1
|
Rondelli CM, Perfetto M, Danoff A, Bergonia H, Gillis S, O'Neill L, Jackson L, Nicolas G, Puy H, West R, Phillips JD, Yien YY. The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover. J Biol Chem 2021; 297:100972. [PMID: 34280433 PMCID: PMC8361296 DOI: 10.1016/j.jbc.2021.100972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyrinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx−/− cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH, and PPOX activities, as well as of iron metabolism.
Collapse
Affiliation(s)
- Catherine M Rondelli
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aidan Danoff
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Hector Bergonia
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Samantha Gillis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Leah O'Neill
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Laurie Jackson
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gael Nicolas
- Centre de Recherche sur l'inflammation, Université Paris Diderot, Site Bichat, Sorbonne Paris Cité, Paris, France
| | - Herve Puy
- Centre de Recherche sur l'inflammation, Université Paris Diderot, Site Bichat, Sorbonne Paris Cité, Paris, France; Centre Français des Porphyries, Hôpital Louis Mourier, APHP, Colombes, France
| | - Richard West
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - John D Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
2
|
Fratz EJ, Hunter GA, Ferreira GC. Expression of murine 5-aminolevulinate synthase variants causes protoporphyrin IX accumulation and light-induced mammalian cell death. PLoS One 2014; 9:e93078. [PMID: 24718052 PMCID: PMC3981678 DOI: 10.1371/journal.pone.0093078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/02/2014] [Indexed: 01/11/2023] Open
Abstract
5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the first committed step of heme biosynthesis in animals. The erythroid-specific ALAS isozyme (ALAS2) is negatively regulated by heme at the level of mitochondrial import and, in its mature form, certain mutations of the murine ALAS2 active site loop result in increased production of protoporphyrin IX (PPIX), the precursor for heme. Importantly, generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. ALAS2 variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. In order to assess the prospective utility of ALAS2 variants in PPIX production for PDT, K562 human erythroleukemia cells and HeLa human cervical carcinoma cells were transfected with expression plasmids for ALAS2 variants with greater enzymatic activity than the wild-type enzyme. The levels of accumulated PPIX in ALAS2-expressing cells were analyzed using flow cytometry with fluorescence detection. Further, cells expressing ALAS2 variants were subjected to white light treatments (21–22 kLux) for 10 minutes after which cell viability was determined. Transfection of HeLa cells with expression plasmids for murine ALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatments revealed that ALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. The delivery of stable and highly active ALAS2 variants has the potential to expand and improve upon current PDT regimes.
Collapse
Affiliation(s)
- Erica J. Fratz
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, Florida, United States of America
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
3
|
Schricker R, Angermayr M, Strobel G, Klinke S, Korber D, Bandlow W. Redundant mitochondrial targeting signals in yeast adenylate kinase. J Biol Chem 2002; 277:28757-64. [PMID: 12045196 DOI: 10.1074/jbc.m201561200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast adenylate kinase (Aky2p, Adk1p) occurs simultaneously in cytoplasm and mitochondrial intermembrane space. It has no cleavable mitochondrial targeting sequence, and the signal for mitochondrial import and submitochondrial sorting is largely unknown. The extreme N terminus of Aky2p is able to direct cytoplasmic passengers to mitochondria. However, an Aky2 mutant lacking this sequence is imported with about the same efficiency as the wild type. To identify possible import-relevant information in the interior, parts of Aky2p were exchanged by homologous in vitro recombination for the respective segments of the purely cytoplasmic isozyme, Ura6p. Import studies revealed an internal region of about 40 amino acids, which was sufficient to direct the chimera to mitochondria but not for correct submitochondrial sorting. The respective Ura6p hybrid was arrested in the mitochondrial membrane at a position where it was inaccessible to protease but was released by alkaline extraction, suggesting that it had entered an import channel and passed the initial steps of recognition and uptake. Site-specific mutations within the presumptive address-specifying segment identified the amphipathic helix 5. A Ura6 mutant protein in which helix 5 had been replaced with the respective sequence from Aky2p was imported, and this address sequence cooperates with the N terminus in the respective double mutant in a synergistic fashion.
