1
|
Patterson DC, Liu Y, Das S, Yennawar NH, Armache JP, Kincaid JR, Weinert EE. Heme-Edge Residues Modulate Signal Transduction within a Bifunctional Homo-Dimeric Sensor Protein. Biochemistry 2021; 60:3801-3812. [PMID: 34843212 DOI: 10.1021/acs.biochem.1c00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bifunctional enzymes, which contain two domains with opposing enzymatic activities, are widely distributed in bacteria, but the regulatory mechanism(s) that prevent futile cycling are still poorly understood. The recently described bifunctional enzyme, DcpG, exhibits unusual heme properties and is surprisingly able to differentially regulate its two cyclic dimeric guanosine monophosphate (c-di-GMP) metabolic domains in response to heme gaseous ligands. Mutagenesis of heme-edge residues was used to probe the heme pocket and resulted in decreased O2 dissociation kinetics, identifying roles for these residues in modulating DcpG gas sensing. In addition, the resonance Raman spectra of the DcpG wild type and heme-edge mutants revealed that the mutations alter the heme electrostatic environment, vinyl group conformations, and spin state population. Using small-angle X-ray scattering and negative stain electron microscopy, the heme-edge mutations were demonstrated to cause changes to the protein conformation, which resulted in altered signaling transduction and enzyme kinetics. These findings provide insights into molecular interactions that regulate DcpG gas sensing as well as mechanisms that have evolved to control multidomain bacterial signaling proteins.
Collapse
Affiliation(s)
- Dayna C Patterson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yilin Liu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Sayan Das
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jean-Paul Armache
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - James R Kincaid
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Emily E Weinert
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
4
|
The Effect of Spring Water Geochemistry on Copper Proteins in Tengchong Hot Springs, China. Appl Environ Microbiol 2020; 86:AEM.00581-20. [PMID: 32358007 DOI: 10.1128/aem.00581-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/26/2020] [Indexed: 12/28/2022] Open
Abstract
Copper (Cu) is an essential trace metal cofactor for a variety of proteins; however, excess Cu is toxic to most organisms. Cu homeostasis is maintained by a complex machinery of Cu binding proteins that control the uptake, transport, sequestration, and efflux of Cu ions. Despite the importance of Cu binding proteins in electron transfer, substrate oxidation, superoxide dismutation, and denitrification, little information exists about microbial Cu utilization in extreme environments, where the geochemical conditions may affect Cu bioavailability. Using metagenomic data from 9 hot springs in Tengchong, China, which range in temperature from 42°C to 96°C and in pH from 2.3 to 9, the effects of pH, temperature, and spring geochemistry on the distribution of Cu binding domains of proteins and oxidoreductases were studied. Dissolved Cu and Cu binding domains were detected across all temperature and pH gradients. Cu binding domains of cytochrome c oxidase subunits, heavy-metal-associated domains, and nitrous oxide reductase were detected at all sites. DoxB, a quinol oxidase, and other quinol oxidase subunits were the dominant Cu binding oxidoreductase subunits present at low-pH and high-temperature sites, whereas cbb 3-type cytochrome c oxidase subunits were dominant at high-pH and high-temperature sites. Additionally, aa 3-type cytochrome c oxidase was more prominent than cbb 3-type cytochrome c oxidase under circumneutral-pH conditions. This suggests that the type of cytochrome c oxidase pathway and the Cu proteins employed by microbes to carry out important functions such as energy acquisition and efflux of excess Cu are affected by the physicochemical conditions of the springs.IMPORTANCE Copper is present in a variety of proteins and is required to carry out essential functions by all organisms. However, in hot spring environments, copper availability may be limited due to the high temperatures and the wide range in pH. The significance of our research is in relating the physicochemical environment to the distribution of copper proteins across hot spring environments, which provides increased understanding of primary functions and adaptions in these environments.
Collapse
|
5
|
Modulation of the electron-proton coupling at cytochrome a by the ligation of the oxidized catalytic center in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148237. [PMID: 32485159 DOI: 10.1016/j.bbabio.2020.148237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 11/20/2022]
Abstract
Cytochrome a was suggested as the key redox center in the proton pumping process of bovine cytochrome c oxidase (CcO). Recent studies showed that both the structure of heme a and its immediate vicinity are sensitive to the ligation and the redox state of the distant catalytic center composed of iron of cytochrome a3 (Fea3) and copper (CuB). Here, the influence of the ligation at the oxidized Fea33+-CuB2+ center on the electron-proton coupling at heme a was examined in the wide pH range (6.5-11). The strength of the coupling was evaluated by the determination of pH dependence of the midpoint potential of heme a (Em(a)) for the cyanide (the low-spin Fea33+) and the formate-ligated CcO (the high-spin Fea33+). The measurements were performed under experimental conditions when other three redox centers of CcO are oxidized. Two slightly differing linear pH dependencies of Em(a) were found for the CN- and the formate-ligated CcO with slopes of -13 mV/pH unit and -23 mV/pH unit, respectively. These linear dependencies indicate only a weak and unspecific electron-proton coupling at cytochrome a in both forms of CcO. The lack of the strong electron-proton coupling at the physiological pH values is also substantiated by the UV-Vis absorption and electron-paramagnetic resonance spectroscopy investigations of the cyanide-ligated oxidized CcO. It is shown that the ligand exchange at Fea3+ between His-Fea3+-His and His-Fea3+-OH- occurs only at pH above 9.5 with the estimated pK >11.0.
