1
|
Han D, Lehmann K, Krauss G. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett 2009; 583:1928-32. [PMID: 19427858 DOI: 10.1016/j.febslet.2009.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/14/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are ubiquitous in archaea and eubacteria. It has been suggested that CRISPR and CAS proteins act as an immune system preventing the invasion of foreign genomic elements at the DNA level. The protein SSO1450 from Sulfolobus solfataricus (Sso) P2 belongs to the CAS1 cluster which is one of the core protein clusters most frequently associated with CRISPR sequences. In this study we show that SSO1450 is a high-affinity nucleic acid binding protein. It binds DNA, RNA and DNA-RNA hybrid apparently sequence non-specific in a multi-site binding mode. Furthermore, SSO1450 promotes the hybridization of complementary nucleic acid strands.
Collapse
Affiliation(s)
- Dong Han
- Department of Biochemistry, Universität Bayreuth, Bayreuth, Germany
| | | | | |
Collapse
|
2
|
Wu SL, Li CC, Ho TY, Hsiang CY. Mutagenesis identifies the critical regions and amino acid residues of suid herpesvirus 1 DNA-binding protein required for DNA binding and strand invasion. Virus Res 2009; 140:147-54. [PMID: 19100791 DOI: 10.1016/j.virusres.2008.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 11/28/2022]
Abstract
Herpesviral DNA-binding protein (DBP) is a unique protein involved in viral DNA replication and genomic recombination. It binds and stabilizes the single-stranded DNA. It also forms the D-loops and promotes the strand invasion. To identify the functional regions and amino acid residues required for DNA binding and D-loop formation, we characterized several DBP mutants of suid herpesvirus 1 (SuHV-1). Acetic anhydride modification assay showed that lysine residues were critical for DNA binding and D-loop formation. Replacement of highly conserved lysine residues with alanine revealed that Lys-756 and Lys-970 were critical for DNA binding, while Lys-161 participated in DNA binding and D-loop formation. Analysis of nested deleted mutants showed that N-terminal 201 amino acid residues and C-terminal 305 amino acid residues were required for D-loop formation and DNA binding, respectively. In conclusion, these findings suggested that SuHV-1 DBP contained critical regions for DNA binding and D-loop formation, and Lys-161, Lys-756, and Lys-970 were required for DNA binding or D-loop formation.
Collapse
Affiliation(s)
- Shih-Lu Wu
- Department of Biochemistry, China Medical University, Taichung 40402, Taiwan
| | | | | | | |
Collapse
|
3
|
Abstract
Genetic recombination is a basic cellular process required for altering genome structure. The RecA protein of Escherichia coli has a central role in homologous recombination, and a eukaryotic protein with similar properties has been discovered in the yeast Saccharomyces cerevisiae. Unexpectedly, this RecA-like protein has additional biochemical activities, and its function may not be restricted to recombination.
Collapse
Affiliation(s)
- S Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
4
|
Solinger JA, Pascolini D, Heyer WD. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol Cell Biol 1999; 19:5930-42. [PMID: 10454540 PMCID: PMC84450 DOI: 10.1128/mcb.19.9.5930] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of motif II has been confirmed by mutant analysis with Xrn1p. The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo. These mutations show separation of function. They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion. In addition, xrn1-D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta. Biochemical analysis of the DNA binding, exonuclease, and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity. However, the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules. These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells.
