1
|
Deschenes NM, Cheng C, Ryckman AE, Quinville BM, Khanal P, Mitchell M, Chen Z, Sangrar W, Gray SJ, Walia JS. Biochemical Correction of GM2 Ganglioside Accumulation in AB-Variant GM2 Gangliosidosis. Int J Mol Sci 2023; 24:ijms24119217. [PMID: 37298170 DOI: 10.3390/ijms24119217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.
Collapse
Affiliation(s)
- Natalie M Deschenes
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Camilyn Cheng
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alex E Ryckman
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brianna M Quinville
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Prem Khanal
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Melissa Mitchell
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Zhilin Chen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Waheed Sangrar
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jagdeep S Walia
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Pediatrics, Queen's University, Kingston, ON K7L 2V7, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
2
|
Lemke G, Huang Y. The dense-core plaques of Alzheimer's disease are granulomas. J Exp Med 2022; 219:213305. [PMID: 35731195 PMCID: PMC9225945 DOI: 10.1084/jem.20212477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Dense-core plaques, whose centers contain highly polymerized and compacted aggregates of amyloid β peptides, are one of the two defining histopathological features of Alzheimer's disease. Recent findings indicate that these plaques do not form spontaneously but are instead constructed by microglia, the tissue macrophages of the central nervous system. We discuss cellular, structural, functional, and gene expression criteria by which the microglial assembly of dense-core plaques in the Alzheimer's brain parallels the construction of granulomas by macrophages in other settings. We compare the genesis of these plaques to the macrophage assembly of mycobacterial granulomas, the defining histopathological features of tuberculosis. We suggest that if dense-core plaques are indeed granulomas, their simple disassembly may be contraindicated as an Alzheimer's therapy.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA.,Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| | - Youtong Huang
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
3
|
Whyte LS, Fourrier C, Hassiotis S, Lau AA, Trim PJ, Hein LK, Hattersley KJ, Bensalem J, Hopwood JJ, Hemsley KM, Sargeant TJ. Lysosomal gene Hexb displays haploinsufficiency in a knock-in mouse model of Alzheimer’s disease. IBRO Neurosci Rep 2022; 12:131-141. [PMID: 35146484 PMCID: PMC8819126 DOI: 10.1016/j.ibneur.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer’s disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of β-hexosaminidase) result in accumulation of amyloid-β (Aβ) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for β-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between β-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of β-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in AppNL-G-F/NL-G-F(AppKI/KI) mice. AppKI/KI and Hexb+/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in AppKI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain. The App NL-G-F Alzheimer mouse has lysosomal defects and stores ganglioside lipids. Heterozygous lysosomal Hexb did not drive amyloidosis in the App NL-G-F mouse. Heterozygous Hexb on an Alzheimer’s background reduced learning flexibility. Heterozygous Hexb on a wild-type mouse background produced hypoactivity.
Collapse
|
4
|
Shibuya M, Uneoka S, Onuma A, Kodama K, Endo W, Okubo Y, Inui T, Togashi N, Nakashima I, Hino-Fukuyo N, Ida H, Miyatake S, Matsumoto N, Haginoya K. A 23-year follow-up report of juvenile-onset Sandhoff disease presenting with a motor neuron disease phenotype and a novel variant. Brain Dev 2021; 43:1029-1032. [PMID: 34217565 DOI: 10.1016/j.braindev.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The clinical severity of Sandhoff disease is known to vary widely. Furthermore, long-term follow-up report is very limited in the literature. CASE PRESENTATION We present a long-term follow-up report of a patient with juvenile-onset Sandhoff disease with a motor neuron disease phenotype. The patient had compound heterozygous variants of HEXB (p.Trp460Arg, p. Arg533His); the Trp460Arg was a novel variant. Long-term follow-up revealed no intellectual deterioration, swallowing dysfunction, or respiratory muscle dysfunction despite progressive weakness of the extremities and sensory disturbances. CONCLUSION We need to be aware of Sandhoff disease in patients with juvenile-onset motor neuron disease.
Collapse
Affiliation(s)
- Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Saki Uneoka
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Akira Onuma
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Ichiro Nakashima
- Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Naomi Hino-Fukuyo
- Department of Pediatrics, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroyuki Ida
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan; Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan.
| |
Collapse
|
5
|
Mansouri‐Movahed F, Akhoundi F, Nikpour P, Garshasbi M, Emadi‐Baygi M. Identification of a novel HEXB Mutation in an Iranian Family with suspected patient to GM2-gangliosidoses. Clin Case Rep 2020; 8:2583-2591. [PMID: 33363784 PMCID: PMC7752470 DOI: 10.1002/ccr3.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Sandhoff disease is one of the GM2-gangliosidoses which is caused by a mutation in the HEXB preventing the breakdown of GM2-ganglioside. We report a novel HEXB variant in a family with a history of a dead girl with Sandhoff disease which was not found in controls.
Collapse
Affiliation(s)
| | - Fatemeh Akhoundi
- Department of GeneticsFaculty of Basic SciencesShahrekord UniversityShahrekordIran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular BiologyFaculty of MedicineIsfahan University of Medical SciencesIsfahanIran
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non‐Communicable DiseaseIsfahan University of Medical SciencesIsfahanIran
| | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Modjtaba Emadi‐Baygi
- Department of GeneticsFaculty of Basic SciencesShahrekord UniversityShahrekordIran
- Research Institute of BiotechnologyShahrekord UniversityShahrekordIran
| |
Collapse
|
6
|
Liu M, Huang D, Wang H, Zhao L, Wang Q, Chen X. Clinical and Molecular Characteristics of Two Chinese Children with Infantile Sandhoff Disease and Review of the Literature. J Mol Neurosci 2020; 70:481-487. [PMID: 31919734 DOI: 10.1007/s12031-019-01409-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Infantile Sandhoff disease is an autosomal recessive inherited disease primarily characterized by cherry red spots in the retina, muscle weakness, seizure, truncal hypotonia, hyperacusis, developmental delay and regression. The pathogenic genetic defects of the HEXB gene, which encodes the β subunit of the hexosaminidase A (ɑβ) and hexosaminidase B (ββ) enzymes, cause deficiency of both the Hex A and Hex B enzymes, resulting in the deposition of GM2 ganglion glycerides in the lysosomes of the central nervous system and somatic cells. The aim of this study was to discover disease-causing variants of the HEXB gene in two Chinese families through the use of exome sequencing. By characterizing three novel variants by molecular genetics, bioinformatics analysis, and three-dimensional structure modeling, we showed that all these novel variants influenced the protein structure. The results broaden the variant spectrum of HEXB in different ethnic groups. Furthermore, not all patients diagnosed with infantile Sandhoff disease had characteristic cranial imaging findings, which can only be used as supplementary information for diagnosis. The results of this study may contribute to clinical management, genetic counseling, and gene-targeted treatments for Sandhoff disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China
| | - Danping Huang
- Department of Neurology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China
| | - Lei Zhao
- Department of Ophthalmology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China
| | - Qi Wang
- Department of Radiology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China
| | - Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Industrial Park, Suzhou, 215003, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M, Marras C, van de Warrenburg BP. The genetic nomenclature of recessive cerebellar ataxias. Mov Disord 2018; 33:1056-1076. [PMID: 29756227 DOI: 10.1002/mds.27415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/15/2018] [Accepted: 03/25/2018] [Indexed: 12/17/2022] Open
Abstract
The recessive cerebellar ataxias are a large group of degenerative and metabolic disorders, the diagnostic management of which is difficult because of the enormous clinical and genetic heterogeneity. Because of several limitations, the current classification systems provide insufficient guidance for clinicians and researchers. Here, we propose a new nomenclature for the genetically confirmed recessive cerebellar ataxias according to the principles and criteria laid down by the International Parkinson and Movement Disorder Society Task Force on Classification and Nomenclature of Genetic Movement Disorders. We apply stringent criteria for considering an association between gene and phenotype to be established. The newly proposed list of recessively inherited cerebellar ataxias includes 62 disorders that were assigned an ATX prefix, followed by the gene name, because these typically present with ataxia as a predominant and/or consistent feature. An additional 30 disorders that often combine ataxia with a predominant or consistent other movement disorder received a double prefix (e.g., ATX/HSP). We also identified a group of 89 entities that usually present with complex nonataxia phenotypes, but may occasionally present with cerebellar ataxia. These are listed separately without the ATX prefix. This new, transparent and adaptable nomenclature of the recessive cerebellar ataxias will facilitate the clinical recognition of recessive ataxias, guide diagnostic testing in ataxia patients, and help in interpreting genetic findings. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research, Buenos Aires, Argentina