Collapse
|
6
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
7
|
Malkamäki A, Meunier B, Reidelbach M, Rich PR, Sharma V. The H channel is not a proton transfer path in yeast cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:717-723. [PMID: 31374214 DOI: 10.1016/j.bbabio.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/24/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
Cytochrome c oxidases (CcOs) in the respiratory chains of mitochondria and bacteria are primary consumers of molecular oxygen, converting it to water with the concomitant pumping of protons across the membrane to establish a proton electrochemical gradient. Despite a relatively well understood proton pumping mechanism of bacterial CcOs, the role of the H channel in mitochondrial forms of CcO remains debated. Here, we used site-directed mutagenesis to modify a central residue of the lower span of the H channel, Q413, in the genetically tractable yeast Saccharomyces cerevisiae. Exchange of Q413 to several different amino acids showed no effect on rates and efficiencies of respiratory cell growth, and redox potential measurements indicated minimal electrostatic interaction between the 413 locus and the nearest redox active component heme a. These findings clearly exclude a primary role of this section of the H channel in proton pumping in yeast CcO. In agreement with the experimental data, atomistic molecular dynamics simulations and continuum electrostatic calculations on wildtype and mutant yeast CcOs highlight potential bottlenecks in proton transfer through this route. Our data highlight the preference for neutral residues in the 413 locus, precluding sufficient hydration for formation of a proton conducting wire.
Collapse
Affiliation(s)
- Aapo Malkamäki
- Department of Physics, P. O. Box 64, University of Helsinki, 00014 Helsinki, Finland
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris Saclay, 91198 Gif sur Yvette, France
| | - Marco Reidelbach
- Department of Physics, P. O. Box 64, University of Helsinki, 00014 Helsinki, Finland
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Vivek Sharma
- Department of Physics, P. O. Box 64, University of Helsinki, 00014 Helsinki, Finland; Institute of Biotechnology, P. O. Box 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
8
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1170] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
10
|
Yip JHK, Wu J, Wong KY, Ho KP, Pun CSN, Vittal JJ. Electronic Communications Mediated by Metal Clusters. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200400180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Heering HA. Analysis of protein film voltammograms as Michaelis–Menten saturation curves yield the electron cooperativity number for deconvolution. Bioelectrochemistry 2012; 87:58-64. [DOI: 10.1016/j.bioelechem.2011.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 12/28/2022]
|
12
|
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
Abstract
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, Davis, CA, USA.
| | | |
Collapse
|
13
|
Kim N, Ripple MO, Springett R. Spectral components of the α-band of cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:779-87. [PMID: 21420929 DOI: 10.1016/j.bbabio.2011.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/30/2022]
Abstract
Oxidative redox titrations of the mitochondrial cytochromes were performed in near-anoxic RAW 264.7 cells by inhibiting complex I. Cytochrome oxidation changes were measured with multi-wavelength spectroscopy and the ambient redox potential was calculated from the oxidation state of endogenous cytochrome c. Two spectral components were separated in the α-band range of cytochrome oxidase and they were identified as the difference spectrum of heme a when it has a high (a(H)) or low (a(L)) midpoint potential (E(m)) by comparing their occupancy during redox titrations carried out when the membrane potential (ΔΨ) was dissipated with a protonophore to that predicted by the neoclassical model of redox cooperativity. The difference spectrum of a(L) has a maximum at 605nm whereas the spectrum of a(H) has a maximum at 602nm. The ΔΨ-dependent shift in the E(m) of a(H) was too great to be accounted for by electron transfer from cytochrome c to heme a against ΔΨ but was consistent with a model in which a(H) is formed after proton uptake against ΔΨ suggesting that the spectral changes are the result of protonation. A stochastic simulation was implemented to model oxidation states, proton uptake and E(m) changes during redox titrations. The redox anti-cooperativity between heme a and heme a(3), and proton binding, could be simulated with a model where the pump proton interacted with heme a and the substrate proton interacted with heme a(3) with anti-cooperativity between proton binding sites, but not with a single proton binding site coupled to both hemes.
Collapse
Affiliation(s)
- N Kim
- Department of Radiology, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
14
|
Savelieff MG, Lu Y. CuA centers and their biosynthetic models in azurin. J Biol Inorg Chem 2010; 15:461-83. [DOI: 10.1007/s00775-010-0625-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/28/2022]
|
15
|
Marmisollé WA, Inés Florit M, Posadas D. The coupling among electron transfer, deformation, screening and binding in electrochemically active macromolecules. Phys Chem Chem Phys 2010; 12:7536-44. [DOI: 10.1039/b922973f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres. Biochem J 2009; 422:237-46. [DOI: 10.1042/bj20082220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The steady-state behaviour of isolated mammalian cytochrome c oxidase was examined by increasing the rate of reduction of cytochrome c. Under these conditions the enzyme's 605 (haem a), 655 (haem a3/CuB) and 830 (CuA) nm spectral features behaved as if they were at near equilibrium with cytochrome c (550 nm). This has implications for non-invasive tissue measurements using visible (550, 605 and 655 nm) and near-IR (830 nm) light. The oxidized species represented by the 655 nm band is bleached by the presence of oxygen intermediates P and F (where P is characterized by an absorbance spectrum at 607 nm relative to the oxidized enzyme and F is characterized by an absorbance spectrum at 580 nm relative to the oxidized enzyme) or by reduction of haem a3 or CuB. However, at these ambient oxygen levels (far above the enzyme Km), the populations of reduced haem a3 and the oxygen intermediates were very low (<10%). We therefore interpret 655 nm changes as reduction of the otherwise spectrally invisible CuB centre. We present a model where small anti-cooperative redox interactions occur between haem a–CuA–CuB (steady-state potential ranges: CuA, 212–258 mV; haem a, 254–281 mV; CuB, 227–272 mV). Contrary to static equilibrium measurements, in the catalytic steady state there are no high potential redox centres (>300 mV). We find that the overall reaction is correctly described by the classical model in which the Michaelis intermediate is a ferrocytochrome c–enzyme complex. However, the oxidation of ferrocytochrome c in this complex is not the sole rate-determining step. Turnover is instead dependent upon electron transfer from haem a to haem a3, but the haem a potential closely matches cytochrome c at all times.
