1
|
Naseri T, Mousavi SM, Liese A, Kuchta K. Bioleaching of valuable metals from spent LIBs followed by selective recovery of manganese using the precipitation method: Metabolite maximization and process optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118197. [PMID: 37216767 DOI: 10.1016/j.jenvman.2023.118197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Despite the increased demand for resource recovery from spent lithium-ion batteries (LIBs), low Mn leaching efficiencies have hindered the development of this technology. A novel process was devised to enhance the dissolution of metals by producing citric acid using a molasses medium by Penicillium citrinum. This investigation used response surface methodology to investigate the influence of molasses concentration and media components on citric acid production, which demonstrated that molasses (18.5% w/w), KH2PO4 (3.8 g/L), MgSO4.7H2O (0.11 g/L), and methanol (1.2% (v/v)) were the optimum values leading to the production of 31.50 g/L citric acid. Afterward, optimum inhibitor concentrations (iodoacetic acid: 0.05 mM) were added to accumulate citric acid, resulting in maximum bio-production (40.12 g/L) of citric acid. The pulp density and leaching time effect on metals dissolution was investigated in enriched-citric acid spent medium. The suitable conditions were a pulp density of 70 g/L and a leaching duration of 6 days, which led to the highest dissolution of Mn (79%) and Li (90%). Based on the results of the TCLP tests, the bioleaching residue is non-hazardous, suitable for safe disposal, and does not pose an environmental threat. Moreover, nearly 98% of Mn was extracted from the bioleaching solution with oxalic acid at 1.2 M. XRD, and FE-SEM analyses were utilized for further bioleaching and precipitation mechanism analysis.
Collapse
Affiliation(s)
- Tannaz Naseri
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Circular Resource Engineering and Management (CREM), Institute of Environmental Technology and Energy, Economics, Hamburg University of Technology, Blohmstr. 15, 21079, Hamburg, Germany
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran.
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestr. 15, 21073 Hamburg, Germany
| | - Kerstin Kuchta
- Circular Resource Engineering and Management (CREM), Institute of Environmental Technology and Energy, Economics, Hamburg University of Technology, Blohmstr. 15, 21079, Hamburg, Germany
| |
Collapse
|
2
|
Rakhmanova TI, Sekova VY, Gessler NN, Isakova EP, Deryabina YI, Popova TN, Shurubor YI, Krasnikov BF. Kinetic and Regulatory Properties of Yarrowia lipolytica Aconitate Hydratase as a Model-Indicator of Cell Redox State under pH Stress. Int J Mol Sci 2023; 24:ijms24087670. [PMID: 37108831 PMCID: PMC10143702 DOI: 10.3390/ijms24087670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents an analysis of the regulation activity of the partially purified preparations of cellular aconitate hydratase (AH) on the yeast Yarrowia lipolytica cultivated at extreme pH. As a result of purification, enzyme preparations were obtained from cells grown on media at pH 4.0, 5.5, and 9.0, purified by 48-, 46-, and 51-fold and having a specific activity of 0.43, 0.55 and 0.36 E/mg protein, respectively. The kinetic parameters of preparations from cells cultured at extreme pH demonstrated: (1) an increase in the affinity for citrate and isocitrate; and (2) a shift in the pH optima to the acidic and alkaline side in accordance with the modulation of the medium pH. The regulatory properties of the enzyme from cells subjected to alkaline stress showed increased sensitivity to Fe2+ ions and high peroxide resistance. Reduced glutathione (GSH) stimulated AH, while oxidized glutathione (GSSG) inhibited AH. A more pronounced effect of both GSH and GSSG was noted for the enzyme obtained from cells grown at pH 5.5. The data obtained provide new approaches to the use of Y. lipolytica as a model of eukaryotic cells demonstrating the development of a stress-induced pathology and to conducting a detailed analysis of enzymatic activity for its correction.