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Alexandra Durr
- Brain and Spine Institute, Sorbonne Université, Inserm U1127, CNRS UMR 7225, Pitié-Salpêtrière University Hospital, Paris, France.,Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 7501, Paris, France
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares, EA7402, Institut Universitaire de Recherche Clinique, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Connie Marras
- Toronto Western Hospital Morton, Gloria Shulman Movement Disorders Centre, and the Edmond J. Safra Program in Parkinson's Disease, University of Toronto, Toronto, Canada
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
9
|
Identification of mutations in HEXA and HEXB in Sandhoff and Tay-Sachs diseases: a new large deletion caused by Alu elements in HEXA. Hum Genome Var 2018; 5:18003. [PMID: 31428437 PMCID: PMC6694291 DOI: 10.1038/hgv.2018.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
GM2 gangliosides are a group of lysosomal lipid storage disorders that are due to mutations in HEXA, HEXB and GM2A. In our study, 10 patients with these diseases were enrolled, and Sanger sequencing was performed for the HEXA and HEXB genes. The results revealed one known splice site mutation (c.346+1G>A, IVS2+1G>A) and three novel mutations (a large deletion involving exons 6–10; one nucleotide deletion, c.622delG [p.D208Ifsx15]; and a missense mutation, c.919G>A [p.E307K]) in HEXA. In HEXB, one known mutation (c.1597C>T [p.R533C]) and one variant of uncertain significance (c.619A>G [p.I207V]) were identified. Five patients had c.1597C>T in HEXB, indicating a common mutation in south Iran. In this study, a unique large deletion in HEXA was identified as a homozygous state. To predict the cause of the large deletion in HEXA, RepeatMasker was used to investigate the Alu elements. In addition, to identify the breakpoint of this deletion, PCR was performed around these elements. Using Repeat masker, different Alu elements were identified across HEXA, mainly in intron 5 and intron 10 adjacent to the deleted exons. PCR around the Alu elements and Sanger sequencing revealed the start point of a large deletion in AluSz6 in the intron 6 and the end of its breakpoint 73 nucleotides downstream of AluJo in intron 10. Our study showed that HEXA is an Alu-rich gene that predisposes individuals to disease-associated large deletions due to these elements.
Collapse
|
10
|
Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 2018; 59:550-563. [PMID: 29358305 PMCID: PMC5832932 DOI: 10.1194/jlr.m081323] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/29/2017] [Indexed: 12/21/2022] Open
Abstract
Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB-corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Emily K Cook
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Bridget C Larman
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Adrienne Nugent
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jacqueline M Brady
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Office of Rare Diseases Research and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diane Golebiowski
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605
| | - Cynthia J Tifft
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health Office of Rare Diseases Research and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Beaudin M, Klein CJ, Rouleau GA, Dupré N. Systematic review of autosomal recessive ataxias and proposal for a classification. CEREBELLUM & ATAXIAS 2017; 4:3. [PMID: 28250961 PMCID: PMC5324265 DOI: 10.1186/s40673-017-0061-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
Abstract
Background The classification of autosomal recessive ataxias represents a significant challenge because of high genetic heterogeneity and complex phenotypes. We conducted a comprehensive systematic review of the literature to examine all recessive ataxias in order to propose a new classification and properly circumscribe this field as new technologies are emerging for comprehensive targeted gene testing. Methods We searched Pubmed and Embase to identify original articles on recessive forms of ataxia in humans for which a causative gene had been identified. Reference lists and public databases, including OMIM and GeneReviews, were also reviewed. We evaluated the clinical descriptions to determine if ataxia was a core feature of the phenotype and assessed the available evidence on the genotype-phenotype association. Included disorders were classified as primary recessive ataxias, as other complex movement or multisystem disorders with prominent ataxia, or as disorders that may occasionally present with ataxia. Results After removal of duplicates, 2354 references were reviewed and assessed for inclusion. A total of 130 articles were completely reviewed and included in this qualitative analysis. The proposed new list of autosomal recessive ataxias includes 45 gene-defined disorders for which ataxia is a core presenting feature. We propose a clinical algorithm based on the associated symptoms. Conclusion We present a new classification for autosomal recessive ataxias that brings awareness to their complex phenotypes while providing a unified categorization of this group of disorders. This review should assist in the development of a consensus nomenclature useful in both clinical and research applications. Electronic supplementary material The online version of this article (doi:10.1186/s40673-017-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Beaudin
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada
| | | | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4 Canada
| | - Nicolas Dupré
- Faculty of Medicine, Université Laval, Quebec city, QC G1V 0A6 Canada.,Department of Neurological Sciences, CHU de Quebec - Université Laval, 1401 18th street, Québec City, QC G1J 1Z4 Canada
| |
Collapse
|
12
|
Zhang W, Zeng H, Huang Y, Xie T, Zheng J, Zhao X, Sheng H, Liu H, Liu L. Clinical,biochemical and molecular analysis of five Chinese patients with Sandhoff disease. Metab Brain Dis 2016; 31:861-7. [PMID: 27021291 DOI: 10.1007/s11011-016-9819-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Sandhoff disease (SD) is a rare autosomal recessive lysosomal storage disorder of sphingolipid metabolism resulting from the deficiency of β-hexosaminidase (HEX). Mutations of the HEXB gene cause Sandhoff disease. In order to improve the diagnosis and expand the knowledge of the disease, we collected and analyzed relevant data of clinical diagnosis, biochemical investigation, and molecular mutational analysis in five Chinese patients with SD. The patients presented with heterogenous symptoms of neurologic deterioration. HEX activity in leukocytes was severely deficient. We identified seven different mutations, including three known mutations: IVS12-26G > A, p.T209I, p.I207V, and four novel mutations: p.P468PfsX62, p.L223P, p.Y463X, p.G549R. We also detected two different heterozygous mutations c.-122delC and c.-126C > T in the promoter which were suspected to be deleterious mutations. We attempted to correlate these mutations with the clinical presentation of the patients. Our study indicates that the mutation p.T209I and p.P468PfsX62 may link to the infantile form of SD. Our study expands the spectrum of genotype of SD in China, provides new insights into the molecular mechanism of SD and helps to the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huasong Zeng
- Department of Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yonglan Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| | - Ting Xie
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Jipeng Zheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Xiaoyuan Zhao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
13
|
Onyenwoke RU, Brenman JE. Lysosomal Storage Diseases-Regulating Neurodegeneration. J Exp Neurosci 2016; 9:81-91. [PMID: 27081317 PMCID: PMC4822725 DOI: 10.4137/jen.s25475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a complex pathway regulated by numerous signaling events that recycles macromolecules and can be perturbed in lysosomal storage diseases (LSDs). The concept of LSDs, which are characterized by aberrant, excessive storage of cellular material in lysosomes, developed following the discovery of an enzyme deficiency as the cause of Pompe disease in 1963. Great strides have since been made in better understanding the biology of LSDs. Defective lysosomal storage typically occurs in many cell types, but the nervous system, including the central nervous system and peripheral nervous system, is particularly vulnerable to LSDs, being affected in two-thirds of LSDs. This review provides a summary of some of the better characterized LSDs and the pathways affected in these disorders.