Collapse
|
17
|
Yeung N, Lu Y. One heme, diverse functions: using biosynthetic myoglobin models to gain insights into heme-copper oxidases and nitric oxide reductases. Chem Biodivers 2008; 5:1437-1454. [PMID: 18729107 PMCID: PMC2770894 DOI: 10.1002/cbdv.200890134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natasha Yeung
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Thermodynamic redox behavior of the heme centers in A-type heme-copper oxygen reductases: comparison between the two subfamilies. Biophys J 2008; 95:4448-55. [PMID: 18676644 DOI: 10.1529/biophysj.108.139493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study of the thermodynamic redox behavior of the hemes from two members of the A family of heme-copper oxygen reductases, Paracoccus denitrificans aa3 (A1 subfamily) and Rhodothermus marinus caa3 (A2 subfamily) enzymes, is presented. At different pH values, midpoint reduction potentials and interaction potentials were obtained in the framework of a pairwise model for two interacting redox centers. In both enzymes, the hemes have different reduction potentials. For the A1-type enzyme, it was shown that heme a has a pH-dependent midpoint reduction potential, whereas that of heme a3 is pH independent. For the A2-type enzyme the opposite was observed. The midpoint reduction potential of heme c from subunit II of the caa3 enzyme was determined by fitting the data with a single-electron Nernst curve, and it was shown to be pH dependent. The results presented here for these A-type enzymes are compared with those previously obtained for representative members of the B and C families.
Collapse
|
19
|
Belevich I, Verkhovsky MI. Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 2008; 10:1-29. [PMID: 17949262 DOI: 10.1089/ars.2007.1705] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytochrome c oxidase (CcO) is a terminal protein of the respiratory chain in eukaryotes and some bacteria. It catalyzes most of the biologic oxygen consumption on earth done by aerobic organisms. During the catalytic reaction, CcO reduces dioxygen to water and uses the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-linked proton pump. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. Thus, additional extensive studies of CcO by varieties of biophysical and biochemical approaches are involved to shed light on the mechanism of proton translocation. In this review, we summarize the current level of knowledge about CcO, including the latest model developed to explain the CcO proton-pumping mechanism.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
20
|
Siegbahn PEM, Blomberg MRA. Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1143-56. [PMID: 17692282 DOI: 10.1016/j.bbabio.2007.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/15/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| | | |
Collapse
|
21
|
Belevich I, Bloch DA, Belevich N, Wikström M, Verkhovsky MI. Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci U S A 2007; 104:2685-90. [PMID: 17293458 PMCID: PMC1796784 DOI: 10.1073/pnas.0608794104] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome c oxidase catalyzes most of the biological oxygen consumption on Earth, a process responsible for energy supply in aerobic organisms. This remarkable membrane-bound enzyme also converts free energy from O(2) reduction to an electrochemical proton gradient by functioning as a redox-linked proton pump. Although the structures of several oxidases are known, the molecular mechanism of redox-linked proton translocation has remained elusive. Here, correlated internal electron and proton transfer reactions were tracked in real time by spectroscopic and electrometric techniques after laser-activated electron injection into the oxidized enzyme. The observed kinetics establish the long-sought reaction sequence of the proton pump mechanism and describe some of its thermodynamic properties. The 10-micros electron transfer to heme a raises the pK(a) of a "pump site," which is loaded by a proton from the inside of the membrane in 150 micros. This loading increases the redox potentials of both hemes a and a(3), which allows electron equilibration between them at the same rate. Then, in 0.8 ms, another proton is transferred from the inside to the heme a(3)/Cu(B) center, and the electron is transferred to Cu(B). Finally, in 2.6 ms, the preloaded proton is released from the pump site to the opposite side of the membrane.
Collapse
Affiliation(s)
- Ilya Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Dmitry A. Bloch
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Nikolai Belevich
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Mårten Wikström
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Michael I. Verkhovsky
- Helsinki Bioenergetics Group, Program for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
- *To whom correspondence should be addressed at:
Institute of Biotechnology, University of Helsinki, Biocenter 3, P.O. Box 65, Viikinkaari 1, FI–00014, Helsinki, Finland. E-mail:
| |
Collapse
|
22
|
Farver O, Hwang HJ, Lu Y, Pecht I. Reorganization Energy of the CuA Center in Purple Azurin: Impact of the Mixed Valence-to-Trapped Valence State Transition. J Phys Chem B 2007; 111:6690-4. [PMID: 17274649 DOI: 10.1021/jp0672555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mixed valence (MV) coordination compounds play important roles in redox reactions in chemistry and biology. Details of the contribution of a mixed valence state to protein electron transfer (ET) reactivity such as reorganization energy, however, have not been experimentally defined. Herein we report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of CuA azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also shown that lowering the pH from 8.0 to 4.0 results in a similar (approximately 0.4 eV) decrease in reorganization energy for both blue (type 1) and purple (CuA) azurins, even though the reorganization energies of the two different copper centers are different at a given pH. These results suggest that the MV state plays only a secondary role in modulation of the ET reactivity via the reorganization energy, as compared to that of the driving force.