Collapse
Affiliation(s)
- Tatyana I Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Tatyana N Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Yevgeniya I Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| | - Boris F Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| |
Collapse
|
3
|
Komeyama M, Kanno K, Mino H, Yasuno Y, Shinada T, Ito T, Hemmi H. A [4Fe-4S] cluster resides at the active center of phosphomevalonate dehydratase, a key enzyme in the archaeal modified mevalonate pathway. Front Microbiol 2023; 14:1150353. [PMID: 36992929 PMCID: PMC10040528 DOI: 10.3389/fmicb.2023.1150353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
The recent discovery of the archaeal modified mevalonate pathway revealed that the fundamental units for isoprenoid biosynthesis (isopentenyl diphosphate and dimethylallyl diphosphate) are biosynthesized via a specific intermediate, trans-anhydromevalonate phosphate. In this biosynthetic pathway, which is unique to archaea, the formation of trans-anhydromevalonate phosphate from (R)-mevalonate 5-phosphate is catalyzed by a key enzyme, phosphomevalonate dehydratase. This archaea-specific enzyme belongs to the aconitase X family within the aconitase superfamily, along with bacterial homologs involved in hydroxyproline metabolism. Although an iron–sulfur cluster is thought to exist in phosphomevalonate dehydratase and is believed to be responsible for the catalytic mechanism of the enzyme, the structure and role of this cluster have not been well characterized. Here, we reconstructed the iron–sulfur cluster of phosphomevalonate dehydratase from the hyperthermophilic archaeon Aeropyrum pernix to perform biochemical characterization and kinetic analysis of the enzyme. Electron paramagnetic resonance, iron quantification, and mutagenic studies of the enzyme demonstrated that three conserved cysteine residues coordinate a [4Fe-4S] cluster—as is typical in aconitase superfamily hydratases/dehydratases, in contrast to bacterial aconitase X-family enzymes, which have been reported to harbor a [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Mutsumi Komeyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kohsuke Kanno
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Tomokazu Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Hemmi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- *Correspondence: Hisashi Hemmi,
| |
Collapse
|
4
|
The PrpF protein of Shewanella oneidensis MR-1 catalyzes the isomerization of 2-methyl-cis-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle. PLoS One 2017; 12:e0188130. [PMID: 29145506 PMCID: PMC5690661 DOI: 10.1371/journal.pone.0188130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/01/2017] [Indexed: 11/23/2022] Open
Abstract
The 2-methylcitric acid cycle (2-MCC) is a common route of propionate catabolism in microorganisms. In Salmonella enterica, the prpBCDE operon encodes most of the 2-MCC enzymes. In other organisms, e.g., Shewanella oneidensis MR-1, two genes, acnD and prpF replace prpD, which encodes 2-methylcitrate dehydratase. We showed that together, S. oneidensis AcnD and PrpF (SoAcnD, SoPrpF) compensated for the absence of PrpD in a S. enterica prpD strain. We also showed that SoAcnD had 2-methylcitrate dehydratase activity and that PrpF has aconitate isomerase activity. Here we report in vitro evidence that the product of the SoAcnD reaction is an isomer of 2-methyl-cis-aconitate (2-MCA], the product of the SePrpD reaction. We show that the SoPrpF protein isomerizes the product of the AcnD reaction into the PrpD product (2-MCA], a known substrate of the housekeeping aconitase (AcnB]. Given that SoPrpF is an isomerase, that SoAcnD is a dehydratase, and the results from in vivo and in vitro experiments reported here, it is likely that 4-methylaconitate is the product of the AcnD enzyme. Results from in vivo studies using a S. enterica prpD strain show that SoPrpF variants with substitutions of residues K73 or C107 failed to support growth with propionate as the sole source of carbon and energy. High-resolution (1.22 Å) three-dimensional crystal structures of PrpFK73E in complex with trans-aconitate or malonate provide insights into the mechanism of catalysis of the wild-type protein.