Collapse
Affiliation(s)
- J A Solinger
- Institute of General Microbiology, University of Bern, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
5
|
Tseng M, Palaniyar N, Zhang W, Evans DH. DNA binding and aggregation properties of the vaccinia virus I3L gene product. J Biol Chem 1999; 274:21637-44. [PMID: 10419472 DOI: 10.1074/jbc.274.31.21637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vaccinia virus I3L gene encodes a single-stranded DNA-binding protein which may play a role in viral replication and genetic recombination. We have purified native and recombinant forms of gpI3L and characterized both the DNA-binding reaction and the structural properties of DNA-protein complexes. The purified proteins displayed anomalous electrophoretic properties in the presence of sodium dodecyl sulfate, behaving as if they were 4-kDa larger than the true mass. Agarose gel shift analysis was used to monitor the formation of complexes composed of single-stranded DNA plus gpI3L protein. These experiments detected two different DNA binding modes whose formation was dependent upon the protein density. The transition between the two binding modes occurred at a nucleotide to protein ratio of about 31 nucleotides per gpI3L monomer. S1 nuclease protection assay revealed that at saturating protein densities, each gpI3L monomer occludes 9.5 +/- 2.5 nucleotides. In the presence of magnesium, gpI3L promoted the formation of large DNA aggregates from which double-stranded DNA was excluded. Electron microscopy showed that, in the absence of magnesium and at low protein densities, gpI3L forms beaded structures on DNA. At high protein density the complexes display a smoother and less compacted morphology. In the presence of magnesium the complexes contained long fibrous and tangled arrays. These results suggest that gpI3L can form octameric complexes on DNA much like those formed by Escherichia coli single-stranded DNA protein. Moreover, the capacity to aggregate DNA may provide an environment in which hybrid DNA formation could occur during DNA replication.
Collapse
Affiliation(s)
- M Tseng
- Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
6
|
Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol 1998; 276:721-31. [PMID: 9500924 DOI: 10.1006/jmbi.1997.1573] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phage lambda encodes two recombination proteins that are required for homologous recombination in a recA- host strain. Of these two recombination proteins, one is an exonuclease whose action on double-stranded DNA produces 3' single-stranded ends; the other, called beta protein, is a DNA binding protein that promotes the renaturation of complementary single strands. The enzymes of phage lambda provide a model for understanding a recombination pathway called "single-strand annealing". Further investigation of the binding of beta protein to DNA has revealed a new mechanism of renaturation. As reported before, beta protein binds directly to single-stranded DNA, but not to double-stranded DNA. However, in the experiments reported here, we observed that beta protein bound more strongly to a presumed intermediate in the renaturation reaction that beta itself catalyzed, and beta thereby protected all of a renatured duplex 83-mer oligonucleotide from nuclease digestion.
Collapse
Affiliation(s)
- G Karakousis
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
7
|
Zhang Z, Simons AM, Prabhu VP, Chen J. Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae does not promote branch migration in vitro. J Biol Chem 1998; 273:4950-6. [PMID: 9478940 DOI: 10.1074/jbc.273.9.4950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been shown in vitro that Saccharomyces cerevisiae strand exchange protein 1 (Sep1) promotes the transfer of one strand of a linear duplex DNA to a homologous single-stranded DNA circle. Sep1 also has an exonuclease active on DNA and RNA. By using exonuclease III-treated linear duplex DNA with various lengths of single-stranded tail as well as Ca2+ to inhibit the exonuclease activity of Sep1, we show that the processivity of exonuclease activity of Sep1 is greater than previously reported. The results in this work also demonstrate that the joint molecule between the linear duplex and single-stranded circle observed from the Sep1-promoted strand transfer reaction is just the pairing between the long single-stranded tail of the linear duplex DNA (generated by the exonuclease activity of Sep1) and the single-stranded circular DNA. When a synthetic Holliday junction was used as substrate, branch migration facilitated by Sep1 could not be detected. Finally, using electron microscopy no alpha-structure, a joint molecule with displaced single-stranded DNA tail that indicates branch migration could be observed. The results imply that Sep1 cannot promote branch migration in vitro. Further investigation is needed to determine the role of Sep1 in recombination in vivo.