Collapse
Affiliation(s)
- Ole Farver
- Institute of Analytical and Pharmaceutical Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
23
|
Musser SM, Stowell MH, Chan SI. Cytochrome c oxidase: chemistry of a molecular machine. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:79-208. [PMID: 8644492 DOI: 10.1002/9780470123171.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The plethora of proposed chemical models attempting to explain the proton pumping reactions catalyzed by the CcO complex, especially the number of recent models, makes it clear that the problem is far from solved. Although we have not discussed all of the models proposed to date, we have described some of the more detailed models in order to illustrate the theoretical concepts introduced at the beginning of this section on proton pumping as well as to illustrate the rich possibilities available for effecting proton pumping. It is clear that proton pumping is effected by conformational changes induced by oxidation/reduction of the various redox centers in the CcO complex. It is for this reason that the CcO complex is called a redox-linked proton pump. The conformational changes of the proton pump cycle are usually envisioned to be some sort of ligand-exchange reaction arising from unstable geometries upon oxidation/reduction of the various redox centers. However, simple geometrical rearrangements, as in the Babcock and Mitchell models are also possible. In any model, however, hydrogen bonds must be broken and reformed due to conformational changes that result from oxidation/reduction of the linkage site during enzyme turnover. Perhaps the most important point emphasized in this discussion, however, is the fact that proton pumping is a directed process and it is electron and proton gating mechanisms that drive the proton pump cycle in the forward direction. Since many of the models discussed above lack effective electron and/or proton gating, it is clear that the major difficulty in developing a viable chemical model is not formulating a cyclic set of protein conformational changes effecting proton pumping (redox linkage) but rather constructing the model with a set of physical constraints so that the proposed cycle proceeds efficiently as postulated. In our discussion of these models, we have not been too concerned about which electron of the catalytic cycle was entering the site of linkage, but merely whether an ET to the binuclear center played a role. However, redox linkage only occurs if ET to the activated binuclear center is coupled to the proton pump. Since all of the models of proton pumping presented here, with the exception of the Rousseau expanded model and the Wikström model, have a maximum stoichiometry of 1 H+/e-, they inadequately explain the 2 H+/e- ratio for the third and fourth electrons of the dioxygen reduction cycle (see Section V.B). One way of interpreting this shortfall of protons is that the remaining protons are pumped by an as yet undefined indirectly coupled mechanism. In this scenario, the site of linkage could be coupled to the pumping of one proton in a direct fashion and one proton in an indirect fashion for a given electron. For a long time, it was assumed that at least some elements of such an indirect mechanism reside in subunit III. While recent evidence argues against the involvement of subunit III in the proton pump, subunit III may still participate in a regulatory and/or structural capacity (Section II.E). Attention has now focused on subunits I and II in the search for residues intimately involved in the proton pump mechanism and/or as part of a proton channel. In particular, the role of some of the highly conserved residues of helix VIII of subunit I are currently being studied by site directed mutagenesis. In our opinion, any model that invokes heme alpha 3 or CuB as the site of linkage must propose a very effective means by which the presumedly fast uncoupling ET to the dioxygen intermediates is prevented. It is difficult to imagine that ET over the short distance from heme alpha 3 or CuB to the dioxygen intermediate requires more than 1 ns. In addition, we expect the conformational changes of the proton pump to require much more than 1 ns (see Section V.B).
Collapse
Affiliation(s)
- S M Musser
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena 91125, USA
| | | | | |
Collapse
|
24
|
Moser CC, Page CC, Dutton PL. Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase. Philos Trans R Soc Lond B Biol Sci 2006; 361:1295-305. [PMID: 16873117 PMCID: PMC1647310 DOI: 10.1098/rstb.2006.1868] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biological electron transfer is designed to connect catalytic clusters by chains of redox cofactors. A review of the characterized natural redox proteins with a critical eye for molecular scale measurement of variation and selection related to physiological function shows no statistically significant differences in the protein medium lying between cofactors engaged in physiologically beneficial or detrimental electron transfer. Instead, control of electron tunnelling over long distances relies overwhelmingly on less than 14 A spacing between the cofactors in a chain. Near catalytic clusters, shorter distances (commonly less than 7 A) appear to be selected to generate tunnelling frequencies sufficiently high to scale the barriers of multi-electron, bond-forming/-breaking catalysis at physiological rates. We illustrate this behaviour in a tunnelling network analysis of cytochrome c oxidase. In order to surmount the large, thermally activated, adiabatic barriers in the 5-10 kcal mol-1 range expected for H+ motion and O2 reduction at the binuclear centre of oxidase on the 10(3)-10(5) s-1 time-scale of respiration, electron access with a tunnelling frequency of 10(9) or 10(10) s-1 is required. This is provided by selecting closely placed redox centres, such as haem a (6.9 A) or tyrosine (4.9 A). A corollary is that more distantly placed redox centres, such as CuA, cannot rapidly scale the catalytic site barrier, but must send their electrons through more closely placed centres, avoiding direct short circuits that might circumvent proton pumping coupled to haems a to a3 electron transfer. The selection of distances and energetic barriers directs electron transfer from CuA to haem a rather than a3, without any need for delicate engineering of the protein medium to 'hard wire' electron transfer. Indeed, an examination of a large number of oxidoreductases provides no evidence of such naturally selected wiring of electron tunnelling pathways.
Collapse
Affiliation(s)
| | | | - P. Leslie Dutton
- Author and address for correspondence: 1005 Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA ()
| |
Collapse
|
25
|
Farver O, Chen Y, Fee JA, Pecht I. Electron transfer among the CuA-, heme b- and a3-centers of Thermus thermophilus cytochrome ba3. FEBS Lett 2006; 580:3417-21. [PMID: 16712843 DOI: 10.1016/j.febslet.2006.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 04/27/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The 1-methyl-nicotinamide radical (MNA(*)), produced by pulse radiolysis has previously been shown to reduce the Cu(A)-site of cytochromes aa(3), a process followed by intramolecular electron transfer (ET) to the heme a but not to the heme a(3) [Farver, O., Grell, E., Ludwig, B., Michel, H. and Pecht, I. (2006) Rates and equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Biophys. J. 90, 2131-2137]. Investigating this process in the cytochrome ba(3) of Thermus thermophilus (Tt), we now show that MNA(*) also reduces Cu(A) with a subsequent ET to the heme b and then to heme a(3), with first-order rate constants 11200 s(-1), and 770 s(-1), respectively. The results provide clear evidence for ET among the three spectroscopically distinguishable centers and indicate that the binuclear a(3)-Cu(B) center can be reduced in molecules containing a single reduction equivalent.