Collapse
|
5
|
Talib J, Davies MJ. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells. J Biol Inorg Chem 2016; 21:305-17. [DOI: 10.1007/s00775-016-1340-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
|
6
|
Liu Q, Simpson DC, Gronert S. Carbonylation of mitochondrial aconitase with 4-hydroxy-2-(E)-nonenal: localization and relative reactivity of addition sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1144-54. [PMID: 23518448 DOI: 10.1016/j.bbapap.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/30/2013] [Accepted: 03/07/2013] [Indexed: 12/30/2022]
Abstract
Mass spectrometry was used to investigate the effects of exposing mitochondrial aconitase (ACO2) to the membrane lipid peroxidation product, 4-hydroxy-2-(E)-nonenal (HNE). ACO2 was selected for this study because (1) it is known to be inactivated by HNE, (2) elevated concentrations of HNE-adducted ACO2 have been associated with disease states, (3) extensive structural information is available, and (4) the iron-sulfur cluster in ACO2 offers a critical target for HNE adduction. The aim of this study was to relate the inactivation of ACO2 by HNE to structural features. Initially, Western blotting and an enzyme activity assay were used to assess aggregate effects and then gel electrophoresis, in-gel digestion, and tandem mass spectrometry (MS/MS) were used to identify HNE addition sites. HNE addition reaction rates were determined for the most significant sites using the iTRAQ approach. The most reactive sites were Cys(358), Cys(421), and Cys(424), the three iron-sulfur cluster-coordinating cysteines, Cys(99), the closest non-ligated cysteine to the cluster, and Cys(565), which is located in the cleft leading to the active site. Interestingly, both enzyme activity assay and iTRAQ relative abundance plots appeared to be trending toward horizontal asymptotes, rather than completion.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
7
|
Raukas M, Rebane R, Mahlapuu R, Jefremov V, Zilmer K, Karelson E, Bogdanovic N, Zilmer M. Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti- and pro-oxidants on its activity in control, Alzheimer's disease and Swedish Familial Alzheimer's disease brain. Free Radic Res 2012; 46:1490-5. [DOI: 10.3109/10715762.2012.728286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Yang L, Lin G, Nelson RS, Jian Y, Telser J, Li L. Mechanistic studies of the spore photoproduct lyase via a single cysteine mutation. Biochemistry 2012; 51:7173-88. [PMID: 22906093 PMCID: PMC3448869 DOI: 10.1021/bi3010945] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
5-Thyminyl-5,6-dihydrothymine (also called spore photoproduct or SP) is the exclusive DNA photodamage product in bacterial endospores. It is repaired by a radical SAM (S-adenosylmethionine) enzyme, the spore photoproduct lyase (SPL), at the bacterial early germination phase. Our previous studies proved that SPL utilizes the 5'-dA• generated by the SAM cleavage reaction to abstract the H(6proR) atom to initiate the SP repair process. The resulting thymine allylic radical was suggested to take an H atom from an unknown protein source, most likely cysteine 141. Here we show that C141 can be readily alkylated in the native SPL by an iodoacetamide treatment, suggesting that it is accessible to the TpT radical. SP repair by the SPL C141A mutant yields TpTSO(2)(-) and TpT simultaneously from the very beginning of the reaction; no lag phase is observed for TpTSO(2)(-) formation. Should any other protein residue serve as the H donor, its presence would result in TpT being the major product at least for the first enzyme turnover. These observations provide strong evidence to support C141 as the direct H atom donor. Moreover, because of the lack of this intrinsic H donor, the C141A mutant produces TpT via an unprecedented thymine cation radical reduction (proton-coupled electron transfer) process, contrasting to the H atom transfer mechanism in the wild-type (WT) SPL reaction. The C141A mutant repairs SP at a rate that is ~3-fold slower than that of the WT enzyme. Formation of TpTSO(2)(-) and TpT exhibits a V(max) deuterium kinetic isotope effect (KIE) of 1.7 ± 0.2, which is smaller than the (D)V(max) KIE of 2.8 ± 0.3 determined for the WT SPL reaction. These findings suggest that removing the intrinsic H atom donor disturbs the rate-limiting process during enzyme catalysis. As expected, the prereduced C141A mutant supports only ~0.4 turnover, which is in sharp contrast to the >5 turnovers exhibited by the WT SPL reaction, suggesting that the enzyme catalytic cycle (SAM regeneration) is disrupted by this single mutation.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Gengjie Lin
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Renae S. Nelson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Yajun Jian
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
| | - Joshua Telser
- Department of Biological, Chemical, and Physical Sciences, Roosevelt University, Chicago, Illinois 60605
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine (IUSM), 635 Barnhill Drive, Indianapolis, Indiana 46202
| |
Collapse
|
9
|
Myers CR, Antholine WE, Myers JM. The pro-oxidant chromium(VI) inhibits mitochondrial complex I, complex II, and aconitase in the bronchial epithelium: EPR markers for Fe-S proteins. Free Radic Biol Med 2010; 49:1903-15. [PMID: 20883776 PMCID: PMC3005768 DOI: 10.1016/j.freeradbiomed.2010.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/27/2010] [Accepted: 09/20/2010] [Indexed: 11/26/2022]