Collapse
Affiliation(s)
- Roland Schricker
- Department Biologie I, Bereich Genetik, Ludwig Maximilians Universität München, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Goodfellow BJ, Dias JS, Ferreira GC, Henklein P, Wray V, Macedo AL. The solution structure and heme binding of the presequence of murine 5-aminolevulinate synthase. FEBS Lett 2001; 505:325-31. [PMID: 11566198 DOI: 10.1016/s0014-5793(01)02818-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mitochondrial import of 5-aminolevulinate synthase (ALAS), the first enzyme of the mammalian heme biosynthetic pathway, requires the N-terminal presequence. The 49 amino acid presequence transit peptide (psALAS) for murine erythroid ALAS was chemically synthesized, and circular dichroism and (1)H nuclear magnetic resonance (NMR) spectroscopies used to determine structural elements in trifluoroethanol/H(2)O solutions and micellar environments. A well defined amphipathic alpha-helix, spanning L22 to F33, was present in psALAS in 50% trifluoroethanol. Further, a short alpha-helix, defined by A5-L8, was also apparent in the 26 amino acid N-terminus peptide, when its structure was determined in sodium dodecyl sulfate. Heme inhibition of ALAS mitochondrial import has been reported to be mediated through cysteine residues in presequence heme regulatory motifs (HRMs). A UV/visible and (1)H NMR study of hemin and psALAS indicated that a heme-peptide interaction occurs and demonstrates, for the first time, that heme interacts with the HRMs of psALAS.
Collapse
Affiliation(s)
- B J Goodfellow
- Departamento de Quimica, Universidade de Aveiro, 3810-193 Aviero, Portugal
| | | | | | | | | | | |
Collapse
|
5
|
González-Domínguez M, Freire-Picos MA, Cerdán ME. Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach. Yeast 2001; 18:41-8. [PMID: 11124700 DOI: 10.1002/1097-0061(200101)18:1<41::aid-yea654>3.0.co;2-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme 5-aminolaevulinate acid synthase (ALAS) catalyses the first reaction in the haem biosynthetic pathway. In eukaryotes this protein is translated by cytosolic ribosomes and then targeted to the mitochondria. We present evidence that in the yeast Kluyveromyces lactis haem exerts a feedback control upon the import of the ALAS into mitochondria. The ALAS from K. lactis (KlALAS) contains two haem regulatory motifs (HRM) in the mitochondrial targeting signal. Mutagenesis experiments reveal the involvement of these HRM in the response of the KlALAS to haem.
Collapse
Affiliation(s)
- M González-Domínguez
- Departamento Biología Celular y Molecular, Universidad de A Coruña, F. Ciencias, Campus de A Zapateira, s/n 15075, A Coruña, Spain
| | | | | |
Collapse
|
6
|
Moreno JI, David NR, Miernyk JA, Randall DD. Pisum sativum mitochondrial pyruvate dehydrogenase can be assembled as a functional alpha(2)beta(2) heterotetramer in the cytoplasm of Pichia pastoris. Protein Expr Purif 2000; 19:276-83. [PMID: 10873542 DOI: 10.1006/prep.2000.1247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pea (Pisum sativum) mitochondrial pyruvate dehydrogenase (E1) was produced by coexpression of the mature alpha and beta subunits in the cytoplasm of the yeast Pichia pastoris. Size-exclusion chromatography of recombinant E1, using a Superose 12 column, yielded a peak at M(r) 160,000 that contained both alpha and beta subunits as well as E1 activity. This corresponds to the size of native alpha(2)beta(2) E1. Recombinant E1 alpha (His(6))-E1 beta was purified by affinity chromatography using immobilized Ni(+), with a yield of 2.8 mg L(-1). The pyruvate-decarboxylating activity of recombinant E1 was dependent upon added Mg(2+) and thiamin-pyrophosphate and was enhanced by the oxidant potassium ferricyanide. Native pea mitochondrial E1-kinase catalyzed phosphorylation of Ser residues in the alpha-subunit of recombinant E1, with concomitant loss of enzymatic activity. Thus, mitochondrial pyruvate dehydrogenase can be assembled in the cytoplasm of P. pastoris into an alpha(2)beta(2) heterotetramer that is both catalytically active and competent for regulatory phosphorylation.