Collapse
Affiliation(s)
- Ole Farver
- Institute of Analytical Chemistry, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
| | | | | | | |
Collapse
|
26
|
Bertrand P. Application of electron transfer theories to biological systems. STRUCTURE AND BONDING 2005. [DOI: 10.1007/3-540-53260-9_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Hwang HJ, Lu Y. pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer. Proc Natl Acad Sci U S A 2004; 101:12842-7. [PMID: 15326290 PMCID: PMC516483 DOI: 10.1073/pnas.0403473101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Indexed: 11/18/2022] Open
Abstract
A pH-dependent transition between delocalized and trapped mixed valence states of an engineered CuA center in azurin has been investigated by UV-visible absorption and electron paramagnetic resonance spectroscopic techniques. At pH 7.0, the CuA azurin displays a typical delocalized mixed valence dinuclear [Cu(1.5)....Cu(1.5)] spectra with optical absorptions at 485, 530, and 760 nm, and with a seven-line EPR hyperfine. Upon lowering of the pH from 7.0 to 4.0, the absorption at 760 nm shifted to lower energy toward 810 nm, and a four-line EPR hyperfine, typical of a trapped valence, was observed. The pH-dependent transition is reversible because increasing the pH restores all delocalized spectral features. Lowering the pH resulted in not only a trapped valence state, but also a dramatically increased reduction potential of the Cu center (from 160 mV to 340 mV). Mutation of the titratable residues around the metal-binding site ruled out Glu-114 and identified the C-terminal histidine ligand (His-120) as a site of protonation, because the His120Ala mutation abolished the above pH-dependent transition. The corresponding histidine in cytochrome c oxidases is along a major electron transfer pathway from CuA center to heme a. Because the protonation of this histidine can result in an increased reduction potential that will prevent electron flow from the CuA to heme a, the CuA and the histidine may play an important role in regulating proton-coupled electron transfer.
Collapse
Affiliation(s)
- Hee Jung Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
28
|
Xavier AV. Thermodynamic and choreographic constraints for energy transduction by cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:23-30. [PMID: 15282170 DOI: 10.1016/j.bbabio.2004.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Cooperative effects are fundamental for electroprotonic energy transduction processes, crucial to sustain much of life chemistry. However, the primary cooperative mechanism by which transmembrane proteins couple the downhill transfer of electrons to the uphill activation (acidification) of protic groups is still a matter of great controversy. To understand cooperative processes fully, it is necessary to obtain the microscopic thermodynamic parameters of the functional centres and relate them to the relevant structural features, a task difficult to achieve for large proteins. The approach discussed here explores how this may be done by extrapolation from mechanisms used by simpler proteins operative in similar processes. The detailed study of small, soluble cytochromes performing electroprotonic activation has shown how they use anti-electrostatic effects to control the synchronous movement of charges. These include negative e(-)/H(+) (redox-Bohr effect) cooperativities. This capacity is the basis to discuss an unorthodox mechanism consistent with the available experimental data on the process of electroprotonic energy transduction performed by cytochrome c oxidase (CcO).
Collapse
Affiliation(s)
- António V Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 Apt. 127, 2780-156 Oeiras, Portugal.
| |
Collapse
|
29
|
Bistolas N, Christenson A, Ruzgas T, Jung C, Scheller FW, Wollenberger U. Spectroelectrochemistry of cytochrome P450cam. Biochem Biophys Res Commun 2004; 314:810-6. [PMID: 14741708 DOI: 10.1016/j.bbrc.2003.12.159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The spectroelectrochemistry of camphor-bound cytochrome P450cam (P450cam) using gold electrodes is described. The electrodes were modified with either 4,4(')-dithiodipyridin or sodium dithionite. Electrolysis of P450cam was carried out when the enzyme was in solution, while at the same time UV-visible absorption spectra were recorded. Reversible oxidation and reduction could be observed with both 4,4(')-dithiodipyridin and dithionite modified electrodes. A formal potential (E(0')) of -373mV vs Ag/AgCl 1M KCl was determined. The spectra of P450cam complexed with either carbon monoxide or metyrapone, both being inhibitors of P450 catalysis, clearly indicated that the protein retained its native state in the electrochemical cell during electrolysis.
Collapse
Affiliation(s)
- Nikitas Bistolas
- Department of Analytical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Shinya Yoshikawa
- Department of Life Science, Himeji Institute of Technology, and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan
| |
Collapse
|
31
|
Xavier AV. A mechano-chemical model for energy transduction in cytochrome c oxidase: the work of a Maxwell's god. FEBS Lett 2002; 532:261-6. [PMID: 12482576 DOI: 10.1016/s0014-5793(02)03692-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytochrome c3 has a central role in the energetics of Desulfovibrio sp., where it performs an electroprotonic energy transduction step. This process uses a network of cooperativities, largely based on anti-Coulomb components, resulting from a mechano-chemical energy coupling mechanism. This mechanism provides a model coherent with the data available for the redox chemistry of haem a of cytochrome c oxidase and its link to the activation of protons. A crucial feature of the model is an anti-Coulomb effect that sets the stage for a molecular ratchet, ensuring vectoriality for the redox-driven localised movement of protons across the membrane, against an electrochemical gradient.
Collapse
Affiliation(s)
- António V Xavier
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6 - Apt. 127, 2780-156, Oeiras, Portugal.
| |
Collapse
|
32
|
Mochizuki M, Aoyama H, Shinzawa-Itoh K, Usui T, Tsukihara T, Yoshikawa S. Quantitative reevaluation of the redox active sites of crystalline bovine heart cytochrome c oxidase. J Biol Chem 1999; 274:33403-11. [PMID: 10559221 DOI: 10.1074/jbc.274.47.33403] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Approximately 30% of the iron contained in a bovine heart cytochrome c oxidase preparation was removed by crystallization, giving a molecular extinction coefficient 1.25-1.4 times higher than those reported thus far. Six electron equivalents provided by dithionite were required for complete reduction of the crystalline cytochrome c oxidase preparation. The fully reduced enzyme was oxidized with 4 oxidation equivalents provided by molecular oxygen, giving an absorption spectrum slightly, but significantly, different from that of the original fully oxidized form. Four electron equivalents were required for complete reduction of the O(2)-oxidized enzyme. The O(2)-oxidized form, when exposed to excess amounts of O(2), was converted to the original oxidized form which required 6 electrons for complete reduction. A slow reduction of the O(2)-oxidized form without any external reductant added indicates the existence of internal electron donors for heme irons in the enzyme. These results suggest that the 2 extra oxidation equivalents in the original oxidized form, compared with the O(2)-oxidized form, are due to a bound peroxide produced by O(2) and electrons from the internal donors, consistently with a peroxide at the O(2) reduction site in the crystal structure of the enzyme (Yoshikawa, S., Shinzawa-Itoh, K. , Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Peters Libeu, C., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science 280, 1723-1729).
