which have been regarded as indicating partially triple stranded "H" transition structures. The chemical reactivities of the transition structure adopted by linear molecule B and certain features of those exhibited by the transition structures of linear molecules A and C do not conform to the predictions of the "H" model.
Collapse
Affiliation(s)
- J N Glover
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Gottlieb J, Muzyczka N. Substrate specificity of HeLa endonuclease R. A G-specific mammalian endonuclease. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Effect of length, supercoiling, and pH on intramolecular triplex formation. Multiple conformers at pur.pyr mirror repeats. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)86996-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Lee JS, Latimer LJ, Haug BL, Pulleyblank DE, Skinner DM, Burkholder GD. Triplex DNA in plasmids and chromosomes. Gene 1989; 82:191-9. [PMID: 2583520 DOI: 10.1016/0378-1119(89)90044-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Circular plasmids containing pyrimidine purine tracts can form both inter-and intramolecular triplexes. Addition of poly(dTC) to plasmid pTC45, which contains a (TC)45.(GA)45 insert, results in intermolecular triplex formation. Agarose-gel electrophoresis gives rise to many well-resolved bands, which correspond to 1, 2, 3, 4... plasmid molecules attached to the added pyrimidine strand. In the electron microscope these complexes appear as a rosette of petals. The mobility of these triplex-containing complexes can be retarded by the addition of a triplex-specific monoclonal antibody, Jel318. Intramolecular triplex formation can be demonstrated at pH 5 in pTC45 and also in pT463-I, a plasmid containing a segment of a crab satellite DNA with both (G)n.(C)n and (TCC)n.(GGA)n inserts. However, although the intermolecular triplex remains stable for some time at pH 8, intramolecular triplex formation only occurs at low pH. Triplexes can also be detected by an immunoblotting procedure with Jel318. This unfamiliar structure is readily demonstrated in eukaryotic extracts, but not in cell extracts from Escherichia coli. Triplexes may thus be an inherent feature of eukaryotic chromosome structure.
Collapse
Affiliation(s)
- J S Lee
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
26
|
The Structure of the Guanine-rich Polypurine: Polypyrimidine Sequence at the Right End of the Rat L1 (LINE) Element. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84886-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Brookes AJ, Solomon E. Evaluation of the use of S1 nuclease to detect small length variations in genomic DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:291-6. [PMID: 2569395 DOI: 10.1111/j.1432-1033.1989.tb14927.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A method which utilises S1 nuclease to detect small length variations in cloned and genomic DNA has been evaluated. The methodology of this technique is simple and robust, permitting the rapid analysis of 10(4) base pairs. By employing defined sequence variants, this method is shown to have a sensitivity which should enable the detection of length variations of only a few base pairs in heterozygous individuals.
Collapse
Affiliation(s)
- A J Brookes
- Department of Somatic Cell Genetics, Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
28
|
Jaworski A, Blaho JA, Larson JE, Shimizu M, Wells RD. Tetracycline promoter mutations decrease non-B DNA structural transitions, negative linking differences and deletions in recombinant plasmids in Escherichia coli. J Mol Biol 1989; 207:513-26. [PMID: 2547968 DOI: 10.1016/0022-2836(89)90461-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.
Collapse
Affiliation(s)
- A Jaworski
- Department of Biochemistry, School of Medicine, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
29
|
|
30
|
|
31
|
|
32
|
Tsao YP, Wu HY, Liu LF. Transcription-driven supercoiling of DNA: direct biochemical evidence from in vitro studies. Cell 1989; 56:111-8. [PMID: 2535966 DOI: 10.1016/0092-8674(89)90989-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The translocation of an RNA polymerase elongation complex along double helical DNA has been proposed to generate positive supercoiling waves ahead of and negative supercoiling waves behind the transcription ensemble. This twin supercoiled domain model has been tested in vitro. In the presence of prokaryotic DNA topoisomerase I, which selectively removes negative supercoils, transcription from a single promoter results in rapid and extensive positive supercoiling of the DNA template. The accumulation of positive supercoils in the DNA template requires continued movement of the elongation complex as well as sizable nascent RNA chains. These in vitro results provide direct biochemical evidence supporting the twin supercoiled domain model of transcription. Furthermore, the magnitute of DNA supercoiling (torsional) waves generated by transcription is much greater than previously expected, suggesting that transcription is one of the principal factors affecting intracellular DNA supercoiling.