Collapse
Affiliation(s)
- Rob U Onyenwoke
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Jay E Brenman
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Rama Rao KV, Kielian T. Astrocytes and lysosomal storage diseases. Neuroscience 2015; 323:195-206. [PMID: 26037807 DOI: 10.1016/j.neuroscience.2015.05.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Lysosomal storage diseases (LSDs) encompass a wide range of disorders characterized by inborn errors of lysosomal function. The majority of LSDs result from genetic defects in lysosomal enzymes, although some arise from mutations in lysosomal proteins that lack known enzymatic activity. Neuropathological abnormalities are a feature of several LSDs and when severe, represent an important determinant in disease outcome. Glial dysfunction, particularly in astrocytes, is also observed in numerous LSDs and has been suggested to impact neurodegeneration. This review will discuss the potential role of astrocytes in LSDs and highlight the possibility of targeting glia as a beneficial strategy to counteract the neuropathology associated with LSDs.
Collapse
Affiliation(s)
- K V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - T Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
15
|
Yang E, Prabhu SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am 2014; 52:279-319. [PMID: 24582341 DOI: 10.1016/j.rcl.2013.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The leukodystrophies are a diverse set of inherited white matter disorders and are uncommonly encountered by radiologists in everyday practice. As a result, it is challenging to recognize these disorders and to provide a useful differential for the referring physician. In this article, leukodystrophies are reviewed from the perspective of 4 imaging patterns: global myelination delay, periventricular/deep white matter predominant, subcortical white matter predominant, and mixed white/gray matter involvement patterns. Special emphasis is placed on pattern recognition and unusual combinations of findings that may suggest a specific diagnosis.
Collapse
Affiliation(s)
- Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
16
|
Pierson TM, Torres PA, Zeng BJ, Glanzman AM, Adams D, Finkel RS, Mahuran DJ, Pastores GM, Tennekoon GI, Kolodny EH. Juvenile-onset motor neuron disease caused by novel mutations in β-hexosaminidase. Mol Genet Metab 2013; 108:65-9. [PMID: 23158871 PMCID: PMC3601980 DOI: 10.1016/j.ymgme.2012.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/28/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
A 12 year-old female presented with a seven-year history of progressive muscle weakness, atrophy, tremor and fasciculations. Cognition was normal. Rectal biopsy revealed intracellular storage material and biochemical testing indicated low hexosaminidase activity consistent with juvenile-onset G(M2)-gangliosidosis. Genetic evaluation revealed compound heterozygosity with two novel mutations in the hexosaminidase β-subunit (c.512-3 C>A and c.1613+15_1613+18dup). Protein analysis was consistent with biochemical findings and indicated only a small portion of β-subunits were properly processed. These results provide additional insight into juvenile-onset G(M2)-gangliosidoses and further expand the number of β-hexosaminidase mutations associated with motor neuron disease.
Collapse
Affiliation(s)
- Tyler Mark Pierson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tropak MB, Mahuran D. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells. FEBS J 2007; 274:4951-61. [PMID: 17894780 PMCID: PMC2910757 DOI: 10.1111/j.1742-4658.2007.06040.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzyme enhancement therapy is an emerging therapeutic approach that has the potential to treat many genetic diseases. Candidate diseases are those associated with a mutant protein that has difficulty folding and/or assembling into active oligomers in the endoplasmic reticulum. Many lysosomal storage diseases are candidates for enzyme enhancement therapy and have the additional advantage of requiring only 5-10% of normal enzyme levels to reduce and/or prevent substrate accumulation. Our long experience in working with the beta-hexosaminidase (EC 3.2.1.52) isozymes system and its associated deficiencies (Tay-Sachs and Sandhoff disease) lead us to search for possible enzyme enhancement therapy-agents that could treat the chronic forms of these diseases which express 2-5% residual activity. Pharmacological chaperones are enzyme enhancement therapy-agents that are competitive inhibitors of the target enzyme. Each of the known beta-hexosaminidase inhibitors (low microm IC50) increased mutant enzyme levels to >or= 10% in chronic Tay-Sachs fibroblasts and also attenuated the thermo-denaturation of beta-hexosaminidase. To expand the repertoire of pharmacological chaperones to more 'drug-like' compounds, we screened the Maybridge library of 50,000 compounds using a real-time assay for noncarbohydrate-based beta-hexosaminidase inhibitors and identified several that functioned as pharmacological chaperones in patient cells. Two of these inhibitors had derivatives that had been tested in humans for other purposes. These observations lead us to screen the NINDS library of 1040 Food and Drug Administration approved compounds for pharmacological chaperones. Pyrimethamine, an antimalarial drug with well documented pharmacokinetics, was confirmed as a beta-hexosaminidase pharmacological chaperone and compared favorably with our best carbohydrate-based pharmacological chaperone in patient cells with various mutant genotypes.
Collapse
|
18
|
Akeboshi H, Chiba Y, Kasahara Y, Takashiba M, Takaoka Y, Ohsawa M, Tajima Y, Kawashima I, Tsuji D, Itoh K, Sakuraba H, Jigami Y. Production of recombinant beta-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta. Appl Environ Microbiol 2007; 73:4805-12. [PMID: 17557860 PMCID: PMC1951009 DOI: 10.1128/aem.00463-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/24/2007] [Indexed: 01/28/2023] Open
Abstract
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.
Collapse
Affiliation(s)
- Hiromi Akeboshi
- Research Center for Glycoscience, AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Sandhoff disease is a rare autosomal recessive metabolic disease presenting bilateral optic atrophy and a cherry red spot in the macula. This case report presents the characteristics of a patient with Sandhoff disease as assessed by ophthalmic, neuroimaging, and laboratory procedures. Ophthalmologic examination revealed that the patient could not fixate her eyes on objects nor follow moving targets. A pale optic disc and a cherry red spot in the macula were seen in both eyes. Low signal intensity at the thalamus and high signal intensity at the cerebral white matter were noted in a T2-weighted brain MR image. A lysosomal enzyme assay using fibroblasts showed the marked reduction of both total beta-hexosaminidases, A and B. Based on the above clinical manifestations and laboratory findings, we diagnosed the patient as having Sandhoff disease.
Collapse
Affiliation(s)
- Yie-Min Yun
- Department of Ophthalmology, College of Medicine, Chungnam National University, Daejeon, Korea
| | | |
Collapse
|
20
|
Mark BL, Mahuran DJ, Cherney MM, Zhao D, Knapp S, James MNG. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J Mol Biol 2003; 327:1093-109. [PMID: 12662933 PMCID: PMC2910754 DOI: 10.1016/s0022-2836(03)00216-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In humans, two major beta-hexosaminidase isoenzymes exist: Hex A and Hex B. Hex A is a heterodimer of subunits alpha and beta (60% identity), whereas Hex B is a homodimer of beta-subunits. Interest in human beta-hexosaminidase stems from its association with Tay-Sachs and Sandhoff disease; these are prototypical lysosomal storage disorders resulting from the abnormal accumulation of G(M2)-ganglioside (G(M2)). Hex A degrades G(M2) by removing a terminal N-acetyl-D-galactosamine (beta-GalNAc) residue, and this activity requires the G(M2)-activator, a protein which solubilizes the ganglioside for presentation to Hex A. We present here the crystal structure of human Hex B, alone (2.4A) and in complex with the mechanistic inhibitors GalNAc-isofagomine (2.2A) or NAG-thiazoline (2.5A). From these, and the known X-ray structure of the G(M2)-activator, we have modeled Hex A in complex with the activator and ganglioside. Together, our crystallographic and modeling data demonstrate how alpha and beta-subunits dimerize to form either Hex A or Hex B, how these isoenzymes hydrolyze diverse substrates, and how many documented point mutations cause Sandhoff disease (beta-subunit mutations) and Tay-Sachs disease (alpha-subunit mutations).