Collapse
Affiliation(s)
- M Mochizuki
- Department of Life Science, Himeji Institute of Technology, CREST, Japan Science and Technology Corporation, Kamigohri Akoh, Hyogo 678-1297, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M. The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:1-13. [PMID: 10524259 DOI: 10.1016/s0005-2728(99)00073-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains a novel complex III and a high potential iron-sulfur protein (HiPIP) as the main electron shuttle (Pereira et al., Biochemistry 38 (1999) 1268-1275 and 1276-1283). In this paper, one of the terminal oxidases expressed in this bacterium is extensively characterised. It is a caa3-type oxidase, isolated with four subunits (apparent molecular masses of 42, 19 and 15 kDa and a C-haem containing subunit of 35 kDa), which has haems of the A(s) type. This oxidase is capable of using TMPD and horse heart cytochrome c as substrates, but has a higher turnover with HiPIP, being the first example of a HiPIP:oxygen oxidoreductase. The oxidase has unusually low reduction potentials of 260 (haem C), 255 (haem A) and 180 mV (haem A3). Subunit I of R. marinus caa3 oxidase has an overall significant homology with the subunits I of the COX type oxidases, namely the metal binding sites and most residues considered to be functionally important for proton uptake and pumping (K- and D-channels). However, a major difference is present: the putative essential glutamate (E278 in Paraccocus denitrificans) of the D-channel is missing in the R. marinus oxidase. Homology modelling of the R. marinus oxidase shows that the phenol group of a tyrosine residue may occupy a similar spatial position as the glutamate carboxyl, in relation to the binuclear centre. Moreover, sequence comparisons reveal that several enzymes lacking that glutamate have a conserved substitution pattern in helix VI: -YSHPXV- instead of -XGHPEV-. These observations are discussed in terms of the mechanisms for proton uptake and it is suggested that, in these enzymes, tyrosine may play the role of the glutamate in the proton channel.
Collapse
Affiliation(s)
- M M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schlereth DD. Characterization of protein monolayers by surface plasmon resonance combined with cyclic voltammetry ‘in situ’. J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00019-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Abstract
Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several areas where the transfer of an electron and proton is tightly coupled and discuss model systems that can provide an experimental basis for a test of PCET theory. In a PCET reaction, the electron and proton may transfer consecutively (ET/PT) or concertedly (ETPT). The distinction between these processes is formulated, and rate-constant expressions for the two reaction channels are presented. Methods for the evaluation of these rate constants are discussed that are based on dielectric continuum theory. Electron donor hydrogen-bonded-interface electron acceptor systems displaying PCET reactivity are presented, and the rate-constant expressions corresponding to the ETPT and ET/PT channels for several model reaction complexes are evaluated.
Collapse
Affiliation(s)
- R I Cukier
- Department of Chemistry, Michigan State University, East Lansing 48824-1322, USA.
| | | |
Collapse
|
36
|
Affiliation(s)
- R B Gennis
- Department of Biochemistry, University of Illinois, 600 South Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
37
|
Schultz BE, Chan SI. Thermodynamics of electron transfer in Escherichia coli cytochrome bo3. Proc Natl Acad Sci U S A 1998; 95:11643-8. [PMID: 9751719 PMCID: PMC21694 DOI: 10.1073/pnas.95.20.11643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proton translocation mechanism of the Escherichia coli cytochrome bo3 complex is intimately tied to the electron transfers within the enzyme. Herein we evaluate two models of proton translocation in this enzyme, a cytochrome c oxidase-type ion-pump and a Q-cycle mechanism, on the basis of the thermodynamics of electron transfer. We conclude that from a thermodynamic standpoint, a Q-cycle is the more favorable mechanism for proton translocation and is likely occurring in the enzyme.
Collapse
Affiliation(s)
- B E Schultz
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
38
|
Kannt A, Lancaster CR, Michel H. The coupling of electron transfer and proton translocation: electrostatic calculations on Paracoccus denitrificans cytochrome c oxidase. Biophys J 1998; 74:708-21. [PMID: 9533684 PMCID: PMC1302552 DOI: 10.1016/s0006-3495(98)73996-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have calculated the electrostatic potential and interaction energies of ionizable groups and analyzed the response of the protein environment to redox changes in Paracoccus denitrificans cytochrome c oxidase by using a continuum dielectric model and finite difference technique. Subsequent Monte Carlo sampling of protonation states enabled us to calculate the titration curves of all protonatable groups in the enzyme complex. Inclusion of a model membrane allowed us to restrict the calculations to the functionally essential subunits I and II. Some residues were calculated to have complex titration curves, as a result of strong electrostatic coupling, desolvation, and dipolar interactions. Around the heme a3-CuB binuclear center, we have identified a cluster of 18 strongly interacting residues that account for most of the proton uptake linked to electron transfer. This was calculated to be between 0.7 and 1.1 H+ per electron, depending on the redox transition considered. A hydroxide ion bound to CuB was determined to become protonated to form water upon transfer of the first electron to the binuclear site. The bulk of the protonation changes linked to further reduction of the heme a3-CuB center was calculated to be due to proton uptake by the interacting cluster and Glu(II-78). Upon formation of the three-electron reduced state (P1), His325, modeled in an alternative orientation away from CuB, was determined to become protonated. The agreement of these results with experiment and their relevance in the light of possible mechanisms of redox-coupled proton transfer are discussed.