Collapse
Affiliation(s)
- Y P Tsao
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
33
|
Gama Sosa MA, Hall JC, Ruprecht RM. Slipped DNA structures within the enhancer region of the Moloney murine leukemia virus. Biochem Biophys Res Commun 1988; 156:417-23. [PMID: 3052452 DOI: 10.1016/s0006-291x(88)80857-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have examined the S1 nuclease sensitivity of supercoiled plasmids harboring the Moloney Murine Leukemia Virus (MoMuLV) long terminal repeat (LTR). S1 sensitivity was found within the LTR enhancer direct repeats. Transformation of E. coli DH5 cells with a construct containing most of the MoMuLV LTR yielded the precise deletion of one direct repeat and loss of S1 sensitivity. The dependence of S1 sensitivity on the presence of both direct repeats, together with the exact excision of one direct repeat by E. coli, suggests the presence of slipped DNA within the enhancer. Such structures may represent targets for effector proteins which mediate vital functions during viral propagation.
Collapse
Affiliation(s)
- M A Gama Sosa
- Dana-Farber Cancer Institute, Department of Pathology, Boston, MA
| | | | | |
Collapse
|
34
|
A study of the B-Z transition of the AC-rich region of the repeat unit of a satellite DNA from Cebus by means of chemical probes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37860-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Voloshin ON, Mirkin SM, Lyamichev VI, Belotserkovskii BP, Frank-Kamenetskii MD. Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature 1988; 333:475-6. [PMID: 3374588 DOI: 10.1038/333475a0] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have recently shown that under superhelical stress and/or acid pH the homopurine-homopyrimidine tracts conforming to the mirror symmetry (H palindromes) form a novel DNA structure, the H form. According to our model, the H form includes (1) a triplex formed by half of the purine strand and by the homopyrimidine hairpin and (2) the unstructured other half of the purine strand. We used four specially designed sequences to demonstrate that, in accordance with our model, the mirror symmetry is essential for facile formation of the H form detected by two-dimensional gel electrophoresis. Here we report that, under conditions favouring the H-form extrusion, guanines of the 3' half of the purine strand are protected against alkylation by dimethylsulphate, whereas adenines of the 5' half of the purine strand react with diethyl pyrocarbonate. These data indicate that the 3' half of the homopurine strand is within the triplex whereas the 5' half is unstructured, in full agreement with our model.
Collapse
Affiliation(s)
- O N Voloshin
- Institute of Molecular Genetics, USSR Academy of Sciences, Moscow
| | | | | | | | | |
Collapse
|
36
|
McLean MJ, Waring MJ. Chemical probes reveal no evidence of Hoogsteen base pairing in complexes formed between echinomycin and DNA in solution. J Mol Recognit 1988; 1:138-51. [PMID: 3273225 DOI: 10.1002/jmr.300010307] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Five different DNA fragments have been treated with a range of conformationally sensitive reagents in an effort to probe structural changes in DNA associated with binding of the bis-intercalating antibiotic echinomycin. For each probe, the intensity and pattern of its reactivity with DNA have been analyzed in order to elucidate the effect of antibiotic binding on the accessibility of a specific site or sites to chemical attack. It was found that in one of the DNA fragments, pTyr2 DNA, several purine residues exhibit enhanced reactivity to diethyl pyrocarbonate (DEPC) in the absence of bound antibiotic, and that this strongly sequence specific reaction is enhanced in the presence of quite low echinomycin concentrations. The echinomycin-dependent reactivities towards DEPC of three homologous DNA fragments, chosen for their subtly different antibiotic binding characteristics, were also investigated. It was found that small changes in base sequence generate striking changes in susceptibility to modification by DEPC. The abolition of one antibiotic binding site leads to the creation of a new, intense DEPC-reactive site. In the presence of moderate concentrations of echinomycin, specific thymidine residues exhibit enhanced reactivity towards osmium tetroxide. No differences in the reactivities of the DNA fragments towards bromoacetaldehyde, S1 nuclease, dimethyl sulphate or potassium tetrachloropalladinate were observed in the presence of the antibiotic. DEPC reactions were performed on tubercidin (7-deaza-adenosine) to determine the DEPC reactive positions in situation where N-7 is inaccessible. Tubercidin was found to be generally resistant to attack by DEPC followed by treatment with base. We conclude that the bulk of structural changes induced by the binding of echinomycin to DNA do not involve Hoogsteen base pairing, but rather are due to sequence-specific unwinding of the helix in a manner which is strongly dependent on the nature of surrounding nucleotide sequences.