Collapse
Affiliation(s)
- Brian L. Mark
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Don J. Mahuran
- The Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto Ont., Canada M5G1X8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada M5G1L6
| | - Maia M. Cherney
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
| | - Dalian Zhao
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Spencer Knapp
- Department of Chemistry, Rutgers University, New Brunswick, NJ 08903, USA
| | - Michael N. G. James
- Canadian Institutes of Heath Research Group in Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alt.,Canada T6G 2H7
- Corresponding author:
| |
Collapse
|
21
|
Gessner C, Wirtz H, Sack U, Winkler J, Stiehl P, Schauer J, Wolff G. BALF N-acetylglucosaminidase and beta-galactosidase activities in idiopathic pulmonary fibrosis. Respir Med 2002; 96:751-6. [PMID: 12243323 DOI: 10.1053/rmed.2002.1344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lysosomal enzymes N-acetylglucosaminidase (N-ACGA) and beta-galactosidase (beta-gal) are involved in cellular collagen metabolism and may, therefore, be markers of fibrosis in idiopathic interstitial pneumonias, such as idiopathic pulmonary fibrosis (IPF). N-ACGA and beta-gal were analyzed in the bronchoalveolar lavage fluid (BALF) of patients with the histologic pattern of usual interstitial pneumonia (UIP, n=10) and controls (n=9). Cellular distribution in BALF as well as the concentration of TGF-beta a well-known mediator of fibroblast matrix deposition were correlated to the enzyme activities in both groups of patients. We found that both, N-ACGA (UIP: 25.2 nmol/l s +/- 3.4; controls: 73 nmol/l s +/- 1.3) and beta-gal (UIP: 4.7 nmol/l s +/- 0.5; controls: 2.4 nmol/l s +/- 0.3) were elevated significantly in BALF of patients with IPF compared to that of control patients (P<0.003). This increase was paralleled by an increase in neutrophils (IPF: 17.9% +/- 21.8; controls: 5.4% +/- 6.3; P=0.03) and eosinophils (IPF: 2.0% +/- 1.5; controls: 0.2% +/- 0.45; P=0.002) in BALF fluid. In addition, N-ACGA activity correlated closely with lung function (FVC, TLC, and DLCO), transforming growth factor-beta (TGF-beta) in BALF (r=0.77, P=0.008) and activated lymphocytes (r=0.66, P=0.0021). Our findings suggest that measurement of lysosomal enzymes such as N-ACGA may represent a useful indicator of fibrotic activity in IPF.
Collapse
Affiliation(s)
- C Gessner
- Department of Internal Medicine, Pulmonary Medicine, Critical Care and Cardiology, University of Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mahuran DJ, Gravel RA. The beta-hexosaminidase story in Toronto: from enzyme structure to gene mutation. ADVANCES IN GENETICS 2002; 44:145-63. [PMID: 11596980 DOI: 10.1016/s0065-2660(01)44077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- D J Mahuran
- The Research Institute, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology University of Toronto, Ontario, Canada.
| | | |
Collapse
|
23
|
Triggs-Raine B, Mahuran DJ, Gravel RA. Naturally occurring mutations in GM2 gangliosidosis: a compendium. ADVANCES IN GENETICS 2002; 44:199-224. [PMID: 11596984 DOI: 10.1016/s0065-2660(01)44081-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- B Triggs-Raine
- Department of Biochemistry and Medical Genetics University of Manitoba, Winnipeg, Canada.
| | | | | |
Collapse
|
24
|
Suzuki K. Recognition and delineation of beta-hexosaminidase alpha-chain variants: a historical and personal perspective. ADVANCES IN GENETICS 2002; 44:173-84. [PMID: 11596982 DOI: 10.1016/s0065-2660(01)44079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- K Suzuki
- Neuroscience Center, Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, 27599, USA
| |
Collapse
|
25
|
Kolodny EH. Molecular genetics of the beta-hexosaminidase isoenzymes: an introduction. ADVANCES IN GENETICS 2002; 44:101-26. [PMID: 11596976 DOI: 10.1016/s0065-2660(01)44074-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- E H Kolodny
- Department of Neurology, New York University School of Medicine, New York, USA
| |
Collapse
|
26
|
Sharma R, Deng H, Leung A, Mahuran D. Identification of the 6-sulfate binding site unique to alpha-subunit-containing isozymes of human beta-hexosaminidase. Biochemistry 2001; 40:5440-6. [PMID: 11331008 PMCID: PMC2910086 DOI: 10.1021/bi0029200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In humans, beta-hexosaminidase A (alphabeta) is required to hydrolyze GM2 ganglioside. A deficiency of either the alpha- or beta-subunit leads to a severe neurological disease, Tay-Sachs or Sandhoff disease, respectively. In mammals beta-hexosaminidase B (betabeta) and S (alphaalpha) are other major and minor isozymes. The primary structures of the alpha- and beta-subunits are 60% identical, but only the alpha-containing isozymes can efficiently hydrolyze beta-linked GlcNAc-6-SO(4) from natural or artificial substrates. Hexosaminidase has been grouped with glycosidases in family 20. A molecular model of the active site of the human hexosaminidase has been generated from the crystal structure of a family 20 bacterial chitobiase. We now use the chitobiase structure to identify residues close to the carbon-6 oxygen of NAG-A, the nonreducing beta-GlcNAc residue of its bound substrate. The chitobiase side chains in the best interactive positions align with alpha-Asn(423)Arg(424) and beta-Asp(453)Leu(454). The change in charge from positive in alpha to negative in beta is consistent with the lower K(m) of hexosaminidase S, and the much higher K(m) and lower pH optimum of hexosaminidase B, toward sulfated versus unsulfated substrates. In vitro mutagenesis, CHO cell expression, and kinetic analyses of an alphaArg(424)Lys hexosaminidase S detected little change in V(max) but a 2-fold increase in K(m) for the sulfated substrate. Its K(m) for the nonsulfated substrate was unaffected. When alphaAsn(423) was converted to Asp, again only the K(m) for the sulfated substrate was changed, increasing by 6-fold. Neutralization of the charge on alphaArg(424) by substituting Gln produced a hexosaminidase S with a K(m) decrease of 3-fold and a V(max) increased by 6-fold for the unsulfated substrate, parameters nearly identical to those of hexosaminidase B at pH 4.2. As well, for the sulfated substrate at pH 4.2 its K(m) was increased 9-fold and its V(max) decreased 1.5-fold, values very similar to those of hexosaminidase B obtained at pH 3.0, where its betaAsp(453) becomes protonated.
Collapse
Affiliation(s)
| | | | | | - Don Mahuran
- To whom correspondence should be addressed at The Research Institute, The Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G 1X8. Telephone: 416-813-6161. Fax: 416-813-8700.
| |
Collapse
|
27
|
Furihata K, Drousiotou A, Hara Y, Christopoulos G, Stylianidou G, Anastasiadou V, Ueno I, Ioannou P. Novel splice site mutation at IVS8 nt 5 of HEXB responsible for a Greek-Cypriot case of Sandhoff disease. Hum Mutat 2000; 13:38-43. [PMID: 9888387 DOI: 10.1002/(sici)1098-1004(1999)13:1<38::aid-humu4>3.0.co;2-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sandhoff disease is caused by abnormalities in HEXB gene encoding the beta-subunit of beta-hexosaminidase. In this study, we analyzed the HEXB gene of a Sandhoff carrier in the Greek-Cypriot community. A G to C transversion was identified in one allele of her HEXB gene at position 5 of the 5'-splice site of intron 8 (IVS8 nt5). One of 13 cDNA clones derived from her lymphocyte HEXB mRNA lacked the last four nucleotides "GTTG" of exon 8, which created a premature termination codon at 11 codons downstream. In vivo transcription of the mutant HEXB gene fragment in CHO cells resulted in deletion of the "GTTG." The mutation has not been found in 40 DNA samples from anonymous donors, indicating that this is not a polymorphism in the Cypriot population. These results clearly indicate that the splice site mutation at IVS8 nt5 is responsible for this case of Sandhoff disease.
