1
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
2
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
3
|
Yin X, Eckberg WR. Characterization of phospholipases C beta and gamma and their possible roles in Chaetopterus egg activation. Mol Reprod Dev 2009; 76:460-70. [PMID: 18951372 DOI: 10.1002/mrd.20961] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracellular calcium release from the endoplasmic reticulum is a hallmark at egg activation of both vertebrates and invertebrates. This fertilization-associated calcium release results from generation of the second messenger inositol 1,4,5-trisphosphate (IP(3)) by one or more phospholipases C (PLC). We characterized Chaetopterus PLCbeta and gamma by reverse transcription/degenerate oligonucleotide primed PCR and rapid amplification of cDNA end PCR. Phylogenetic analyses suggested that the deduced PLCbeta protein shared the greatest homology with mammalian PLCbeta4; the deduced PLCgamma protein shared the greatest homology with starfish PLCgamma and diverged from mammalian PLCgamma before mammalian the PLCgamma1 and gamma2 isoforms diverged. Western blot analyses with specific anti-PLCbeta and gamma antibodies, respectively, revealed that 135 and 150 kDa proteins were expressed in eggs. The general PLC antagonist U-73122 blocked fertilization-induced egg activation; however, the inactive analog, U-73343, had no effect on egg activation. We further tested whether egg activation was G protein-PLCbeta and/or protein tyrosine kinase-PLCgamma dependent. Cholera and pertussis toxins, well-known effectors of G proteins, had no effect on egg activation; while two antagonists of PTK, genistein and tyrphostin B42, inhibited both fertilization-induced and artificial egg activation. Taken together, our studies suggested that PLC activity from eggs contributes to Chaetopterus egg activation and PLCgamma might play an important role during this biological process.
Collapse
Affiliation(s)
- Xunqin Yin
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | | |
Collapse
|
4
|
Salaün P, Le Breton M, Morales J, Bellé R, Boulben S, Mulner-Lorillon O, Cormier P. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos. Exp Cell Res 2004; 296:347-57. [PMID: 15149864 DOI: 10.1016/j.yexcr.2004.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/18/2004] [Indexed: 01/21/2023]
Abstract
In sea urchins, fertilization triggers a rapid rise in protein synthesis necessary for activation of CDK1/cyclin B, the universal cell cycle regulator. It has been shown that FRAP/mTOR is required for eIF4E release from the translational repressor 4E-BP, a process that occurs upstream of de novo cyclin B synthesis. Here, we investigate whether PI 3-kinase acts independently or upstream from FRAP/mTOR in the signal transduction pathway that links fertilization to the activation of the CDK1/cyclin B complex in sea urchin egg. We found that wortmannin, a potent inhibitor of PI 3-kinase, partially inhibited the global increase in protein synthesis triggered by fertilization. Furthermore, wortmannin treatment induced partial inhibition of cyclin B translation triggered by fertilization, in correlation with an intermediate effect of the drug on 4E-BP degradation and on the dissociation of the 4E-BP/eIF4E complex induced by fertilization. Our results presented here suggest that PI 3-kinase activity is required for completion of mitotic divisions of the sea urchin embryo. Incubation of eggs with wortmannin or microinjection of wortmannin or LY 294002 affects drastically mitotic divisions induced by fertilization. In addition, we found that wortmannin treatment inhibits dephosphorylation of the tyrosine inhibitory site of CDK1. Taken together, these data suggest that PI 3-kinase acts upstream of at least two independent targets that function in the CDK1/cyclin B activation triggered by fertilization of sea urchin oocytes. We discuss the significance of these results concerning the cascade of reactions that impinge upon the activation of the CDK1/cyclin B complex that follows sea urchin oocyte fertilization.