Collapse
Affiliation(s)
- Z Zhang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
8
|
Jin Y, Binkowski G, Simon LD, Norris D. Ho endonuclease cleaves MAT DNA in vitro by an inefficient stoichiometric reaction mechanism. J Biol Chem 1997; 272:7352-9. [PMID: 9054434 DOI: 10.1074/jbc.272.11.7352] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mating type switching in Saccharomyces cerevisiae initiates when Ho endonuclease makes a double-stranded DNA break at the yeast MAT locus. In this report, we characterize the fundamental biochemical properties of Ho. Using an assay that monitors cleavage of a MAT plasmid, we define an optimal in vitro reaction, showing in particular that the enzyme has a stringent requirement for zinc ions. This suggests that zinc finger motifs present in Ho are important for cleavage. The most unexpected feature of Ho, however, is its extreme inefficiency. Maximal cleavage occurs when Ho is present at a concentration of 1 molecule/3 base pairs of substrate DNA. Even under these conditions, complete digestion requires >2 h. This inefficiency results from two characteristics of Ho. First, Ho recycles slowly from cleaved product to new substrate, in part because the enzyme has an affinity for one end of its double strand break product. Second, high levels of cleavage in the in vitro reaction correlate with the appearance of large protein-DNA aggregates. At optimal Ho concentrations, these latter aggregates, referred to as "florettes," have an ordered structure consisting of a densely staining central region and loops of radiating DNA. These unusual properties may indicate that Ho plays a role in other aspects of mating type switching subsequent to double strand break formation.
Collapse
Affiliation(s)
- Y Jin
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855-0759, USA
| | | | | | | |
Collapse
|
9
|
Bashkirov VI, Solinger JA, Heyer WD. Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae. Chromosoma 1995; 104:215-22. [PMID: 8529461 DOI: 10.1007/bf00352186] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Sep1 (also known as Kem1, Xrn1, Rar5, DST2/Stpbeta) protein of Saccharomyces cerevisiae is an Mr 175,000 multifunctional exonuclease with suspected roles in RNA turnover and in the microtubular cytoskeleton as well as in DNA recombination and DNA replication. The most striking phenotype of SEP1 null mutations is quantitative arrest during meiotic prophase at the pachytene stage. We have constructed a set of N- and C-terminal as well as internal deletions of the large SEP1 gene. Analysis of these deletion mutations on plasmids in a host carrying a null allele (sep1 ) revealed that at least 270 amino acids from the C-terminus of the wild-type protein were dispensable for complementing the slow growth and benomyl hypersensitivity of a null mutant. In contrast, any deletion at the N-terminus abrogated complementing activity for these phenotypes. The sequences essential for function correspond remarkably well with the regions of Sep1 that are homologous to its Schizosaccharomyces pombe counterpart Exo2. In addition, these experiments showed that, despite the high intracellular levels of Sep1, over-expression of this protein above these levels is detrimental to the cell. We discuss the potential cellular roles of the Sep1 protein as a microtubule-nucleic acid interface protein linking its suspected function in the microtubular cytoskeleton with its role as a nucleic acid binding protein.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, University of Bern, Baltzer-Strasse 4, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
10
|
Holler A, Bashkirov VI, Solinger JA, Reinhart U, Heyer WD. Use of monoclonal antibodies in the functional characterization of the Saccharomyces cerevisiae Sep1 protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:329-36. [PMID: 7543408 DOI: 10.1111/j.1432-1033.1995.tb20704.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Saccharomyces cerevisiae strand-exchange protein 1 (Sep1 also known as Xrn1, Kem1, Rar5, Stp beta/DST2) has been demonstrated to mediate the formation of hybrid DNA from model substrates of linear double-stranded and circular single-stranded DNA in vitro. To delineate the mechanism by which Sep1 acts in the strand-exchange reaction, we analyzed mouse anti-Sep1 monoclonal antibodies for inhibition of the Sep1 in vitro activity. Of 12 class-G immunoglobulins tested, four were found to consistently inhibit the Sep1-mediated strand-exchange reaction. The inhibiting antibodies were tested for inhibition of a variety of Sep1-catalyzed DNA reactions including exonuclease activity on double-stranded and single-stranded DNA, renaturation of complementary single-stranded DNA and condensation of DNA into large aggregates. All four inhibiting antibodies had no effect on the exonuclease activity of Sep1. Three antibodies specifically blocked DNA aggregation. In addition, one antibody inhibited renaturation of complementary single-stranded DNA. This inhibition pattern underlines the importance of condensation of DNA into large aggregates in conjunction with double-stranded DNA exonuclease activity for the in vitro homologous pairing activity of Sep1. The implications of these data for the interpretation of proteins which promote homologous pairing of DNA are discussed, in particular in light of the reannealing activity of the p53 human tumor-suppressor protein.