Collapse
Affiliation(s)
- K Furihata
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kleiman FE, Ramírez AO, Dodelson de Kremer R, Gravel RA, Argaraña CE. A frequent TG deletion near the polyadenylation signal of the human HEXB gene: occurrence of an irregular DNA structure and conserved nucleotide sequence motif in the 3' untranslated region. Hum Mutat 2000; 12:320-9. [PMID: 9792408 DOI: 10.1002/(sici)1098-1004(1998)12:5<320::aid-humu5>3.0.co;2-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While screening for new mutations in the HEXB gene, which encodes the beta-subunit of beta-hexosaminidase, a TG deletion (deltaTG) was found in the 3' untranslated region (3'UTR) of the gene, 7 bp upstream from the polyadenylation signal. Examination of DNA samples of 145 unrelated Argentinean individuals from different racial backgrounds showed that the deltaTG allele was present with a frequency of approximately 0.1, compared with the wild-type (WT) allele. The deletion was not associated with infantile or variant forms of Sandhoff disease when present in combination with a deleterious allele. Total Hex and Hex B enzymatic activities measured in individuals heterozygous for deltaTG and a null allele, IVS-2 + 1G-->A (G-->A), were approximately 30% lower than the activities of G-->A/WT individuals. Analysis of the HEXB mRNA from leukocytes of deltaTG/WT individuals by RT-PCR of the 3'UTR showed that the deltaTG allele is present at lower level than the WT allele. By polyacrylamide gel electrophoresis, it was determined that a PCR fragment containing the +TG version of the 3'UTR of the HEXB gene had an irregular structure. On inspection of genes containing a TG dinucleotide upstream from the polyadenylation signal we found that this dinucleotide was part of a conserved sequence (TGTTTT) immersed in a A/T-rich region. This sequence arrangement was present in more than 40% analyzed eukaryotic mRNAs, including in the human, mouse and cat HEXB genes. The significance of the TG deletion in reference to Sandhoff disease as well as the possible functional role of the consensus sequence and the DNA structure of the 3'UTR are considered.
Collapse
Affiliation(s)
- F E Kleiman
- Centro de Investigaciones en Química Biológica de Córdoba-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | |
Collapse
|
29
|
Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:105-38. [PMID: 10571007 DOI: 10.1016/s0925-4439(99)00074-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrolysis of GM2-ganglioside is unusual in its requirements for the correct synthesis, processing, and ultimate combination of three gene products. Whereas two of these proteins are the alpha- (HEXA gene) and beta- (HEXB) subunits of beta-hexosaminidase A, the third is a small glycolipid transport protein, the GM2 activator protein (GM2A), which acts as a substrate specific co-factor for the enzyme. A deficiency of any one of these proteins leads to storage of the ganglioside, primarily in the lysosomes of neuronal cells, and one of the three forms of GM2-gangliosidosis, Tay-Sachs disease, Sandhoff disease or the AB-variant form. Studies of the biochemical impact of naturally occurring mutations associated with the GM2 gangliosidoses on mRNA splicing and stability, and on the intracellular transport and stability of the affected protein have provided some general insights into these complex cellular mechanisms. However, such studies have revealed little in the way of structure-function information on the proteins. It appears that the detrimental effect of most mutations is not specifically on functional elements of the protein, but rather on the proteins' overall folding and/or intracellular transport. The few exceptions to this generalization are missense mutations at two codons in HEXA, causing the unique biochemical phenotype known as the B1-variant, and one codon in both the HEXB and GM2A genes. Biochemical characterization of these mutations has led to the localization of functional residues and/or domains within each of the encoded proteins.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, The Hospital for Sick Children, Toronto, Ont, Canada.
| |
Collapse
|
30
|
Hou Y, McInnes B, Hinek A, Karpati G, Mahuran D. A Pro504 --> Ser substitution in the beta-subunit of beta-hexosaminidase A inhibits alpha-subunit hydrolysis of GM2 ganglioside, resulting in chronic Sandhoff disease. J Biol Chem 1998; 273:21386-92. [PMID: 9694901 DOI: 10.1074/jbc.273.33.21386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GM2 gangliosidoses are caused by mutations in the genes encoding the alpha- (Tay-Sachs) or beta- (Sandhoff) subunits of heterodimeric beta-hexosaminidase A (Hex A), or the GM2 activator protein (AB variant), a substrate-specific co-factor for Hex A. Although the active site associated with the hydrolysis of GM2 ganglioside, as well as part of the binding site for the ganglioside-activator complex, is associated with the alpha-subunit, elements of the beta-subunit are also involved. Missense mutations in these genes normally result in the mutant protein being retained in the endoplasmic reticulum and degraded. The mutations associated with the B1-variant of Tay-Sachs are rare exceptions that directly affect residues in the alpha-active site. We have previously reported two sisters with chronic Sandhoff disease who were heterozygous for the common HEXB deletion allele. Cells from these patients had higher than expected levels of mature beta-protein and residual Hex A activity, approximately 20%. We now identify these patients' second mutant allele as a C1510T transition encoding a beta-Pro504 --> Ser substitution. Biochemical characterization of Hex A from both patient cells and cotransfected CHO cells demonstrated that this substitution (a) decreases the level of heterodimer transport out of the endoplasmic reticulum by approximately 45%, (b) lowers its heat stability, (c) does not affect its Km for neutral or charged artificial substrates, and (d) lowers the ratio of units of ganglioside/units of artificial substrate hydrolyzed by a factor of 3. We concluded that the beta-Pro504 --> Ser mutation directly affects the ability of Hex A to hydrolyze its natural substrate but not its artificial substrates. The effect of the mutation on ganglioside hydrolysis, combined with its effect on intracellular transport, produces chronic Sandhoff disease.
Collapse
Affiliation(s)
- Y Hou
- The Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
31
|
Abstract
Eighteen cases affected by Sandhoff disease were investigated by an enzymatic study of serum and leukocytes during the period 1988-1996, the clinical expression and enzymatic study were reported and discussed. An indirect minimum disease incidence was calculated in the Turkish population. Hexosaminidase activity in serum and leukocytes was severely deficient when measured by synthetic substrate 4-MU-N-acetylglucosaminide using the thermolabile fractionation procedure. Fractionation of hexosaminidase revealed different levels of isoenzymes A and B. Clinically, organomegaly was not found in 11 out of 18 infantile Sandhoff disease patients, while the remaining seven had mild organomegaly. Organomegaly was not found in patients with relatively high % hexosaminidase B activities. These results suggested that patients with different percent heat-stable enzyme activity may have a different type of mutation which is related to the underlying molecular heterogeneity in the Turkish population where 21% of marriages are found to be consanguineous.
Collapse
Affiliation(s)
- H A Ozkara
- Department of Biochemistry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | |
Collapse
|
32
|
Yadao F, Hechtman P, Kaplan F. Formation of a ternary complex between GM2 activator protein, GM2 ganglioside and hexosaminidase A. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:45-52. [PMID: 9217013 DOI: 10.1016/s0167-4838(97)00027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The GM2 activator is a 17 kDa protein required for the hydrolysis of GM2 ganglioside by the lysosomal enzyme hexosaminidase A (HexA). The activator behaves as a substrate binding protein, solubilizing GM2 ganglioside monomers from micelles (in vitro) or membranes (in vivo). However, the activator also shows a high order of specificity for activation of lysosomal hydrolases and has been predicted to form a ternary complex with the heterodimeric enzyme (alphabeta) Hex A and GM2 ganglioside. We demonstrated a transient interaction between HexA and the GM2 activator. A chimeric protein containing the FLAG epitope sequence upstream of the GM2 activator was expressed in Escherichia coli and purified using the M1 immunoaffinity (anti-FLAG) column. Binding of the FLAG-GM2 activator (FLAG-AP) fusion protein to the M1 column led to the specific retardation of Hex A applied to the column. Other proteins were not retarded by the column nor did they compete with Hex A for binding to FLAG-AP. Hex A and GM2 ganglioside could be simultaneously bound to the column, but the binding of each ligand was independent of the other. The homodimeric (beta beta) isozyme Hex B did not bind to the immobilized activator. The alpha alpha homodimer, HexS, bound weakly, confirming that a hexosaminidase alpha subunit is required for interaction of enzyme and activator.