Collapse
Affiliation(s)
- Patrick Salaün
- Station Biologique de Roscoff, Université Pierre et Marie Curie (EI 37), Centre National de la Recherche Scientifique (CNRS, FRE 2775), Institut National des Sciences de l'Univers (INSU). BP 74, 29682 Roscoff, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Kanungo J. Prolonged incubation in seawater induces a DNA-dependent protein phosphorylation activity in Arbacia punctulata eggs. Biochem Biophys Res Commun 2002; 294:667-71. [PMID: 12056821 DOI: 10.1016/s0006-291x(02)00539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Various protein kinases are activated in eggs in response to fertilization. We have previously shown that the induction of DNA-dependent protein phosphorylation activity in the sea urchin eggs is triggered by fertilization. The present study demonstrates that the activation of a DNA-dependent serine/threonine kinase in unfertilized eggs of Arbacia punctulata can be achieved without fertilization. Prolonged incubation in seawater resulted in the activation of the eggs with concomitant induction of DNA-dependent protein phosphorylation activity. The activated eggs when fertilized show a slight increase in the phosphorylation activity 10-min post-insemination. The activity gradually declines as the first and second cleavages proceed. The cytoplasmic extracts of the blastulae, gastrulae, and plutei lack the enzyme activity. These findings reveal that not only fertilization but also egg activation serves as a signal for the induction of a DNA-dependent protein phosphorylation activity in sea urchin eggs suggesting that sperm-entry is not required for the induction of the enzyme activity.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Sato K, Tokmakov AA, Fukami Y. Fertilization signalling and protein-tyrosine kinases. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:129-48. [PMID: 10874161 DOI: 10.1016/s0305-0491(00)00192-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fertilization is initiated by species-specific gamete cell recognition, i.e. sperm-egg interaction, followed by a rapid and sustained activation of multiple cellular and biochemical events, collectively called 'egg activation', which is indispensable for successful formation of zygotic nucleus and later embryogenesis. It is well known that sperm-induced egg activation is mediated by a transient release of calcium ions that originates from the sperm entry point and propagates through the entire egg cytoplasm. It is unclear, however, what kind of upstream events prelude to the calcium transient after sperm-egg interaction. Recently, much attention has been paid to the role of protein-tyrosine phosphorylation in egg activation process by a number of studies on some well-established model organisms. These includes marine invertebrates, frogs, and mammals. In this review, we will summarize the recent findings that begin to uncover a 'missing link' between sperm-egg interaction and egg activation with emphasis on the role of egg protein-tyrosine kinases (PTKs) in Xenopus egg fertilization.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center, Kobe University, Nada, Japan.
| | | | | |
Collapse
|
7
|
Abassi YA, Carroll DJ, Giusti AF, Belton RJ, Foltz KR. Evidence that Src-type tyrosine kinase activity is necessary for initiation of calcium release at fertilization in sea urchin eggs. Dev Biol 2000; 218:206-19. [PMID: 10656764 DOI: 10.1006/dbio.1999.9582] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The initiation of Ca(2+) release from internal stores in the egg is a hallmark of egg activation. In sea urchins, PLCgamma activity is necessary for the production of IP(3), which leads to the initial rise in Ca(2+). To examine the possible function of a tyrosine kinase in activating PLCgamma at fertilization, sea urchin eggs were treated with the specific Src kinase inhibitor PP1 or microinjected with recombinant Src-family SH2-domain proteins, which act as dominant interfering inhibitors of Src-family kinase function. Both modes of inhibiting Src-family kinases resulted in a specific and dose-dependent delay in the onset of Ca(2+) release from the endoplasmic reticulum at fertilization. The rise in cytoplasmic pH at fertilization also was inhibited by microinjection of Src-family SH2-domain proteins. Further, an antibody directed against Src-type kinases recognized a protein of ca. M(r) 57K that was enriched in the membrane fraction of eggs. The kinase activity of this protein was stimulated rapidly and transiently at fertilization, as measured by autophosphorylation and by phosphorylation of an exogenous substrate. Together, these data indicate that a Src-type tyrosine kinase is necessary for the initiation of Ca(2+) release from the egg ER at fertilization and identify a Src-type p57 protein as a candidate in the signaling pathway leading to this Ca(2+) release.