Collapse
Affiliation(s)
- A Holler
- Institute of General Microbiology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Chen J, Kanaar R, Cozzarelli NR. The Sep1 strand exchange protein from Saccharomyces cerevisiae promotes a paranemic joint between homologous DNA molecules. Genes Dev 1994; 8:1356-66. [PMID: 7926736 DOI: 10.1101/gad.8.11.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Strand exchange protein 1 (Sep1) from the yeast Saccharomyces cerevisiae promotes the transfer of one strand of a linear duplex DNA to a homologous single-stranded DNA circle. Using a nitrocellulose filter binding assay and electron microscopy, we find that Sep1 promotes the pairing of homologous DNA molecules via a paranemic joint. In this joint there is no net intertwining of the parental DNA molecules, as in the standard plectonemic double helix. The paranemic joints form with as little as 41 bp of homology between the parental DNA molecules. The substrates used were a circular molecule (either single-stranded DNA or duplex supercoiled DNA) and a linear duplex with heterologous regions at both ends to bar duplex plectonemic intertwining. We excluded the possibility that the exonuclease activity of Sep1 exposes complementary single-stranded regions that constitute the joint. The paranemic joint is the key intermediate in the search for homologous DNA by the RecA protein of Escherichia coli. Our results imply that the search process in a eukaryote such as yeast can be mechanistically similar.
Collapse
Affiliation(s)
- J Chen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
12
|
Käslan E, Heyer W. Schizosaccharomyces pombe fatty acid synthase mediates DNA strand exchange in vitro. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36760-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Käslin E, Heyer W. A multifunctional exonuclease from vegetative Schizosaccharomyces pombe cells exhibiting in vitro strand exchange activity. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36759-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Bähler J, Hagens G, Holzinger G, Scherthan H, Heyer WD. Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase. Chromosoma 1994; 103:129-41. [PMID: 8055710 DOI: 10.1007/bf00352322] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Saccharomyces cerevisiae cells containing null mutations in the SEP1 gene, which encodes the homologous pairing and strand exchange protein p175SEP1, enter pachytene with a delay. They arrest uniformly at this stage of meiotic prophase, probably revealing a checkpoint in the transition from pachytene to meiosis I. At the arrest point, the cells remain largely viable and are cytologically characterized by the duplicated but unseparated spindle pole bodies of equal size and by the persistence of the synaptonemal complex, a cytological marker for pachytene. In addition, fluorescence in situ hybridization revealed that in arrested mutant cells maximal chromatin condensation and normal homolog pairing is achieved, typical for pachytene in wild type. A hallmark of meiosis is the high level of homologous recombination, which was analyzed both genetically and physically. Formation and processing of the double-strand break intermediate in meiotic recombination is achieved prior to arrest. Physical intragenic (conversion) and intergenic (crossover) products are formed just prior to, or directly at, the arrest point. Structural deficits in synaptonemal complex morphology, failure to separate spindle pole bodies, and/or defects in prophase DNA metabolism might be responsible for triggering the observed arrest. The pachytene arrest in sep1 cells is likely to be regulatory, but is clearly different from the RAD9 checkpoint in meiotic prophase, which occurs prior to the pachytene stage.