Collapse
Affiliation(s)
- J I Moreno
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | | | | | | |
Collapse
|
7
|
Góra M, Rytka J, Labbe-Bois R. Activity and cellular location in Saccharomyces cerevisiae of chimeric mouse/yeast and Bacillus subtilis/yeast ferrochelatases. Arch Biochem Biophys 1999; 361:231-40. [PMID: 9882451 DOI: 10.1006/abbi.1998.0990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a series of chimeric yeast/mouse and yeast/Bacillus subtilis ferrochelatase genes in order to investigate domains of the ferrochelatase that are important for activity and/or association with the membrane. These genes were expressed in a Saccharomyces cerevisiae mutant in which the endogenous ferrochelatase gene (HEM15) had been deleted, and the phenotypes of the transformants were characterized. Exchanging the approximately 40-amino-acid C-terminus between the yeast and mouse ferrochelatases caused a total loss of activity and the hybrid proteins were unstable when overproduced in Escherichia coli. The water-soluble ferrochelatase of B. subtilis did not complement the yeast mutant, although a large amount of active protein accumulated in the cytosol. Addition of the N-terminal leader sequence of yeast ferrochelatase to the B. subtilis enzyme targeted the fusion protein to mitochondria, but both the precursor and the mature forms of the enzyme were inactive in vivo and had residual activity when measured in vitro. An internal approximately 45-amino-acid segment located at the N-terminus of yeast ferrochelatase was identified, which, when replaced with the corresponding 30-amino-acid segment of the B. subtilis enzyme, caused the yeast enzyme to be located in the mitochondrial matrix as a soluble protein. The fusion protein was inactive in vivo and had residual activity in vitro. We speculate that this segment, which shows the greatest variability between species, is responsible for the association of the enzyme with the membrane.
Collapse
Affiliation(s)
- M Góra
- Institute of Biochemistry and Biophysics, Polish Academy of Science, 5A Pawinskiego Street, Warsaw, 02-106, Poland
| | | | | |
Collapse
|
8
|
Otto A, Stoltz M, Sailer HP, Brandsch R. Biogenesis of the covalently flavinylated mitochondrial enzyme dimethylglycine dehydrogenase. J Biol Chem 1996; 271:9823-9. [PMID: 8621665 DOI: 10.1074/jbc.271.16.9823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rat dimethylglycine dehydrogenase (Me2GlyDH) was used as model protein to study the biogenesis of a covalently flavinylated mitochondrial enzyme. Here we show that: 1) enzymatically active holoenzyme correlated with trypsin resistance of the protein; 2) folding of the reticulocyte lysate-translated protein into the trypsin-resistant, holoenzyme form was a slow process that was stimulated by the presence of the flavin cofactor and was more efficient at 15 degrees C than at 30 degrees C; 3) the mitochondrial presequence reduced the extent but did not prevent holoenzyme formation; 4) covalent attachment of FAD to the Me2GlyDH apoenzyme proceeded spontaneously and did not require a mitochondrial protein factor; 5) in vitro only the precursor, but not the mature form, of the protein was imported into isolated rat liver mitochondria; in vivo, in stably transfected HepG2 cells, both the precursor and the mature form were imported into the organelle; 6) holoenzyme formation in the cytoplasm did not prevent the translocation of the proteins into the mitochondria in vivo; and 7) lack of vitamin B2 in the tissue culture medium resulted in a reduced recovery of the precursor and the mature form of Me2GlyDH from cell mitochondria, suggesting a decreased efficiency of mitochondrial protein import.
Collapse
Affiliation(s)
- A Otto
- Biochemisches Institut, Universitat Freiburg, Germany
| | | | | | | |
Collapse
|
9
|
Ferreira GC, Franco R, Lloyd SG, Moura I, Moura JJ, Huynh BH. Structure and function of ferrochelatase. J Bioenerg Biomembr 1995; 27:221-9. [PMID: 7592569 DOI: 10.1007/bf02110037] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression in Escherichia coli and in baculovirus-infected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ferreira GC, Gong J. 5-Aminolevulinate synthase and the first step of heme biosynthesis. J Bioenerg Biomembr 1995; 27:151-9. [PMID: 7592562 DOI: 10.1007/bf02110030] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
5-Aminolevulinate synthase catalyzes the condensation of glycine and succinyl-CoA to yield 5-aminolevulinate. In animals, fungi, and some bacteria, 5-aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway. Mutations on the human erythroid 5-aminolevulinate synthase, which is localized on the X-chromosome, have been associated with X-linked sideroblastic anemia. Recent biochemical and molecular biological developments provide important insights into the structure and function of this enzyme. In animals, two aminolevulinate synthase genes, one housekeeping and one erythroid-specific, have been identified. In addition, the isolation of 5-aminolevulinate synthase genomic and cDNA clones have permitted the development of expression systems, which have tremendously increased the yields of purified enzyme, facilitating structural and functional studies. A lysine residue has been identified as the residue involved in the Schiff base linkage of the pyridoxal 5'-phosphate cofactor, and the catalytic domain has been assigned to the C-terminus of the enzyme. A conserved glycine-rich motif, common to all aminolevulinate synthases, has been proposed to be at the pyridoxal 5'-phosphate-binding site. A heme-regulatory motif, present in the presequences of 5-aminolevulinate synthase precursors, has been shown to mediate the inhibition of the mitochondrial import of the precursor proteins in the presence of heme. Finally, the regulatory mechanisms, exerted by an iron-responsive element binding protein, during the translation of erythroid 5-aminolevulinate synthase mRNA, are discussed in relation to heme biosynthesis.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612, USA