Collapse
Affiliation(s)
- Y A Abassi
- Department of Molecular, Cellular and Developmental Biology and the Marine Science Institute, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
8
|
Kim JH, Do HJ, Wang WH, Macháty Z, Han YM, Day BN, Prather RS. A protein tyrosine phosphatase inhibitor, sodium orthovanadate, causes parthenogenetic activation of pig oocytes via an increase in protein tyrosine kinase activity. Biol Reprod 1999; 61:900-5. [PMID: 10491622 DOI: 10.1095/biolreprod61.4.900] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study was conducted to determine whether a protein tyrosine kinase (PTK) activity is involved in the initiation of the events that occur at fertilization in pig oocytes. After maturation for 47 h, a 7-h treatment of oocytes with 1 mM sodium orthovanadate, which is an inhibitor of protein tyrosine phosphatase, caused more than 90% pronuclear formation, cortical granule exocytosis, and a decrease in mitogen-activated protein kinase activity. Immunoblotting with an antibody specific for phosphotyrosine showed at least three proteins whose phosphotyrosine contents were significantly increased upon treatment of oocytes with 1 mM sodium orthovanadate. Preincubation of pig oocytes with 50 microM tyrphostin 47, a specific PTK inhibitor, completely blocked the ability of sodium orthovanadate to trigger activation events. In addition, when oocytes were pretreated with the calcium-chelating agent BAPTA-AM, sodium orthovanadate-stimulated pronuclear formation was significantly (P < 0.01) reduced (94.0% vs. 43.1%). These results suggest that PTK may be involved in pig oocyte activation in a calcium-dependent manner and that the stimulation of tyrosine kinase is able to signal a series of intracellular changes that lead to the activation events associated with fertilization.
Collapse
Affiliation(s)
- J H Kim
- Department of Animal Science, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Onodera H, Kobari K, Sakuma M, Sato M, Suyemitsu T, Yamasu K. Expression of a src-type protein tyrosine kinase gene, AcSrc1, in the sea urchin embryo. Dev Growth Differ 1999; 41:19-28. [PMID: 10445499 DOI: 10.1046/j.1440-169x.1999.00405.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
By screening a cDNA library and 3'-rapid amplification of cDNA ends, the cDNA for a non-receptor type protein tyrosine kinase from the sea urchin Anthocidaris crassispina was analyzed. The deduced protein (AcSrc1) with the highest identity of about 60% to mammalian Src family kinases shows the characteristic features of the Src family. AcSrc1 mRNA is maternally expressed in unfertilized eggs, while zygotic expression is first detected in blastulae and continues through the pluteus stage. Zygotic mRNA expression, visualized by in situ hybridization, is detected specifically in archenteron at the gastrula stage, while it is restricted in plutei to the midgut and hindgut, suggesting specific roles for AcSrcl in the formation and/or functions of the digestive tract. Meanwhile, western blot analysis has shown that the AcSrc1 protein is constantly expressed throughout embryogenesis. By immunostaining, it was found that the protein (distributed evenly in the cytoplasm of unfertilized eggs) is translocated to the membrane after fertilization. All through the following development, AcSrcl was localized to the peripheries of different embryonic cells, although at a relatively low level of localization at the boundaries between adjacent cells.
Collapse
Affiliation(s)
- H Onodera
- Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Glahn D, Mark SD, Behr RK, Nuccitelli R. Tyrosine kinase inhibitors block sperm-induced egg activation in Xenopus laevis. Dev Biol 1999; 205:171-80. [PMID: 9882505 DOI: 10.1006/dbio.1998.9042] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization of Xenopus laevis eggs triggers a wave of increased [Ca2+]i. The exact signal transduction pathway culminating in this Ca2+ wave remains unknown. To determine whether increases in tyrosine kinase activity are part of this pathway, we microinjected tyrosine kinase inhibitors into unfertilized eggs. Upon fertilization, signs of activation were monitored, such as fertilization envelope liftoff and the Ca2+ wave (for eggs microinjected with lavendustin A). Various concentrations of lavendustin A and tyrphostin B46 were microinjected, as well as inactive forms of these compounds (lavendustin B and tyrphostin A1) to provide negative controls. Peptide A, a 20-amino-acid peptide derived from the SH2 region of pp60(v-src) tyrosine kinase, was also microinjected. Peptide A inhibits tyrosine kinase activity but not PKA or PKG activity. Dose-response curves for lavendustin A, tyrphostin B46, and peptide A show clear inhibition of vitelline envelope liftoff by these three compounds. Confocal imaging of eggs coinjected with lavendustin A and Oregon Green-dextran showed that the Ca2+ wave was inhibited under normal insemination conditions but that the block of the Ca2+ wave could be overcome with very high sperm densities. A phenomenon of small local Ca2+ increases termed "hot spots" seen in lavendustin A containing eggs is also described. Since this inhibition of egg activation by tyrosine kinase inhibitors can be overcome by Ca2+ microinjection, the inhibitors must act on a step in the signal transduction cascade that is upstream of the Ca2+ wave.