Collapse
Affiliation(s)
- J Bähler
- Institute of General Microbiology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Johnon A, Kolodner R. Characterization of the interaction of Saccharomyces cerevisiae strand exchange protein 1 with DNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Johnson A, Kolodner R. The activity of the Saccharomyces cerevisiae strand exchange protein 1 intrinsic exonuclease during joint molecule formation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41912-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Esposito MS, Ramirez RM, Bruschi CV. Recombinators, recombinases and recombination genes of yeasts. Curr Genet 1994; 25:1-11. [PMID: 8082158 DOI: 10.1007/bf00712959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M S Esposito
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
18
|
Jessberger R, Podust V, Hübscher U, Berg P. A mammalian protein complex that repairs double-strand breaks and deletions by recombination. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82439-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Heyer WD, Kolodner RD. Enzymology of homologous recombination in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 46:221-71. [PMID: 8234785 DOI: 10.1016/s0079-6603(08)61023-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W D Heyer
- Institute of General Microbiology, Bern, Switzerland
| | | |
Collapse
|
20
|
Sander M, Carter M, Huang S. Expression of Drosophila Rrp1 protein in Escherichia coli. Enzymatic and physical characterization of the intact protein and a carboxyl-terminally deleted exonuclease-deficient mutant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53964-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Hall SD, Kane MF, Kolodner RD. Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J Bacteriol 1993; 175:277-87. [PMID: 8416902 PMCID: PMC196123 DOI: 10.1128/jb.175.1.277-287.1993] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recombination of plasmid DNAs and recombination of bacteriophage lambda red mutants in recB recC sbcA Escherichia coli mutants, in which the recE region is expressed, do not require recA. The recE gene is known to encode exonuclease VIII (exoVIII), which is an ATP-independent exonuclease involved in the RecE pathway of recombination. A 33,000-molecular-weight (MW) protein was observed to be coexpressed with both exoVIII and a truncated version of exoVIII, pRac3 exo, when they were overproduced under the control of strong promoters. We have purified this 33,000-MW protein (p33) and demonstrated by protein sequence analysis that it is encoded by the same coding sequence that encodes the C-terminal 33,000-MW portion of exoVIII. p33 is expressed independently of exoVIII but is probably translated from the same mRNA. p33 was found to bind to single-stranded DNA and also to promote the renaturation of complementary single-stranded DNA. It appears that p33 is functionally analogous to the bacteriophage lambda beta protein, which may explain why RecE pathway recombination does not require recA.
Collapse
Affiliation(s)
- S D Hall
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
22
|
Alani E, Thresher R, Griffith JD, Kolodner RD. Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J Mol Biol 1992; 227:54-71. [PMID: 1522601 DOI: 10.1016/0022-2836(92)90681-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-stranded DNA binding proteins (SSBs) have been isolated from many organisms, including Escherichia coli, Saccharomyces cerevisiae and humans. Characterization of these proteins suggests they are required for DNA replication and are active in homologous recombination. As an initial step towards understanding the role of the eukaryotic SSBs in DNA replication and recombination, we examined the DNA binding and strand exchange stimulation properties of the S. cerevisiae single-strand binding protein y-RPA (yeast replication protein A). y-RPA was found to bind to single-stranded DNA (ssDNA) as a 115,000 M(r) heterotrimer containing 70,000, 36,000 and 14,000 M(r) subunits. It saturated ssDNA at a stoichiometry of one heterotrimer per 90 to 100 nucleotides and binding occurred with high affinity (K omega greater than 10(9) M-1) and co-operativity (omega = 10,000 to 100,000). Electron microscopic analysis revealed that y-RPA binding was highly co-operative and that the ssDNA present in y-RPA-ssDNA complexes was compacted fourfold, arranged into nucleosome-like structures, and was free of secondary structure. y-RPA was also tested for its ability to stimulate the yeast Sepl and E. coli RecA strand-exchange proteins. In an assay that measures the pairing of circular ssDNA with homologous linear duplex DNA, y-RPA stimulated the strand-exchange activity of Sepl approximately threefold and the activity of RecA protein to the same extent as did E. coli SSB. Maximal stimulation of Sepl occurred at a stoichiometry of one y-RPA heterotrimer per 95 nucleotides of ssDNA. y-RPA stimulated RecA and Sepl mediated strand exchange reactions in a manner similar to that observed for the stimulation of RecA by E. coli SSB; in both of these reactions, y-RPA inhibited the aggregation of ssDNA and promoted the co-aggregation of single-stranded and double-stranded linear DNA. These results demonstrate that the E. coli and yeast SSBs display similar DNA-binding properties and support a model in which y-RPA functions as an E. coli SSB-like protein in yeast.