Collapse
Affiliation(s)
- F Yadao
- McGill University-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | | |
Collapse
|
33
|
Fernandes MJ, Yew S, Leclerc D, Henrissat B, Vorgias CE, Gravel RA, Hechtman P, Kaplan F. Identification of candidate active site residues in lysosomal beta-hexosaminidase A. J Biol Chem 1997; 272:814-20. [PMID: 8995368 DOI: 10.1074/jbc.272.2.814] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta-hexosaminidases (Hex) catalyze the cleavage of terminal amino sugars on a broad spectrum of glycoconjugates. The major Hex isozymes in humans, Hex A, a heterodimer of alpha and beta subunits (alphabeta), and Hex B, a homodimer of beta subunits (betabeta), have different substrate specificities. The beta subunit (HEXB gene product), hydrolyzes neutral substrates. The alpha subunit (HEXA gene product), hydrolyzes both neutral and charged substrates. Only Hex A is able to hydrolyze the most important natural substrate, the acidic glycolipid GM2 ganglioside. Mutations in the HEXA gene cause Tay-Sachs disease (TSD), a GM2 ganglioside storage disorder. We investigated the role of putative active site residues Asp-alpha258, Glu-alpha307, Glu-alpha323, and Glu-alpha462 in the alpha subunit of Hex A. A mutation at codon 258 which we described was associated with the TSD B1 phenotype, characterized by the presence of normal amounts of mature but catalytically inactive enzyme. TSD-B1 mutations are believed to involve substitutions of residues at the enzyme active site. Glu-alpha307, Glu-alpha323, and Glu-alpha462 were predicted to be active site residues by homology studies and hydrophobic cluster analysis. We used site-directed mutagenesis and expression in a novel transformed human fetal TSD neuroglial (TSD-NG) cell line (with very low levels of endogenous Hex A activity), to study the effects of mutation at candidate active site residues. Mutant HEXA cDNAs carrying conservative or isofunctional substitutions at these positions were expressed in TSD-NG cells. alphaE323D, alphaE462D, and alphaD258N cDNAs produced normally processed peptide chains with drastically reduced activity toward the alpha subunit-specific substrate 4MUGS. The alphaE307D cDNA produced a precursor peptide with significant catalytic activity. Kinetic analysis of enzymes carrying mutations at Glu-alpha323 and Asp-alpha258 (reported earlier by Bayleran, J., Hechtman, P., Kolodny, E., and Kaback, M. (1987) Am. J. Hum. Genet. 41,532-548) indicated no significant change in substrate binding properties. Our data, viewed in the context of homology studies and modeling, and studies with suicide substrates, suggest that Glu-alpha323 and Asp-alpha258 are active site residues and that Glu-alpha323 is involved in catalysis.
Collapse
Affiliation(s)
- M J Fernandes
- McGill University-Montreal Children's Hospital Research Institute, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hou Y, Tse R, Mahuran DJ. Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A. Biochemistry 1996; 35:3963-9. [PMID: 8672428 DOI: 10.1021/bi9524575] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The beta-hexosaminidase isozymes are produced through the combination of alpha and beta subunits to form any one of three active dimers (monomeric subunits are not functional). Heterodimeric hexosaminidase A (alpha beta) is the only isozyme that can hydrolyze GM2 ganglioside in vivo, requiring the presence of the GM2 activator protein. Hexosaminidase S (alpha alpha) exists but is not considered a physiological isozyme. Although hexosaminidase B (beta beta) is present in normal human tissues, it has no known unique function in vivo. However, a unique function for the beta-active site present in both hexosaminidase A and B has been indicated in a previous study of the various substrate specificities of the homodimeric forms of hexosaminidase (S and B). It was concluded that the alpha-active site is only able to efficiently hydrolyze negatively charged substrates, and the beta-active site is only able to hydrolyze neutral substrates. When this model of nonoverlapping alpha- and beta-substrates is extrapolated to heterodimeric hexosaminidase A, it has a major effect on the interpretation of recent results relating to the mode of action of the GM2 activator protein. In this report, we directly examine these substrate specificities using a novel form of hexosaminidase A containing an inactive beta subunit, produced in permanently transfected CHO cells. We demonstrate that, whereas the beta-active site has the same substrate specificities in either its A-heterodimeric or B-homodimeric forms, the alpha-active site in the A-heterodimer has different kinetic parameters than the alpha-active site in the S-homodimer. We conclude that the alpha and beta subunits in hexosaminidase A participate equally in the hydrolysis of neutral substrates.
Collapse
Affiliation(s)
- Y Hou
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
35
|
Phaneuf D, Wakamatsu N, Huang JQ, Borowski A, Peterson AC, Fortunato SR, Ritter G, Igdoura SA, Morales CR, Benoit G, Akerman BR, Leclerc D, Hanai N, Marth JD, Trasler JM, Gravel RA. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet 1996; 5:1-14. [PMID: 8789434 DOI: 10.1093/hmg/5.1.1] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have generated mouse models of human Tay-Sachs and Sandhoff diseases by targeted disruption of the Hexa (alpha subunit) or Hexb (beta subunit) genes, respectively, encoding lysosomal beta-hexosaminidase A (structure, alpha) and B (structure, beta beta). Both mutant mice accumulate GM2 ganglioside in brain, much more so in Hexb -/- mice, and the latter also accumulate glycolipid GA2. Hexa -/- mice suffer no obvious behavioral or neurological deficit, while Hexb -/- mice develop a fatal neurodegenerative disease, with spasticity, muscle weakness, rigidity, tremor and ataxia. The Hexb -/- but not the Hexa -/- mice have massive depletion of spinal cord axons as an apparent consequence of neuronal storage of GM2. We propose that Hexa -/- mice escape disease through partial catabolism of accumulated GM2 via GA2 (asialo-GM2) through the combined action of sialidase and beta-hexosaminidase B.
Collapse
Affiliation(s)
- D Phaneuf
- Department of Pediatrics, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Novak A, Callahan JW, Lowden JA. Classification of disorders of GM2 ganglioside hydrolysis using 3H-GM2 as substrate. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1199:215-23. [PMID: 8123671 DOI: 10.1016/0304-4165(94)90118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rates of GM2 ganglioside hydrolysis by fibroblasts from normal controls and patients with GM2 gangliosidosis were measured in situ, with cells growing in tissue culture by assaying the decrease in cell-incorporated 3H-GM2 over time, and in vitro by assaying the rate of 3H-GM2 hydrolysis using fibroblast extracts in the presence of no additives, sodium taurocholate, and GM2 activator protein. In tissue culture, normal cells hydrolyzed cell-incorporated GM2 while fibroblasts from patients with GM2 gangliosidosis did not. The half life of GM2 in normal fibroblasts was 78 hours. In vitro, only normal fibroblast extracts hydrolyzed GM2 in the absence of additives. In the presence of 10 mM sodium taurocholate, rates of GM2 hydrolysis by normal fibroblast extracts were increased 5-16-fold, fibroblast extracts from AB and B1 variant patients hydrolyzed GM2 at normal rates, cell extracts from patients with Tay-Sachs disease hydrolyzed GM2 at nearly normal rates, and cell extracts from Sandhoff disease patients hydrolyzed GM2 at about 10% of normal rates. In the presence of 1 microgram of GM2 activator, rates of GM2 hydrolysis by normal fibroblast extracts were increased 8-25-fold, fibroblast extracts from a patient with the AB variant hydrolyzed GM2 at normal rates, and cell extracts from other variants of GM2 gangliosidosis did not hydrolyze GM2. The results suggest that measuring the persistence of 3H-GM2 in tissue culture over time will detect any variant of GM2 gangliosidosis and may be the ideal way to test for the presence of this disease. Variants can be distinguished by assaying the hydrolysis of 3H-GM2 using cell extracts in the absence of additives, with sodium taurocholate, and with activator.