Collapse
Affiliation(s)
- D Glahn
- Section of Molecular and Cellular Biology, University of California, Davis, California, 95616, USA.
| | | | | | | |
Collapse
|
11
|
Ben-Yosef D, Talmor A, Shwartz L, Granot Y, Shalgi R. Tyrosyl-phosphorylated proteins are involved in regulation of meiosis in the rat egg. Mol Reprod Dev 1998; 49:176-85. [PMID: 9444660 DOI: 10.1002/(sici)1098-2795(199802)49:2<176::aid-mrd8>3.0.co;2-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fertilization in invertebrates results in tyrosine (Tyr) phosphorylation of several egg proteins. However, the involvement of Tyr phosphorylation in mediating mammalian egg activation has not yet been investigated. Using an antibody specific for phosphotyrosine (P-Tyr), immunoblotting, and densitometric analysis, we found that maturation of the oocyte is accompanied by a generalized increase in the P-Tyr content of almost all egg proteins detected. After sperm penetration, 5 of the 17 protein bands detected demonstrated a small increase in their P-Tyr content, while at the pronuclear (PN) stage the signal was markedly reduced. Ionomycin emulated the changes observed at fertilization in most protein bands detected, demonstrating a small increase in their P-Tyr content within 15 min of exposure. Analysis of the involvement of the tyrosyl-phosphorylated, mitogen-activated protein (MAP) kinase during meiosis revealed comigration of the phosphotyrosyl bands with the protein and a good correlation with its enzyme activity. Maturation was accompanied by an increase in MAP kinase activity. The activity dropped partially after sperm penetration and furthermore later at the PN stage. A larger quantity accompanied by a more significant change in the P-Tyr content implies for extracellular regulated kinase (ERK) 2 being the dominant isoform present in the rat egg. Our results indicate that fertilization in mammals involves changes in activity of protein tyrosine kinases (PTKs) or in the balance between PTKs and protein tyrosine phosphatases. The single, ionomycin-induced Ca2+ rise is sufficient to imitate fertilization-induced changes in MAP kinase activity, as well as in tyrosine phosphorylation of other proteins within the egg.
Collapse
Affiliation(s)
- D Ben-Yosef
- Department of Embryology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
12
|
Sakuma M, Onodera H, Suyemitsu T, Yamasu K. The protein tyrosine kinases of the sea urchin Anthocidaris crassispina. Zoolog Sci 1997; 14:941-6. [PMID: 9520636 DOI: 10.2108/zsj.14.941] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to know the function of protein tyrosine kinases (PTKs) in the development of sea urchin embryos, we performed reverse transcription-polymerase chain reaction (RT-PCR) to obtain partial cDNA fragments for PTK genes using primers to highly conserved regions of the PTK family. A total of seven PTK sequences were identified, two of which represented receptor PTK (RTK1 and RTK2), and five of which were non-receptor PTKs (NRTK1-5). RTK1 was highly similar to FGF receptor and Ret kinase, while RTK2 showed features of the insulin receptor family. NRTK1 and 2 belonged to the Src family and could be involved in egg activation at fertilization. NRTK3 showed the features of the Btk family kinases, while NRTK4 seemed to be a member of the Syk/ZAP70 family. NRTK5 is the Csk-type kinase of the sea urchin, which is known to negatively regulate the Src family kinases. RTK1 was not detected in unfertilized eggs and was activated after blastula stage. All the other PTK genes were expressed both maternally in unfertilized eggs and zygotically after fertilization, though each gene showed distinct temporal patterns.
Collapse
Affiliation(s)
- M Sakuma
- Faculty of Science, Saitama University, Japan
| | | | | | | |
Collapse
|
13
|
Abstract
The unfertilized egg is a highly differentiated cell that retains unlimited developmental potential. The execution of that potential requires signal transduction pathways that release the egg from its quiescent metabolic state, direct the union of the maternal and paternal genome, and initiate a developmental program that will guide embryogenesis. The egg is equipped with an array of cytosolic as well as cell surface receptor protein tyrosine kinases as part of a preassembled signal transduction mechanism. These protein tyrosine kinases have been found to act at several points during this egg activation process, beginning as early as the initial sperm-egg interaction. While many of these kinase functions are common to all cells, several functions unique to fertilization demonstrate the versatility of this class of protein kinases.