| | | |
Collapse
|
11
|
SSS1 encodes a stabilizing component of the Sec61 subcomplex of the yeast protein translocation apparatus. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47010-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Wallis MG, Groudinsky O, Slonimski PP, Dujardin G. The NAM1 protein (NAM1p), which is selectively required for cox1, cytb and atp6 transcript processing/stabilisation, is located in the yeast mitochondrial matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:27-32. [PMID: 8200349 DOI: 10.1111/j.1432-1033.1994.tb18837.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NAM1 nuclear gene was shown to control the stability and/or processing of mitochondrial transcripts of the cytochrome b, cytochrome oxidase subunit I and ATP synthase subunit VI genes [Groudinsky O., Bousquet I., Wallis M. G., Slonimski, P. P. & Dujardin G. (1993) Mol. Gen. Genet. 240, 419-427]. In order to better understand the mode of action of the NAM1 gene product, we have examined its intracellular fate. A fusion plasmid enabling bacterial over-expression of the corresponding protein-A-NAM1 cognate was constructed and subsequently employed as an antigen to raise polyclonal antibodies. These antibodies specifically recognise a 50-kDa protein which purifies along with the mitochondria and corresponds to NAM1p. Submitochondrial localisation experiments show that NAM1p is a soluble protein, located interior to the mitoplasts. Matricial location is a strong argument in favour of a direct interaction of NAM1p with particular mitochondrial transcripts and leads us to propose a model in which NAM1p could be an RNA-convoying protein stabilising and directing mitochondrial transcripts towards the inner face of the inner membrane where translation and assembly seem to occur.
Collapse
Affiliation(s)
- M G Wallis
- Centre de Génétique Moléculaire du CNRS, Université Paris VI, Gif sur Yvette, France
| | | | | | | |
Collapse
|
13
|
Smith A, Santana M, Wallace-Cook A, Roper J, Labbe-Bois R. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36847-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Matsushita Y, Isono K. Mitochondrial transport of mitoribosomal proteins, YmL8 and YmL20, in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:577-85. [PMID: 8513807 DOI: 10.1111/j.1432-1033.1993.tb17956.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two mitochondrial ribosomal (mitoribosomal) proteins, YmL8 and YmL20, of the yeast Saccharomyces cerevisiae and their derivatives were synthesized in vitro and their transport into isolated yeast mitochondria was examined. Of the two proteins, YmL20 possesses an N-terminal presequence of 18 amino acid residues, while YmL8 has no such presequence. Both proteins were found to be transported into isolated mitochondria in an energy-dependent manner. Furthermore, YmL20 protein without its N-terminal presequence was also transported, despite the fact that the presequence alone was capable of transporting a fused passenger protein, Chinese hamster dihydrofolate reductase (DHFR). Therefore, YmL20 protein appears to possess redundant transport signals in its structure. Similarly, YmL8 derivatives lacking either 40 or 86 amino acid residues from the N-terminus and/or 52 amino acid residues from the C-terminus were transported. In addition, the N-terminal segment of this protein was capable of transporting Chinese hamster DHFR into mitochondria, while its C-terminal segment was not. Thus, YmL8 protein also appears to possess two or more transport signals in its structure. Perhaps the presence of many basic amino acid residues in these proteins might, at least partly, contribute to their mitochondrial transport.
Collapse
Affiliation(s)
- Y Matsushita
- Graduate School of Science and Technology, Faculty of Science, Kobe University, Japan
| | | |
Collapse
|
15
|
Zara V, Palmieri F, Mahlke K, Pfanner N. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49808-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Magdolen V, Schricker R, Strobel G, Germaier H, Bandlow W. In vivo import of yeast adenylate kinase into mitochondria affected by site-directed mutagenesis. FEBS Lett 1992; 299:267-72. [PMID: 1544504 DOI: 10.1016/0014-5793(92)80129-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Site-directed mutagenesis and deletions were used to study mitochondrial import of a major yeast adenylate kinase, Aky2p. This enzyme lacks a cleavable presequence and occurs in active and apparently unprocessed form both in mitochondria and cytoplasm. Mutations were applied to regions known to be surface-exposed and to diverge between short and long isoforms. In vertebrates, short adenylate kinase isozymes occur exclusively in the cytoplasm, whereas long versions of the enzyme have mitochondrial locations. Mutations in the extra loop of the yeast (long-form) enzyme did not affect mitochondrial import of the protein, whereas variants altered in the central, N- or C-terminal parts frequently displayed increased or, in the case of a deletion of the 8 N-terminal triplets, decreased import efficiencies. Although the N-terminus is important for targeting adenylate kinase to mitochondria, other parameters like internal sequence determinants and folding velocity of the nascent protein may also play a role.