Collapse
Affiliation(s)
- A Novak
- Division of Neurosciences, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
37
|
Bolhuis PA, Ponne NJ, Bikker H, Baas F, Vianney de Jong JM. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the beta-chain of beta-hexosaminidase results in a labile enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1182:142-6. [PMID: 8357844 DOI: 10.1016/0925-4439(93)90134-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sandhoff disease is a lysosomal storage disorder characterized by accumulation of GM2 ganglioside due to mutations in the beta-chain of beta-hexosaminidase. Hexosaminidase activity is negligible in infantile Sandhoff disease whereas residual activity is present in juvenile and adult forms. Here we report the molecular basis of the first described adult form of Sandhoff disease. Southern analysis of chromosomal DNA indicated the absence of chromosomal deletions in the gene encoding the beta-chain. Northern analysis of RNA from cultured fibroblasts demonstrated that at least one of the beta-chain alleles was transcribed into normal-length mRNA. Sequence analysis of the entire cDNA prepared from poly-adenylated RNA showed that only one point mutation was present, consisting of a G-->A transition at nucleotide position 1514. This mutation changes the electric charge at amino acid position 505 by substitution of glutamine for arginine in a highly conserved part of the beta-chain, present even in the slime mold Dictyostelium discoideum. The nucleotide transition generated a new restriction site for DdeI, which was present in only one of the alleles of the patient. Reverse transcription of mRNA followed by restriction with DdeI resulted in complete digestion at the mutation site, demonstrating that the second allele was of an mRNA-negative type. Transfection of COS cells with a cDNA construct containing the mutation but otherwise the normal sequence resulted in the expression of a labile form of beta-hexosaminidase. These results show that the patient's is a genetic compound, and that the lability of beta-hexosaminidase found in this form of Sandhoff disease is based on a single nucleotide transition.
Collapse
Affiliation(s)
- P A Bolhuis
- Academic Medical Center, Department of Neurology, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Brown CA, McInnes B, de Kremer RD, Mahuran DJ. Characterization of two HEXB gene mutations in Argentinean patients with Sandhoff disease. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1180:91-8. [PMID: 1390948 DOI: 10.1016/0925-4439(92)90031-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Beta-hexosaminidase A (beta-N-acetyl-D-hexosaminidase, EC 3.2.1.5.2) is a lysosomal hydrolase composed of an alpha- and a beta-subunit. It is responsible for the degradation of GM2 ganglioside. Mutations in the HEXB gene encoded beta-subunit cause a form of GM2 gangliosidosis known as Sandhoff disease. Although this is a rare disease in the general population, several geographically isolated groups have a high carrier frequency. Most notably, a 1 in 16-29 carrier frequency has been reported for an Argentinean population living in an area contained within a 375-km radius from Córdoba. Analysis of the genomic DNA of two patients from this region revealed that one was homozygous for a G to A substitution at the 5' donor splice site of intron 2. This mutation completely abolishes normal mRNA splicing. The other patient was a compared of the intron 2 G-->A substitution and a second allele due to a 4-bp deletion in exon 7. The beta-subunit mRNA of this allele is unstable, presumably as a result of an early stop codon introduced by the deletion. Two novel PCR-based assays were developed to detect these mutations. We suggest that one of these assays could be modified and used as a rapid screening procedure for 5' donor splice site defects in other genes. These results provide a further example of the genetic heterogeneity that can exist even in a small geographically isolated population.
Collapse
Affiliation(s)
- C A Brown
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
39
|
McInnes B, Brown CA, Mahuran DJ. Two small deletion mutations of the HEXB gene are present in DNA from a patient with infantile Sandhoff disease. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1138:315-7. [PMID: 1532910 DOI: 10.1016/0925-4439(92)90009-c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes hexosaminidase A (alpha beta) and B (beta beta). The alpha subunit is encoded by the HEXA gene and the beta subunit by HEXB gene. Defects in the alpha or beta subunits lead to Tay-Sachs or Sandhoff disease, respectively. While many HEXA gene mutations have been reported only three HEXB gene mutations are known. We report the characterization of two rare HEXB mutations present in genomic DNA from a single fibroblast cell line, GM203, taken from a patient with the infantile form of Sandhoff disease. The first is a single base pair deletion in exon 7 changing the codon for Gly-258, GGA, to GA and the second, a two base pair deletion in exon 11 changes the codons for Arg-435/Val-436, AGA/GTC, to AGTC. Each mutation produces a frame shift in the affected allele that results in a premature stop codon 17 or 20 codons downstream, respectively. These mutations also result in the inability to detect beta-mRNA by Northern blot analysis of total mRNA. These data are consistent with the idea that the severe infantile form of Tay-Sachs or Sandhoff disease is associated with a total lack of residual hexosaminidase A activity.
Collapse
Affiliation(s)
- B McInnes
- Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
40
|
Wakamatsu N, Kobayashi H, Miyatake T, Tsuji S. A novel exon mutation in the human beta-hexosaminidase beta subunit gene affects 3' splice site selection. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45894-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Banerjee P, Siciliano L, Oliveri D, McCabe NR, Boyers MJ, Horwitz AL, Li SC, Dawson G. Molecular basis of an adult form of beta-hexosaminidase B deficiency with motor neuron disease. Biochem Biophys Res Commun 1991; 181:108-15. [PMID: 1720305 DOI: 10.1016/s0006-291x(05)81388-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A patient (KL) with progressive motor neuron disease associated with partial Hex A (alpha beta) and no Hex B (beta beta) activity, synthesized beta-chains which only associated with alpha-chains. To identify the molecular basis of this inability of beta-chains to self associate, RNA from cultured fibroblasts was reverse transcribed, the cDNA encoding the beta-chain amplified by polymerase chain reaction, subcloned, and sequenced to reveal two types of single missense mutation. The first mutation, (Type I) 619A----G, was paternally inherited and converted a 207IIe----Val in a highly conserved region believed to be associated with catalytic activity and activator protein binding. Biochemical evidence for impaired activator protein binding was obtained by purifying Hex A from KL urine and demonstrating a greater than 50% reduction of in vitro GM2 hydrolysis compared to normal urinary Hex A. In other cDNA species (Type II), a maternally inherited 1367A----C mutation converted 456Tyr----Ser in another highly conserved region of the beta-chain and we propose that this mutation leads to the inability of the beta-chains to self associate and thus reach maturity. These same cDNA species contained a second 362A----G mutation which converted 121Lys----Arg, but is apparently a polymorphism since it also occurs in some normal subjects. We propose that the patient is a compound heterozygote in which a combination of no self-association of the mutant beta-chains and impaired activator protein binding to alpha-beta (mutant) (Hex A) required for GM2 hydrolysis result in total beta-Hex B deficiency and slow accumulation of GM2 ganglioside, primarily in motor neurons.