Collapse
Affiliation(s)
- W H Kinsey
- University of Kansas Medical Center, Kansas City 66160, USA
| |
Collapse
|
14
|
REES BERNARDB, SWEZEY ROBERTR, KIBAK HENRIK, EPEL DAVID. Regulation of the pentose phosphate pathway at fertilization in sea urchin eggs. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sato K, Aoto M, Mori K, Akasofu S, Tokmakov AA, Sahara S, Fukami Y. Purification and characterization of a Src-related p57 protein-tyrosine kinase from Xenopus oocytes. Isolation of an inactive form of the enzyme and its activation and translocation upon fertilization. J Biol Chem 1996; 271:13250-7. [PMID: 8662722 DOI: 10.1074/jbc.271.22.13250] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the previous study (Fukami, Y., Sato, K.-I., Ikeda, K., Kamisango, K., Koizumi, K., and Matsuno, T. (1993) J. Biol. Chem. 268, 1132-1140), we found that an antibody termed anti-pepY antibody causes a severalfold activation of bovine brain c-Src. The anti-pepY antibody was raised against a synthetic peptide corresponding to residues 410-428 of chicken c-Src, one of the most conserved regions among the Src family protein-tyrosine kinases. In this study, we have used this antibody as an in vitro activator and purified a c-Src-related protein-tyrosine kinase from the particulate fraction of Xenopus laevis oocytes. A synthetic peptide corresponding to residues 7-26 of fission yeast Cdc2 was used as substrate. Immunoreactivity toward the antibody was also monitored during the purification. The purified kinase displayed a single polypeptide of 57 kDa on SDS-gel electrophoresis and showed a specific activity of 2.37 and 20.1 nmol/min/mg protein in the absence and the presence of the anti-pepY antibody, respectively. The purified enzyme underwent autophosphorylation and phosphorylated actin and the Cdc2 peptide exclusively on tyrosine residues. Specific antibodies against c-Src, Fyn, c-Yes, c-Fgr, Lck, Lyn, Hck, and Blk proteins did not recognize the p57 Xenopus tyrosine kinase. The kinase activity of the Xenopus enzyme was not affected by oocyte maturation but was found to be elevated severalfold upon fertilization. Fertilization also caused a translocation of the activated enzyme from the particulate fraction to the cytosolic fraction. The activation and translocation was observed within 1 min after fertilization. These results suggest a possible involvement of the p57 Xenopus tyrosine kinase in the signal transduction of fertilization.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Biosignal Research Center and the Graduate School of Science and Technology, Kobe University, Nada, Kobe 657, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Schlegel R, Harris MO, Belinsky GS. Tyrosine phosphorylations specific to mitosis in human and hamster cells. J Cell Biochem 1995; 57:351-61. [PMID: 7539009 DOI: 10.1002/jcb.240570219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Changes in protein tyrosine phosphorylation are known to be important for regulating cell cycle progression. With the aim of identifying new proteins involved in the regulation of mitosis, we used an antibody against phosphotyrosine to analyze proteins from synchronized human and hamster cells. At least seven proteins were found that displayed mitosis-specific tyrosine phosphorylation in HeLa cells (pp165, 205, 240, 250, 270, 290, and approximately 400) and one such protein in hamster BHK cells (pp155). In synchronized HeLa and BHK cells, all proteins except HeLa pp165, pp205, and pp250 were readily detectable only in mitosis. Tyrosine phosphorylation of pp165, pp205, and pp250 was apparent during arrest in S phase, suggesting that cell cycle perturbations can affect the phosphorylation state of some of these proteins. In a related finding in BHK cells, pp155 underwent tyrosine phosphorylation when cells were forced into premature mitosis by caffeine treatment. Only one protein (pp135 in HeLa cells) was found to be dephosphorylated on tyrosine during mitosis. The above findings may prove helpful for isolating new cell cycle proteins that are important for both the normal regulation of mitosis and the mitotic aberrations associated with cell cycle perturbations and chemical treatments.