Collapse
Affiliation(s)
- V Magdolen
- Institut für Genetik und Mikrobiologie, Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Giannattasio S, Marra E, Abruzzese MF, Greco M, Quagliariello E. The in vitro-synthesized precursor and mature mitochondrial aspartate aminotransferase share the same import pathway in isolated mitochondria. Arch Biochem Biophys 1991; 290:528-34. [PMID: 1929419 DOI: 10.1016/0003-9861(91)90577-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both the precursor and the mature form of mitochondrial aspartate aminotransferase were synthesized in a cell-free coupled transcription/translation system directed by the recombinant expression plasmid pOTS-pmAspAT and pOTS-mAspAT, respectively. Both newly synthesized forms of the protein were imported into isolated mitochondria, with the precursor correctly processed to the mature form. In both cases the import process showed resistance to externally added pronase and was abolished in mitochondria treated with the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Moreover the imported products showed the same intramitochondrial localization as judged by a subfractionation procedure. In both cases import was time dependent and was completed in about 15 min. Finally a competitive inhibition of the import of the precursor of aspartate aminotransferase was found due to externally added purified aspartate aminotransferase.
Collapse
Affiliation(s)
- S Giannattasio
- C.N.R. Centro di Studio sui Mitocondri e Metabolismo Energetico, Bari, Italy
| | | | | | | | | |
Collapse
|
19
|
Hartmann CM, Lindenmann JM, Christen P, Jaussi R. The precursor of mitochondrial aspartate aminotransferase is imported into mitochondria faster than the homologous cytosolic isoenzyme with the same presequence attached. Biochem Biophys Res Commun 1991; 174:1232-8. [PMID: 1996986 DOI: 10.1016/0006-291x(91)91553-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial and cytosolic aspartate aminotransferase (AspAT) are homologous proteins with identically folded polypeptide chains. The cDNAs of the two isoenzymes of chicken were used to express the following proteins in yeast: the precursor of mitochondrial AspAT, mature mitochondrial AspAT, and two chimeric proteins in one of which (pc) the presequence of the precursor was attached to the entire cytosolic isoenzyme and in the other one (pmc) the N-terminal segment (amino acid residues -22 to 23) of the precursor was linked to the slightly truncated cytosolic isoenzyme (residues 34 to 412). All presequence containing proteins were imported into the mitochondria and processed to the mature form whereas mature mitochondrial AspAT remained in the cytosol. The rate of import of the authentic precursor was four times faster than that of the chimeric proteins pc and pmc, t1/2 for importation at 29 degrees C being 3, 13 and 14 min, respectively. Apparently, the mature moiety of the precursor of mitochondrial AspAT promotes importation.
Collapse
Affiliation(s)
- C M Hartmann
- Biochemisches Institut Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
20
|
Barile M, Giannattasio S, Marra E, Passarella S, Pucci P, Sannia G, Quagliariello E. Certain N-terminal peptides inhibit uptake of mature aspartate aminotransferase by isolated mitochondria. Biochem Biophys Res Commun 1990; 170:609-15. [PMID: 2383258 DOI: 10.1016/0006-291x(90)92135-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To gain insight into the uptake of mature aspartate aminotransferase by isolated mitochondria, the capability of certain cyanogen bromide peptides from mature beef heart mitochondrial aspartate aminotransferase to inhibit enzyme uptake was kinetically tested. N-terminal peptides (1-9 and 10-31) proved to inhibit the rate of aspartate aminotransferase uptake respectively in purely competitive and non-competitive ways, whereas other peptides distal from the N-terminus (203-217, 321-327 and 328-353) were found to be completely ineffective.
Collapse
Affiliation(s)
- M Barile
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi, Bari-Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Labbe-Bois R. The ferrochelatase from Saccharomyces cerevisiae. Sequence, disruption, and expression of its structural gene HEM15. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39111-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Thompson LM, McAlister-Henn L. Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80177-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|