Collapse
Affiliation(s)
- E Alani
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- K C Cheng
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|
24
|
Abstract
Processes fundamental to all models of genetic recombination include the homologous pairing and subsequent exchange of DNA strands. Biochemical analysis of these events has been conducted primarily on the recA protein of Escherichia coli, although proteins which can promote such reactions have been purified from many sources, both prokaryotic and eukaryotic. The activities of these homologous pairing and DNA strand exchange proteins are either ATP-dependent, as predicted based on the recA protein paradigm, or, more unexpectedly, ATP-independent. This review examines the reactions promoted by both classes of proteins and highlights their similarities and differences. The mechanistic implications of the apparent existence of 2 classes of strand exchange protein are discussed.
Collapse
Affiliation(s)
- A K Eggleston
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, IL 60611
| | | |
Collapse
|
25
|
Heyer WD, Johnson AW, Norris DN, Tishkoff D, Kolodner RD. Saccharomyces cerevisiae proteins involved in hybrid DNA formation in vitro. Biochimie 1991; 73:269-76. [PMID: 1883885 DOI: 10.1016/0300-9084(91)90212-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RecA-like activities that can form hybrid DNA in vitro have been identified in a wide variety of organisms. We have previously described the strand exchange protein 1 (SEP1) from the yeast Saccharomyces cerevisiae that can form hybrid DNA in vitro. Purified as an Mr 132,000 polypeptide, recent molecular and immunological studies have now shown that the native form is an Mr 175,000 polypeptide containing strand exchange activity. The gene encoding SEP1 has been cloned and sequenced. The primary sequence failed to reveal any significant sequence homology to other sequences in data base searches. In vivo SEP1 was found to be essential for normal meiosis as cells containing a homozygous insertion mutation in the SEP1 gene failed to sporulate. In order to identify additional factors that are involved in hybrid DNA formation in S cerevisiae, we used an in vitro stimulation assay to identify proteins that reconstitute strand exchange activity in reactions containing limiting amounts of SEP1. We have identified two proteins that functionally interact with SEP1. First, an Mr 34,000 single-stranded DNA binding protein stimulated the reaction by lowering the requirement for SEP1 about 3-4 fold. This protein is a fragment of the large subunit of a hetero-trimeric complex called yRP-A (yRF-A) which is thought to be the functional eukaryotic equivalent of single-stranded DNA binding proteins in prokaryotes. The gene encoding this protein (RPA1) is essential for growth. Second, an Mr 33,000 polypeptide, termed Stimulatory Factor 1 (SF1), dramatically stimulated the SEP1 catalyzed reaction by lowering the requirement for SEP1 about 300 fold.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W D Heyer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Nucleic acid hybridization with a labeled probe is the only practical way to detect a complementary target sequence in a complex nucleic acid mixture. The first section of this article covers quantitative aspects of nucleic acid hybridization thermodynamics and kinetics. The probes considered are oligonucleotides or polynucleotides, DNA or RNA, single- or double-stranded, and natural or modified, either in the nucleotide bases or in the backbone. The hybridization products are duplexes or triplexes formed with targets in solution or on solid supports. Additional topics include hybridization acceleration and reactions involving branch migration. The second section deals with synthesis or biosynthesis and detection of labeled probes, with a discussion of their sensitivity and specificity limits. Direct labeling is illustrated with radioactive probes. The discussion of indirect labels begins with biotinylated probes as prototypes. Reporter groups considered include radioactive, fluorescent, and chemiluminescent nucleotides, as well as enzymes with colorimetric, fluorescent, and luminescent substrates.
Collapse
Affiliation(s)
- J G Wetmur
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
27
|
|
28
|
Purification and Characterization of a DNA-pairing and Strand Transfer Activity from Mitotic Saccharomyces cerevisiae. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)30095-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|