Collapse
Affiliation(s)
- R Schlegel
- Department of Molecular and Cellular Toxicology Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
17
|
Affiliation(s)
- R M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
18
|
Wright SJ, Schatten G. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity. CELL MOTILITY AND THE CYTOSKELETON 1995; 30:122-35. [PMID: 7606805 DOI: 10.1002/cm.970300204] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein tyrosine phosphorylation plays an important role in cell growth, mitosis, and tumorigenesis. It has also been implicated in meiotic maturation and fertilization. We have used anti-phosphotyrosine immunofluorescence and immunoblotting to identify sperm and egg proteins which are phosphorylated on tyrosine residues prior to and during sea urchin fertilization. On immunoblots of sperm proteins, the monoclonal anti-phosphotyrosine antibody detected three major proteins with molecular weights of 44, 82, and 100 kD, and six minor bands at 46, 48, 70, 76, 95, and 150 kD. These phosphotyrosyl proteins were localized to the sperm acrosomal and centriolar fossae. In contrast, staining was found globally in unfertilized eggs, and the antibody recognized two major egg phosphotyrosyl proteins of molecular weights 42 and 50 kD, and five minor bands at 40, 90, 116, 130, and 150 kD. While immunofluorescent staining remained throughout the fertilized egg cytoplasm, there were dynamic changes in the staining intensity of single bands. The 90 kD immunoreactive band increased in intensity, and the 40 and 42 kD bands disappeared by 15 min after fertilization. Loss of the 40 and 42 kD bands was due to dephosphorylation by okadaic acid-sensitive phosphatase(s). The 50 kD immunoreactive protein was unchanged up to the 8-cell stage and was still present in blastulae, indicating its importance throughout fertilization and early development. Alterations in the pattern of phosphotyrosine-containing proteins during fertilization did not depend on nascent proteins and could not be completely mimicked by increasing intracellular calcium, pH, and protein kinase C activity alone. Since changes in the fertilization pattern of phosphotyrosyl proteins occurred during formation of the sperm aster and mitotic spindle, we analyzed the role of protein tyrosine kinase activity in these processes using the tyrosine kinase specific inhibitor, erbstatin. Both the sperm aster and mitotic spindle were disrupted, indicating an involvement of tyrosine phosphorylation in these processes during interphase and mitosis. We conclude that the changes in phosphotyrosyl proteins play an important role in fertilization and early development of sea urchin eggs. Control of microtubule assembly into the sperm aster and mitotic spindle of the first cell cycle are examples of such roles.
Collapse
Affiliation(s)
- S J Wright
- Department of Biology, University of Dayton, Ohio 45469-2320, USA
| | | |
Collapse
|
19
|
Shen SS. Mechanisms of calcium regulation in sea urchin eggs and their activities during fertilization. Curr Top Dev Biol 1995; 30:63-101. [PMID: 7555050 DOI: 10.1016/s0070-2153(08)60564-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S S Shen
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| |
Collapse
|
20
|
Abstract
Gamete interaction triggers a variety of responses within the egg, collectively referred to as egg activation. In addition to the hallmarks of calcium release and fertilization envelope elevation, there are cytoskeletal rearrangements, protein tyrosine phosphorylation, and an increase in pH, among others. The ultimate goal of these concerted activation events is entry of the newly fertilized egg into the cell cycle. However, the molecular mechanisms which promote downstream cell activation events remain poorly understood. One model suggests that sperm deliver an "activating factor" upon fusion with the egg plasma membrane, while a second model proposes that the egg receptor for sperm transduces a signal that mediates a cascade of subsequent events. It also is possible that multiple pathways are activated. As a first step toward testing the hypothesis of receptor-mediated signal transduction, we have investigated the tyrosine phosphorylation state of the sea urchin egg receptor for sperm using specific antibodies. The present work indicates that the sperm receptor is phosphorylated by an egg cortical tyrosine kinase in response to sperm or purified ligand (bindin) binding. Maximal phosphorylation was reached within 20 sec. These data support the hypothesis that the sperm receptor is a gamete recognition protein which responds to ligand binding and focus attention on the question of the role of this tyrosine phosphorylation signal in egg activation.