Collapse
Affiliation(s)
- A Kannt
- Abteilung Molekulare Membranbiologie, Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | | | | |
Collapse
|
39
|
Capitanio N, Capitanio G, De Nitto E, Papa S. Vectorial nature of redox Bohr effects in bovine heart cytochrome c oxidase. FEBS Lett 1997; 414:414-8. [PMID: 9315731 DOI: 10.1016/s0014-5793(97)01043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The vectorial nature of redox Bohr effects (redox-linked pK shifts) in cytochrome c oxidase from bovine heart incorporated in liposomes has been analyzed. The Bohr effects linked to oxido-reduction of heme a and CuB display membrane vectorial asymmetry. This provides evidence for involvement of redox Bohr effects in the proton pump of the oxidase.
Collapse
Affiliation(s)
- N Capitanio
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | |
Collapse
|
40
|
Brunori M, Giuffrè A, D'Itri E, Sarti P. Internal electron transfer in Cu-heme oxidases. Thermodynamic or kinetic control? J Biol Chem 1997; 272:19870-4. [PMID: 9242650 DOI: 10.1074/jbc.272.32.19870] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We present novel experimental evidence that, starting with the oxidized enzyme, the internal electron transfer in cytochrome c oxidase is kinetically controlled. The anaerobic reduction of the oxidized enzyme by ruthenium hexamine has been followed in the absence and presence of CO or NO, used as trapping ligands for reduced cytochrome a3. In the presence of NO, the rate of formation of the cytochrome a32+-NO adduct is independent of the concentration of ruthenium hexamine and of NO, indicating that in the oxidized enzyme cytochrome a and a3 are not in very rapid redox equilibrium; on the other hand, CO proved to be a poor "trapping" ligand. We conclude that the intrinsic rate constant for a --> a3 electron transfer in the oxidized enzyme is 25 s-1. These data are discussed with reference to a model (Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (1995) Biochemistry 34, 7483-7491) in which H+ diffusion and/or binding at the binuclear site is the rate-limiting step in the reduction of cytochrome a3 in the oxidized enzyme.
Collapse
Affiliation(s)
- M Brunori
- Department of Biochemical Sciences A. Rossi-Fanelli and CNR Center of Molecular Biology, University of Rome La Sapienza, I-00185 Rome, Italy
| | | | | | | |
Collapse
|
41
|
Ortwein C, Link TA, Meunier B, Colson-Corbisier AM, Rich PR, Brandt U. Structural and functional analysis of deficient mutants in subunit I of cytochrome c oxidase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1321:79-92. [PMID: 9284958 DOI: 10.1016/s0005-2728(97)00035-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Four point mutations in subunit I of cytochrome c oxidase from Saccharomyces cerevisiae that had been selected for respiratory incompetence but still contained spectrally detectable haem aa3 were analysed. The isolated mutant enzymes exhibited minor band shifts in their optical spectra and contained all eleven subunits. However, steady state activities were only a few percent compared to wild type enzyme. Using a comprehensive experimental approach, we first checked the integrity of the enzyme preparations and then identified the specific functional defect. The results are discussed using information from the recently solved structures of cytochrome c oxidase at 2.8 A. Mutation 167N is positioned between haem a and a conserved glutamate residue (E243). It caused a distortion of the EPR signal of haem a and shifted its midpoint potential by 54 mV to the negative. The high-resolution structure suggests that the primary reason for the low activity of the mutant enzyme could be that asparagine in position 67 might form a stable hydrogen bond to E243, which is part of a proposed proton channel. Cytochrome c oxidase isolated from mutant T316K did not meet our criteria for homogeneity and was therefore omitted from further analysis. Mutants G352V and V380M exhibited an impairment of electron transfer from haem a to a3 and ligand binding to the binuclear centre was affected. In mutant V380M also the midpoint potential of CuB was shifted by 65 mV to the positive. The results indicated for these two mutants changes primarily associated with the binuclear centre, possibly associated with an interference in the routes and/or sites of protonation which are required for stable formation of the catalytic intermediates. This interpretation is discussed in the light of the high resolution structure.
Collapse
Affiliation(s)
- C Ortwein
- Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Brzezinski P, Wilson MT. Photochemical electron injection into redox-active proteins. Proc Natl Acad Sci U S A 1997; 94:6176-9. [PMID: 9177190 PMCID: PMC21022 DOI: 10.1073/pnas.94.12.6176] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A new method is presented that makes it possible to inject electrons rapidly into redox-active proteins by means of a short light flash. Reduced carboxymethylated cytochrome c (CmCyt c) with carbon monoxide bound to the heme iron is mixed with the oxidized acceptor protein. Upon rapid photodissociation of CO the apparent redox potential of CmCyt c drops, resulting in electron transfer to the electron acceptor. In this study we have used mitochondrial cytochrome c oxidase as the acceptor protein, but the method also can be used to investigate electron transfer to other proteins that can interact with cytochrome c. In principle, it can be used with any redox protein into which a CO binding site at the heme iron can be engineered.
Collapse
Affiliation(s)
- P Brzezinski
- Department of Biochemistry and Biophysics, University of Göteborg and Chalmers University of Technology, Medicinaregatan 9C, S-413 90 Göteborg, Sweden
| | | |
Collapse
|
43
|
Moody AJ. 'As prepared' forms of fully oxidised haem/Cu terminal oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:6-20. [PMID: 8764888 DOI: 10.1016/0005-2728(96)00035-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A J Moody
- Glynn Research Foundation, Cornwall, UK.
| |
Collapse
|
44
|
Mitchell DM, Aasa R, Adelroth P, Brzezinski P, Gennis RB, Malmström BG. EPR studies of wild-type and several mutants of cytochrome c oxidase from Rhodobacter sphaeroides: Glu286 is not a bridging ligand in the cytochrome a3-CuB center. FEBS Lett 1995; 374:371-4. [PMID: 7589573 DOI: 10.1016/0014-5793(95)01149-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wild-type and several mutants of cytochrome c oxidase from Rhodobacter sphaeroides were characterized by EPR spectroscopy. A pH-induced g12 signal, seen previously in mammalian cytochrome oxidase and assigned to the presence of a bridging carboxyl ligand in the bimetallic cytochrome a3-CuB site, is found also in the bacterial enzyme. Mutation of glutamate-286 to glutamine inactivates the enzyme but does not affect this signal, demonstrating that the carboxyl group of this residue is not the bridging ligand. Three mutants, M106Q, located one helix turn below a histidine ligand to cytochrome a, and T352A as well as F391Q, located close to the bimetallic center, are shown to affect dramatically the low-spin heme signal of cytochrome a. These mutants are essentially inactive, suggesting that these three mutations result in alterations to cytochrome a that render the oxidase non-functional.