Collapse
Affiliation(s)
- M J McLean
- University of Cambridge Medical School, Department of Pharmacology, UK
| | | |
Collapse
|
37
|
Influence of DNA sequence on the formation of non-B right-handed helices in oligopurine.oligopyrimidine inserts in plasmids. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68654-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Collier DA, Griffin JA, Wells RD. Non-B right-handed DNA conformations of homopurine.homopyrimidine sequences in the murine immunoglobulin C alpha switch region. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68655-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Schnos M, Zahn K, Inman RB, Blattner FR. Initiation protein induced helix destabilization at the lambda origin: a prepriming step in DNA replication. Cell 1988; 52:385-95. [PMID: 2830983 DOI: 10.1016/s0092-8674(88)80031-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of the lambda phage initiator protein, O, with the lambda origin sequence, ori, has been investigated. Binding of O, or its amino-terminal fragment, causes a major structural change within a 60 bp AT-rich region just to the right of the O-binding site. ATP or other molecular energy sources are not required. The modification, as assayed by nuclease sensitivity, is reduced when certain ori mutant sequences, which bind O but fail to replicate, are substituted for the wild-type sequence. The modification of DNA structure caused by the interaction of O is absolutely dependent on the presence of superhelical tension at the lambda origin sequence, and has several properties consistent with a strand separation reaction. We propose that this modification is a fundamental prepriming event that is the first stage in initiation of bidirectional replication in lambda after O binding.
Collapse
Affiliation(s)
- M Schnos
- Institute for Molecular Virology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
40
|
Evans T, DeChiara T, Efstratiadis A. A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. J Mol Biol 1988; 199:61-81. [PMID: 3351924 DOI: 10.1016/0022-2836(88)90379-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have characterized the cis-control signals in one of the two promoters of the developmentally regulated rat insulin-like growth factor II gene (rIGF-II) by a combination of in-vivo transient expression, in-vitro transcription, footprinting, gel band-shifting and methylation-interference experiments, using a series of deletion mutant templates. Our results indicate that this simple (minimal) promoter (P2) consists of no more than 128 base-pairs, which include an ATA box and four proximal upstream GC boxes binding the general transcription factor Sp1. Three of the latter sites deviate from the known Sp1 consensus recognition sequence. The two types of cis-acting regulatory signals (GC/ATA motif) of the P2 promoter are inter-dependent and sufficient for transcription. A model for the operation of this type of minimal promoter is discussed. S1 nuclease-hypersensitive sites, localized by in-vitro mapping to the region of the P2 Sp1-binding sites, are also present in vivo and correlate with the transcriptional state of chromatin in the rIGF-II locus. We show that recognition sites for Sp1 binding are a subset of sequences that exhibit hypersensitivity to S1.
Collapse
Affiliation(s)
- T Evans
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
41
|
|
42
|
Pulleyblank DE. Non-Commensurate Polypurine/Polypyrimidine DNA Structures. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1988. [DOI: 10.1007/978-3-642-83384-7_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Vojtisková M, Palecek E. Unusual protonated structure in the homopurine.homopyrimidine tract of supercoiled and linearized plasmids recognized by chemical probes. J Biomol Struct Dyn 1987; 5:283-96. [PMID: 2856029 DOI: 10.1080/07391102.1987.10506394] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasmid pEJ4, which is a derivative of pUC19 containing an insert with 60-bp-long homopurine.homopyrimidine tract from sea urchin P. miliaris histone gene spacer, was studied by chemical probes of the DNA structure osmium tetroxide and glyoxal. The former probe reacts with pyrimidine bases, while the latter forms a stable product only with guanine residues. These probes can thus be applied as specific probes for the homopyrimidine and homopurine strands, respectively. At pH 6.0 the site-specific modification of the homopurine.homopyrimidine tract by both probes was observed at native superhelical density of the plasmid. In the linear plasmid under the same conditions this modification was absent; it appeared, however, at more acid pH values. In supercoiled DNA the hypersensitivity of the homopurine.homopyrimidine tract to osmium tetroxide did not substantially change when pH was decreased from 6.0 to 4.0. Changes in NaCl concentration at pH 4.5 did not influence the hypersensitivity to osmium tetroxide; at pH 6.0 this hypersensitivity decreased with increasing NaCl concentration. These results thus show that the chemical probes recognize an unusual protonated structure containing unpaired bases or non-Watson-Crick base pairs. At pH 5.6 the site-specific modification occurred at or near to the middle of the homopurine.homopyrimidine tract, suggesting that a hairpin may be involved in the unusual structure under the given conditions. From the models suggested so far for the unusual structure of homopurine.homopyrimidine tracts our results fit best the protonated triplex H form suggest by V.I. Lyamichev, S.M. Mirkin and M.D. Frank-Kamenetskii, J. Biomol. Struct. Dyn. 3,667 (1986).
Collapse
Affiliation(s)
- M Vojtisková
- Institute of Biophysics Czechoslovak Academy of Sciences, Brno
| | | |
Collapse
|
44
|
Abstract
The early NMR research on nucleic acids was of a qualitative nature and was restricted to partial characterization of short oligonucleotides in aqueous solution. Major advances in magnet design, spectrometer electronics, pulse techniques, data analysis and computational capabilities coupled with the availability of pure and abundant supply of long oligonucleotides have extended these studies towards the determination of the 3-D structure of nucleic acids in solution.
Collapse
Affiliation(s)
- D J Patel
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | | | | |
Collapse
|