Abstract
Hexavalent chromium (Cr(VI)) compounds (e.g., chromates) are strong oxidants that readily enter cells, where they are reduced to reactive Cr species that also facilitate reactive oxygen species generation. Recent studies demonstrated inhibition and oxidation of the thioredoxin system, with greater effects on mitochondrial thioredoxin (Trx2). This implies that Cr(VI)-induced oxidant stress may be especially directed at the mitochondria. Examination of other redox-sensitive mitochondrial functions showed that Cr(VI) treatments that cause Trx2 oxidation in human bronchial epithelial cells also result in pronounced and irreversible inhibition of aconitase, a TCA cycle enzyme that has an iron-sulfur (Fe-S) center that is labile with respect to certain oxidants. The activities of electron transport complexes I and II were also inhibited, whereas complex III was not. Electron paramagnetic resonance (EPR) studies of samples at liquid helium temperature (10K) showed a strong signal at g=1.94 that is consistent with the inhibition of electron flow through complex I and/or II. A signal at g=2.02 was also observed, which is consistent with oxidation of the Fe-S center of aconitase. The g=1.94 signal was particularly intense and remained after extracellular Cr(VI) was removed, whereas the g=2.02 signal declined in intensity after Cr(VI) was removed. A similar inhibition of these activities and analogous EPR findings were noted in bovine airways treated ex vivo with Cr(VI). Overall, the data support the hypothesis that Cr(VI) exposure has deleterious effects on a number of redox-sensitive core mitochondrial proteins. The g=1.94 signal could prove to be an important biomarker for oxidative damage resulting from Cr(VI) exposure. The EPR spectra simultaneously showed signals for Cr(V) and Cr(III), which verify Cr(VI) exposure and its intracellular reductive activation.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
10
|
Bulteau AL, Lundberg KC, Ikeda-Saito M, Isaya G, Szweda LI. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc Natl Acad Sci U S A 2005; 102:5987-91. [PMID: 15840721 PMCID: PMC1087934 DOI: 10.1073/pnas.0501519102] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prooxidents can induce reversible inhibition or irreversible inactivation and degradation of the mitochondrial enzyme aconitase. Cardiac ischemia/reperfusion is associated with an increase in mitochondrial free radical production. In the current study, the effects of reperfusion-induced production of prooxidants on mitochondrial aconitase and proteolytic activity were determined to assess whether alterations represented a regulated response to changes in redox status or oxidative damage. Evidence is provided that ATP-dependent proteolytic activity increased during early reperfusion followed by a time-dependent reduction in activity to control levels. These alterations in proteolytic activity paralleled an increase and subsequent decrease in the level of oxidatively modified protein. In vitro data supports a role for prooxidants in the activation of ATP-dependent proteolytic activity. Despite inhibition during early periods of reperfusion, aconitase was not degraded under the conditions of these experiments. Aconitase activity exhibited a decline in activity followed by reactivation during cardiac reperfusion. Loss and regain in activity involved reversible sulfhydryl modification. Aconitase was found to associate with the iron binding protein frataxin exclusively during reperfusion. In vitro, frataxin has been shown to protect aconitase from [4Fe-4S](2+) cluster disassembly, irreversible inactivation, and, potentially, degradation. Thus, the response of mitochondrial aconitase and ATP-dependent proteolytic activity to reperfusion-induced prooxidant production appears to be a regulated event that would be expected to reduce irreparable damage to the mitochondria.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | |
Collapse
|
11
|
Kernec F, Unlü M, Labeikovsky W, Minden JS, Koretsky AP. Changes in the mitochondrial proteome from mouse hearts deficient in creatine kinase. Physiol Genomics 2001; 6:117-28. [PMID: 11459927 DOI: 10.1152/physiolgenomics.2001.6.2.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine kinase (CK) is an abundant enzyme, important for maintenance of high-energy phosphate homeostasis in many tissues including heart. Double-knockout CK (DbKO-CK) mice missing both the muscle (MM) and sarcomeric mitochondrial (ScMit) isoforms of CK have recently been studied. Despite a large change in skeletal muscle function in DbKO-CK mice, there is little functional change in the heart. To investigate whether there are specific changes in cardiac mitochondrial proteins associated with the loss of MM- and ScMit-CK isoforms, we have used difference gel electrophoresis (DIGE) to compare mitochondrial proteins from wild-type and DbKO-CK mice. Mass spectrometry fingerprinting was used to identify 40 spots as known mitochondrial proteins. We have discovered that the loss of MM- and ScMit-CK isoforms did not cause large scale changes in heart mitochondrial proteins. The loss of ScMit-CK was readily detected in the DbKO-CK samples. We have also detected a large decrease in the precursor form of aconitase. Furthermore, two mitochondrial protein differences have been found in the parent mouse strains of the DbKO-CK mice.