Collapse
Affiliation(s)
- D M Mitchell
- School of Chemical Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
45
|
Winkler JR, Malmström BG, Gray HB. Rapid electron injection into multisite metalloproteins: intramolecular electron transfer in cytochrome oxidase. Biophys Chem 1995; 54:199-209. [PMID: 7749059 DOI: 10.1016/0301-4622(94)00156-e] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The principles for the operation of redox-linked proton pumps are reviewed and applied to one specific pump, cytochrome oxidase. Systematic studies of internal electron transfer in the different redox states of this pump will be facilitated by the development of methods for rapid electron injection into the metal centers of the enzyme. Two methods that have been employed to generate electron donors are pulse radiolysis and laser flash photolysis. The rate of electron injection from photoexcited Ru-modified cytochrome c or triplet Zn-cytochrome c into the CuA center is about 10(5) s-1, and the CuA/cytochrome a electron equilibration rate is 2 x 10(4) s-1. Electron transfer from cytochrome a to the cytochrome a3-CuB site occurs at 2 x 10(5) s-1 in the half-reduced enzyme, whereas the rate is only 2 x 10(2) s-1 in the peroxide intermediate, despite a much higher driving force. It is likely that variations in distant electronic coupling attributable to a ligand shuttle, as well as changes in the reorganization energy of one or more of the redox centers, contribute to the control of internal electron flow in the enzyme.
Collapse
Affiliation(s)
- J R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- O Einarsdóttir
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA
| |
Collapse
|
47
|
Brzezinski P, Sundahl M, Adelroth P, Wilson MT, el-Agez B, Wittung P, Malmström BG. Triplet-state quenching in complexes between Zn-cytochrome c and cytochrome oxidase or its CuA domain. Biophys Chem 1995; 54:191-7. [PMID: 7756569 DOI: 10.1016/0301-4622(94)00128-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The quenching of the triplet state of Zn-cytochrome c in electrostatic complexes with cytochrome oxidase and its soluble CuA domain has been studied by laser flash photolysis. The triplet state of free Zn-cytochrome c decayed with a rate of about 200 s-1. With the oxidase, biphasic decay with rate constants of 2 x 10(5) and 2 x 10(3) s-1, respectively, was observed. At high ionic strength (I = 0.2) the decay was the same as with free Zn-cytochrome c. The quenching was also eliminated by reduction of the oxidase. The decay rate in the complex with the CuA domain was 4 x 10(4) s-1. The results are interpreted in terms of rapid electron transfer to CuA and a slower one to cytochrome a. No electron transfer products were detected, because the backward reaction is faster than the forward one. This can be explained by the high driving force (1.1 eV) for the forward electron transfer, taking the system into the inverted Marcus region. The distance in the electrostatic complex between cytochrome c and the electron acceptor, presumed to be CuA, is calculated to be 16 A.
Collapse
Affiliation(s)
- P Brzezinski
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Malatesta F, Antonini G, Sarti P, Brunori M. Structure and function of a molecular machine: cytochrome c oxidase. Biophys Chem 1995; 54:1-33. [PMID: 7703349 DOI: 10.1016/0301-4622(94)00117-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochrome c is responsible for over 90% of the dioxygen consumption in the living cell and contributes to the build-up of a proton electrochemical gradient derived by the vectorial transfer of electrons between cytochrome c and molecular oxygen. The metal ions found in cytochrome oxidases play a crucial role in these processes and have been extensively studied. In this review we present and discuss some of the relevant spectroscopic and kinetic properties of the prosthetic groups of cytochrome c oxidase.
Collapse
Affiliation(s)
- F Malatesta
- Department of Experimental Medicine, University of Rome, Tor Vergata, Italy
| | | | | | | |
Collapse
|
49
|
Papa S, Lorusso M, Capitanio N. Mechanistic and phenomenological features of proton pumps in the respiratory chain of mitochondria. J Bioenerg Biomembr 1994; 26:609-18. [PMID: 7721722 DOI: 10.1007/bf00831535] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (delta p) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochrome c oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of <--H+/e- stoichiometries, in cytochrome c oxidase and cytochrome c reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | |
Collapse
|
50
|
Mitchell R, Rich PR. Proton uptake by cytochrome c oxidase on reduction and on ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:19-26. [PMID: 8011665 DOI: 10.1016/0005-2728(94)90130-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
On reduction, cytochrome oxidase was found to take up 2.4 +/- 0.1 protons in the pH range 7.2-8.5, of which 2 are associated with the binuclear centre, and the remaining fractional proton with haem a/CuA. Ligation to oxidised cytochrome oxidase of the azide, formate, fluoride or cyanide anions is accompanied by uptake of one proton. In the case of the reduced enzyme, no protonation changes are observed on binding O2 (Hallén S. and Nilsson T. (1992) Biochemistry 31, 11853-11859) or CO. Cyanide binding to reduced oxidase is, in contrast, still accompanied by uptake of a proton. These findings are discussed in terms of our previously-published proposal for the ligand chemistry of the binuclear site. The results overall suggest a principle of electroneutrality of redox and ligand state changes of the binuclear centre, with charge compensations provided only by protonation reactions.
Collapse
|