Collapse
Affiliation(s)
- Y A Abassi
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | |
Collapse
|
21
|
Moore KL, Kinsey WH. Identification of an abl-related protein tyrosine kinase in the cortex of the sea urchin egg: possible role at fertilization. Dev Biol 1994; 164:444-55. [PMID: 8045347 DOI: 10.1006/dbio.1994.1214] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fertilization results in the tyrosine phosphorylation of several egg proteins within minutes of sperm-egg binding, although the identity of the kinase(s) involved and the mechanism of regulation is not known. In the present study, we have used site-directed antibodies based on the predicted amino acid sequence of a sea urchin egg transcript that shares significant homology with members of the ABL family of protein tyrosine kinases. These antibodies identified a 220-kDa protein kinase, highly enriched in the egg cortex, where it is tightly associated with detergent-insoluble cytoskeletal elements. The enzyme is capable of phosphorylating synthetic peptide substrates which were used to characterize the kinase activity in an immune-complex assay. Measurement of the protein tyrosine kinase activity immunoprecipitated at different times after fertilization revealed that the level of kinase activity is transiently elevated during the first few minutes postinsemination. Western blot analysis indicated that the amount of the 220-kDa protein did not increase significantly during this period, so the increased kinase activity probably results from activation of the enzyme. These in vitro studies indicate that the 220-kDa abl-related kinase is one of the protein kinases activated during fertilization and suggest that it may play a role in the egg activation process.
Collapse
Affiliation(s)
- K L Moore
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160
| | | |
Collapse
|
22
|
Peaucellier G, Shartzer K, Jiang W, Maggio K, Kinsey WH. Anti-peptide Antibody Identifies a 57 kDa Protein Tyrosine Kinase in the Sea Urchin Egg Cortex. (tyrosine kinase/fertilization/src/egg/antibody). Dev Growth Differ 1993. [DOI: 10.1111/j.1440-169x.1993.00199.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Larochelle DA, Epel D. In vivo protein phosphorylation and labeling of ATP in sea urchin eggs loaded with 32PO4 via electroporation. Dev Biol 1991; 148:156-64. [PMID: 1936555 DOI: 10.1016/0012-1606(91)90326-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein phosphorylation was examined in sea urchin eggs in which the ATP was labeled with 32P over a brief period of time using reversible electrical poration to gain access to the cytoplasm. Unfertilized eggs from two species, Lytechinus pictus and Strongylocentrotus purpuratus, were electrically permeabilized and incubated in the presence of [32P]H3PO4, under conditions allowing label uptake. After a 5-min loading period the eggs were resealed and the fate of the label was monitored. The label had equilibrated with the cellular ATP pool within the 13-min period required for loading and resealing the eggs. Furthermore, this equilibrium was maintained for at least 2 hr beyond the loading period in either unfertilized or fertilized eggs (i.e., the specific activity of ATP was the same for fertilized and unfertilized eggs). We also examined the position of the label within the ATP and found that 40-45% of the label isolated with the ATP was in the gamma phosphate of ATP and hence was immediately available for protein phosphorylation. The label was maintained in this position in the ATP for at least 2 hr following the loading period and was not affected by fertilization (determined for L. pictus only). The phosphoprotein banding pattern was determined by gel electrophoresis and autoradiography at various time points following the loading period. There was a continuous increase of label incorporated into protein over time; however, the banding pattern did not change. This pattern was not affected by fertilization. Furthermore, inhibition of protein synthesis (with emetine) had no effect on this phosphoprotein banding pattern. Although the loading period was brief there was sufficient incorporation of label into protein during this time to obscure potential regulatory phosphorylation events.
Collapse
Affiliation(s)
- D A Larochelle
- Stanford University, Hopkins Marine Station, Pacific Grove, California 93950
| | | |
Collapse
|
24
|
Abstract
Fertilization of the echinoderm egg is known to result in the phosphorylation, on tyrosine, of a high-molecular-weight cortical protein (HMWCP) localized in the egg cortex. Studies using various parthenogenic agents indicate that this phosphorylation event occurs in response to the alkaline shift in cytoplasmic pHi which normally occurs 1 to 2 min after fertilization. In the present study, the purified egg cell surface complex was used as in vitro system to determine whether a small alkaline shift in pH, such as occurs upon fertilization, could stimulate the activity of the egg cortex-associated tyrosine kinase toward endogenous protein substrates. The results demonstrated that the cell surface complex is highly enriched in a tyrosine kinase activity which accounts for the majority of the protein kinase activity in this preparation. The activity of this tyrosine kinase toward the HMWCP and other cortical proteins was highly dependent on pH over the range pH 6.8 to 7.3. This indicates that the fertilization-associated change in cytoplasmic pH would be sufficient to trigger increased tyrosine phosphorylation of the high-molecular-weight cortical protein in vivo. The regulation of tyrosine phosphorylation by small changes in pH represents a novel control mechanism in which a tyrosine protein kinase may act as a pH-sensitive transducer.