Collapse
MESH Headings
- Aconitate Hydratase/metabolism
- Animals
- Cell Extracts
- Creatine Kinase/genetics
- Creatine Kinase/physiology
- Creatine Kinase, MM Form
- Creatine Kinase, Mitochondrial Form
- Electrophoresis, Gel, Two-Dimensional
- Isoenzymes/genetics
- Isoenzymes/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Proteome/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- F Kernec
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Downer JB, McCarthy TJ, Edwards WB, Anderson CJ, Welch MJ. Reactivity of p-[18F]fluorophenacyl bromide for radiolabeling of proteins and peptides. Appl Radiat Isot 1997; 48:907-16. [PMID: 9376825 DOI: 10.1016/s0969-8043(97)00012-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Radiolabeling of the somatostatin analog octreotide was attempted with p-[18F]fluorophenacyl bromide ([18F]FPB). Following these unsuccessful trials, the reactivity of FPB was studied using benzyl mercaptan, phenyl acetic acid, benzyl alcohol, and benzyl amine as model compounds for amino acid functional groups. Structure and purity of products, relative reactivity of FPB in competition reactions, and radiolabeling experiments are described. In addition, improvement in labeling efficiency of HSA using [18F]FPB was achieved by pretreatment with 2-iminothiolane.
Collapse
Affiliation(s)
- J B Downer
- Department of Chemistry, Washington University, St Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
13
|
Beinert H, Kennedy MC, Stout CD. Aconitase as Ironminus signSulfur Protein, Enzyme, and Iron-Regulatory Protein. Chem Rev 1996; 96:2335-2374. [PMID: 11848830 DOI: 10.1021/cr950040z] [Citation(s) in RCA: 428] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Helmut Beinert
- Institute for Enzyme Research, Graduate School, and Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53705, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
14
|
|
15
|
Bhattacharjee H, Li J, Ksenzenko MY, Rosen BP. Role of cysteinyl residues in metalloactivation of the oxyanion-translocating ArsA ATPase. J Biol Chem 1995; 270:11245-50. [PMID: 7744758 DOI: 10.1074/jbc.270.19.11245] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ArsA protein, the catalytic subunit of the oxyanion-translocating ATPase responsible for resistance to arsenicals and antimonials in Escherichia coli, is activated by arsenite or antimonite. Activation is associated with dimerization of the ArsA protein. Enzymatic activity was rapidly but reversibly inhibited by the sulfhydryl reagent methyl methanethiosulfonate, suggesting that at least one cysteinyl residue is required for catalytic activity. Each of the four cysteinyl residues in the ArsA protein, Cys26, Cys113, Cys172, and Cys422, were individually changed to seryl residues. The C26S protein had normal properties. Cells expressing the other three mutations lost resistance to arsenite and antimonite. The C113S, C172S, and C422S enzymes each had relatively normal Km values for ATP but reduced affinity for antimonite and arsenite. The Vmax of the activated enzymes ranged from very low for the C113S and C422S enzymes to near normal for the C172S enzyme. These results suggest a mechanism of activation by formation of a tricoordinate complex between Sb(III) or As(III) and the cysteine thiolates 113, 172, and 422.