Collapse
Affiliation(s)
- P Banerjee
- Joseph P. Kennedy, Jr. Mental Retardation Research Center, Department of Pediatrics, University of Chicago, IL 60637
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sankaranarayanan K. Ionizing radiation and genetic risks. I. Epidemiological, population genetic, biochemical and molecular aspects of Mendelian diseases. Mutat Res 1991; 258:3-49. [PMID: 2023599 DOI: 10.1016/0165-1110(91)90027-s] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper reviews the currently available information on naturally occurring Mendelian diseases in man; it is aimed at providing a background and framework for discussion of experimental data on radiation-induced mutations (papers II and III) and for the estimation of the risk of Mendelian disease in human populations exposed to ionizing radiation (paper IV). Current consensus estimates indicate that a total of about 125 per 10(4) livebirths are directly affected by one or another naturally occurring Mendelian disease (autosomal dominants, 95/10(4); X-linked ones, 5/10(4); and autosomal recessives, 25/10(4). These estimates are conservative and take into account conditions which are very rare and for which prevalence estimates are unavailable. Most, although not all, of the recognized "common" dominants have onset in adult ages while most sex-linked and autosomal recessives have onset at birth or in childhood. Autosomal dominant and X-linked diseases (i.e., the responsible mutant alleles) presumed to be maintained in the population due to a balance between mutation and selection are the ones which may be expected to increase in frequency as a result of radiation exposures. Viewed from this standpoint, the above assumption seems safe only for a small proportion of such diseases; for the remainder, there is no easy way to discriminate between different mechanisms that may be responsible or to rigorously exclude some in favor of some others. Mutations in genes that code for enzymic proteins are more often recessive in contrast to those that code for non-enzymic proteins, which are more often dominant. At the molecular level, with recessives, a wide variety of changes is possible and these include specific types of point mutations, small and large intragenic deletions, multilocus deletions and rearrangements. In the case of dominants, however, the kinds of recoverable point mutations and deletion-type changes are less extensive because of functional constraints. The mutational potential of genes varies, depending on the gene, its size, sequence content and arrangement, location and its normal functions, and can be grouped into three groups: those in which only point mutations have been found to occur, those in which only deletions or other gross changes have been recovered and those in which both kinds of changes are known. Molecular data are available for about 75 Mendelian conditions and these suggest that in approximately 50% of them, the changes categorized to date are point mutations and in the remainder, intragenic deletions or other gross changes; there does not seem to be any fundamental difference between dominants and recessives with respect to the underlying molecular defect.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Sankaranarayanan
- MGC Department of Radiation Genetics and Chemical Mutagenesis, Sylvius Laboratories, State University of Leiden, The Netherlands
| |
Collapse
|
43
|
Mahuran DJ. The biochemistry of HEXA and HEXB gene mutations causing GM2 gangliosidosis. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1096:87-94. [PMID: 1825792 DOI: 10.1016/0925-4439(91)90044-a] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D J Mahuran
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Callahan JW, Archibald A, Skomorowski MA, Shuman C, Clarke JT. First trimester prenatal diagnosis of Tay-Sachs disease using the sulfated synthetic substrate for hexosaminidase A. Clin Biochem 1990; 23:533-6. [PMID: 2149678 DOI: 10.1016/0009-9120(90)80045-k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uncultured and cultured embryonic trophoblastic tissue obtained by chorionic villus sampling (CVS) displays enzyme activity towards 4-methylumbelliferyl-2-acetamido-2-deoxy-beta-D-glucopyranosyl-6-sulfate (MUGS), a specific substrate for Hexosaminidase A (Hex A), the enzyme deficient in Tay-Sachs disease (TSD). Specific activity is comparable to that found in cultured amniocytes and fibroblasts. The enzyme activity has a pH optimum of 4.1 and an apparent Km of 6 x 10(-4) mol/L. Thirteen pregnancies in eight families at risk for TSD were monitored by CVS using MUGS as the Hex A substrate. Four fetuses were proven affected by enzyme analysis of fetal tissues and cultured fetal fibroblasts obtained at the time of termination of the pregnancies. Nine fetuses were judged to be unaffected. Eight babies were clinically normal while the other pregnancy is continuing. The use of MUGS as substrate for Hex A makes prenatal diagnosis by CVS of families at risk for TSD simple, direct and accurate.
Collapse
Affiliation(s)
- J W Callahan
- Division of Clinical Genetics, Hospital for Sick Children
| | | | | | | | | |
Collapse
|
45
|
Dlott B, d'Azzo A, Quon DV, Neufeld EF. Two mutations produce intron insertion in mRNA and elongated beta-subunit of human beta-hexosaminidase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38251-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Emiliani C, Sciarra R, Orlacchio A, Stirling JL. beta-N-acetylhexosaminidases in the spleen of a patient with hairy-cell leukaemia. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:265-73. [PMID: 2138033 DOI: 10.1016/0167-4838(90)90024-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The spleen from a patient with hairy-cell leukaemia had beta-N-acetylhexosaminidase activity that could be resolved into three isoenzymes by chromatography on phenyl boronate agarose. Two of these were the major forms, A and B, found in normal tissues but, in addition, there was an 'extra' form that accounted for 15% of total activity. The 'extra' form hydrolysed the synthetic substrate 4-methylumbelliferyl-beta-N-acetylglucosamine 6-sulphate, indicating the presence of alpha-subunits. It was more acidic than A, was less heat-stable and showed no generation of B on denaturation under a variety of conditions. These findings and the immunoblot (Western blotting) analysis demonstrate that the 'extra' form is entirely composed of alpha-subunits, and most closely resembles S, the residual activity in Sandhoff's disease.
Collapse
Affiliation(s)
- C Emiliani
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, Italy
| | | | | | | |
Collapse
|
47
|
Neufeld EF. Natural History and Inherited Disorders of a Lysosomal Enzyme, β-Hexosaminidase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60406-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
|
49
|
Abstract
Two sisters presented with progressive muscle cramps, as well as wasting and weakness of the legs with onset after age 20. They also showed intention tremor of the upper extremities and dysarthria starting during the first decade. The older patient also had fasciculations; the younger, hyperreflexia. Total plasma beta-hexosaminidase (Hex) activity with 4-methylumbelliferyl-acetyl-glucosamine as substrate was reduced to 1.4% and 2.7% of the control in the 2 patients, respectively. Hex A activity measured by 4-methylumbelliferyl-N-acetylglucosamine-6-O-sulphate as substrate was 9.9% and 12.8% of the mean control value in the 2 patients, respectively. Hex B activity was undetectable in both patients. Leukocyte total Hex activity was 7-8% of normal; residual Hex A activity in the 2 patients was 17.8% and 16.3% of normal controls, respectively. Fibroblastic residual Hex A activity in the 2 patients was 9.6% and 22% of normal mean value, respectively. Appendiceal ganglion cells contained membranous cytoplasmic bodies in the younger patient. Thin layer chromatography of the appendiceal extract from one patient (III/2) showed a marked increase of GM2 ganglioside, and some increase of GM3 ganglioside. Northern blots performed on fibroblast cell lines from both patients for the demonstration of alpha and beta locus messenger RNA showed no difference between patients and control. These patients have a rare form of adult-onset progressive motor neuron disease presumably due to abnormal beta subunits, causing severe deficiency of both Hex A and Hex B. The phenotypic expression of this disease is similar to motor neuron disease due to alpha locus mutations, which suggests that the Hex A deficiency, even though only a partial one, may be the important pathogenic factor.
Collapse
|
50
|
Abstract
Application of molecular biology, by means of linkage analysis and DNA probes that demonstrate restriction fragment length polymorphisms (RFLPs), has resulted in the chromosomal localization of the genes responsible for a number of neurological disorders. Characterization of the structure and function of individual genes for these diseases is in an early stage, but information available indicates that the molecular mechanisms underlying phenotypic expression of neurological diseases encompass a wide range of genetic errors ranging from the most minor (a single-base pair mutation) to large chromosomal deletions. Linkage analysis can now be used for genetic counseling in several of these disorders.
Collapse
Affiliation(s)
- J B Martin
- Neurology Service, Massachusetts General Hospital, Boston
| |
Collapse
|