Collapse
Affiliation(s)
- W P Jiang
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- R Nuccitelli
- Department of Zoology, University of California, Davis 95616
| |
Collapse
|
26
|
Zardeneta G, Chen DL, Weintraub ST, Klebe RJ. Synthesis of phosphotyrosyl-containing phosphopeptides by solid-phase peptide synthesis. Anal Biochem 1990; 190:340-7. [PMID: 1705399 DOI: 10.1016/0003-2697(90)90205-n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The synthesis of phosphotyrosine-containing phosphopeptides using solid-phase peptide synthesis (SPPS) techniques is described. We present the synthesis of a Boc-phosphotyrosine derivative, which when used with modifications of the conventional SPPS protocol permits the incorporation of phosphotyrosine into synthetic peptides. The resulting phosphopeptides were authenticated by fast atom bombardment mass spectrometry, amino acid analysis, and phosphate assay. Alkaline phosphatase was found to dephosphorylate synthetic phosphopeptides at different rates, supporting the potential use of these synthetic substrates for studies of phosphoprotein phosphatases. Synthesis of a phosphopeptide using the described protocol has several advantages over the preparation of phosphopeptides via enzymatic phosphorylation.
Collapse
Affiliation(s)
- G Zardeneta
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio 78284-7762
| | | | | | | |
Collapse
|
27
|
Besterman B, Schultz RM. Regulation of mouse preimplantation development: inhibitory effect of genistein, an inhibitor of tyrosine protein phosphorylation, on cleavage of one-cell embryos. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1990; 256:44-53. [PMID: 2401883 DOI: 10.1002/jez.1402560107] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.
Collapse
Affiliation(s)
- B Besterman
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | |
Collapse
|
28
|
Peaucellier G, Andersen AC, Kinsey WH. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes. Dev Biol 1990; 138:391-9. [PMID: 1690674 DOI: 10.1016/0012-1606(90)90205-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used an antibody specific for phosphotyrosine to investigate protein phosphorylation on tyrosine during hormone-induced maturation of starfish oocytes. Analysis of immunoprecipitates from cortices of in vivo labeled Marthasterias glacialis oocytes revealed the presence of labeled phosphotyrosine-containing proteins only after hormone addition. Six major phosphoproteins of 195, 155, 100, 85, 45, and 35 kDa were detected. Total activity in immunoprecipitates increased until first polar body emission and was greatly reduced upon completion of meiosis but some proteins exhibited different kinetics. The labeling of the 155-kDa protein reached a maximum at germinal vesicle breakdown, while the 35-kDa appeared later and disappeared after polar body emission. Similar results were obtained with Asterias rubens oocytes. In vitro phosphorylation of cortices showed that tyrosine kinase activity is a major protein kinase activity in this fraction, the main endogenous substrate being a 68-kDa protein. The proteins phosphorylated on tyrosine in vitro were almost similar in extracts from oocytes treated or not with the hormone.
Collapse
Affiliation(s)
- G Peaucellier
- Department of Anatomy and Cell Biology, University of Miami School of Medicine, Florida 33101
| | | | | |
Collapse
|
29
|
Glenney J. Tyrosine Phosphorylation of a 22-kDa Protein Is Correlated with Transformation by Rous Sarcoma Virus. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47038-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
30
|
Jiang W, Peaucellier G, Kinsey WH. Affinity Purification of Embryo Proteins Phosphorylated on Tyrosine In Vitro*. (phosphotyrosine/protein phosphorylation/fertilization/affinity chromatography/immobilized antibodies). Dev Growth Differ 1989. [DOI: 10.1111/j.1440-169x.1989.00573.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|