Collapse
Affiliation(s)
- H Bhattacharjee
- Department of Biochemistry, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
16
|
Modification of a free Fe-S cluster cysteine residue in the active iron-responsive element-binding protein prevents RNA binding. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46750-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Bhaumik D, Datta AK. Active site thiol(s) in Leishmania donovani adenosine kinase: comparison with hamster enzyme and evidence for the absence of regulatory adenosine binding site. Mol Biochem Parasitol 1992; 52:29-38. [PMID: 1625705 DOI: 10.1016/0166-6851(92)90033-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adenosine kinase (ATP, adenosine 5'-phosphotransferase, E.C. 2.7.1.20) from Leishmania donovani, unlike adenosine kinase from other known eukaryotic sources, does not elicit an inhibitory response at high concentrations of adenosine. The mechanistic basis for this unique catalytic behavior of the parasite enzyme has been probed with the help of chemical modification and enzyme inhibition kinetics experiments. The use of cysteine-directed reagents has shown that chemical integrity of cysteinyl residues is essential for the expression of functional activity of the enzyme. Thiol group titration revealed that the enzyme contains 3 cysteine residues. However, in contrast to adenosine kinase from other sources, inactivation of the parasite enzyme could be correlated with alkylation of 2 cysteinyl residues. Adenosine, but not ATP, protected 2 thiols against -SH blocker-mediated inactivation of the enzyme. The thiol groups were shown to map at positions corresponding to approximately 16, 22, and 36 kDa sites from the protein's N-terminal end. The functions of 2 thiols at the catalytic site were functional thiol groups yielded a 'protection constant' (KpAd) of 3.4 microM, while the dissociation constant (KsAD) of the enzyme-substrate complex was 2.7 microM, hence supporting involvement of the same in both processes, namely catalysis and protection. The overall results were therefore interpreted as showing that (a) the leishmanial enzyme, in contrast to adenosine kinase from other sources, contains 2 functional thiol groups at the catalytic site; and (b) the enzyme binds adenosine exclusively through the catalytic site and as a consequence is not amenable to inhibition at high adenosine concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Bhaumik
- Leishmania Group, Indian Institute of Chemical Biology, Calcutta, India
| | | |
Collapse
|
18
|
Beinert H, Kennedy MC. 19th Sir Hans Krebs lecture. Engineering of protein bound iron-sulfur clusters. A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:5-15. [PMID: 2598939 DOI: 10.1111/j.1432-1033.1989.tb15170.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An increasing number of iron-sulfur (Fe-S) proteins are found in which the Fe-S cluster is not involved in net electron transfer, as it is in the majority of Fe-S proteins. Most of the former are (de)hydratases, of which the most extensively studied is aconitase. Approaches are described and discussed by which the Fe-S cluster of this enzyme could be brought into states of different structure, ligation, oxidation and isotope composition. The species, so obtained, provided the basis for spectroscopic and chemical investigations. Results from studies by protein chemistry, EPR, Mössbauer, 1H, 2H and 57Fe electron-nuclear double resonance spectroscopy are described. Conclusions, which bear on the electronic structure of the Fe-S cluster, enzyme-substrate interaction and the enzymatic mechanism, were derived from a synopsis of the recent work described here and of previous contributions from several laboratories. These conclusions are discussed and summarized in a final section.
Collapse
Affiliation(s)
- H Beinert
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
19
|
Plank D, Kennedy M, Beinert H, Howard J. Cysteine Labeling Studies of Beef Heart Aconitase Containing a 4Fe, a Cubane 3Fe, or a Linear 3Fe Cluster. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47074-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Abstract
The crystal structure of the 80,000 Da Fe-S enzyme aconitase has been solved and refined at 2.1 A resolution. The protein contains four domains; the first three from the N-terminus are closely associated around the [3Fe-4S] cluster with all three cysteine ligands to the cluster being provided by the third domain. Association of the larger C-terminal domain with the first three domains creates an extensive cleft leading to the Fe-S cluster. Residues from all four domains contribute to the active site region, which is defined by the Fe-S cluster and a bound SO4(2-) ion. This region of the structure contains 4 Arg, 3 His, 3 Ser, 2 Asp, 1 Glu, 3 Asn, and 1 Gln residues, as well as several bound water molecules. Three of these side chains reside on a three-turn 3(10) helix in the first domain. The SO4(2-) ion is bound 9.3 A from the center of the [3Fe-4S] cluster by the side chains of 2 Arg and 1 Gln residues. Each of 3 His side chains in the putative active site is paired with Asp or Glu side chains.
Collapse
Affiliation(s)
- A H Robbins
- Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
21
|
Kennedy MC, Beinert H. The state of cluster SH and S2- of aconitase during cluster interconversions and removal. A convenient preparation of apoenzyme. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68461-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Plank DW, Howard JB. Identification of the reactive sulfhydryl and sequences of cysteinyl-tryptic peptides from beef heart aconitase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68459-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|