1
|
Wang J, Yang J, Huang W, Huang W, Jia R. A mutant R70V/E166A of short manganese peroxidase showing Mn 2+-independent dye decolorization. Appl Microbiol Biotechnol 2023; 107:2303-2319. [PMID: 36843195 DOI: 10.1007/s00253-023-12438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Il-MnP1, a short-type manganese peroxidase from Irpex lacteus F17, can oxidize some substrates in the absence of Mn2+, but the catalysis was much lower than in the presence of Mn2+. Here, we report a mutant R70V/E166A of Il-MnP1 with some unique properties, which possessed clearly higher catalysis for the decolorization of anthraquinone and azo dyes in the absence of Mn2+ than that of Il-MnP1. Importantly, the optimum pH of R70V/E166A for decolorization of anthraquinone dyes (Reactive Blue 19, RB19) was 6.5, and the mutant achieved high decolorization activities in the range of pH 4.0-7.0, whereas Il-MnP1 only showed decolorization for RB19 at pH 3.5-4.0. In addition, the optimum H2O2 concentration of R70V/E166A for RB19 decolorization was eight times that of Il-MnP1 and the H2O2 stability has improved 1.4 times compared with Il-MnP1. Furthermore, Mn2+ competitively inhibited the oxidation of RB19 by R70V/E166A, explaining the higher catalytic activity of the mutant R70V/E166A in the absence of Mn2+. Molecular docking results suggested that RB19 binds to the distal side of the heme plane in mutant R70V/E166A, which extended from the heme δ-side to the heme γ-side, and close to the mutated residues of R70V and E166A, whereas RB19 could not access the heme pocket of Il-MnP1 due to the steric hindrance of the side-chain group of Arg 70. Thus, this study constructed a useful mutant R70V/E166A and analyzed its higher Mn2+-independent activity, which is very important for better understanding the Mn2+-independent catalytic mechanism for short manganese peroxidases. KEY POINTS: • The mutant R70V/E166A of atypical MnP1 of I. lacteus F17 shows unique catalytic properties. • At pH 6.5, the R70V/E166A had a strong ability to decolorize anthraquinone dyes in the absence of Mn2+. • The binding sites of Reactive Blue 19 in mutant R70V/E166A were elucidated.
Collapse
Affiliation(s)
- Junli Wang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Jun Yang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenhan Huang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenting Huang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Rong Jia
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
2
|
Lee YJ, Shin KS. Isolation and characterization of the second extracellular peroxidase of the white-rot fungus Coriolus hirsutus. Mycologia 2019. [DOI: 10.1080/00275514.2000.12061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yeo Jin Lee
- Department of Microbiology, College of Sciences, Taejon University, Taejon, 300-716, Republic of Korea
| | - Kwang Soo Shin
- Department of Microbiology, College of Sciences, Taejon University, Taejon, 300-716, Republic of Korea
| |
Collapse
|
3
|
Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0046-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
4
|
Mino Y. [Bioinorganic Chemistry of Iron]. YAKUGAKU ZASSHI 2018; 138:373-387. [PMID: 29503431 DOI: 10.1248/yakushi.17-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystallographic analysis of the single-crystal mugineic acid-Cu(II) complex showed that mugineic acid acts as a hexadentate ligand. Mugineic acid, a typical phytosiderophore, shows a marked stimulating effect on 59Fe-uptake and chlorophyll synthesis in rice plants. A salient feature is the higher reduction potential of the mugineic acid-Fe(III) complex than those of bacterial siderophores. X-ray diffraction study of the structurally analogous Co(III) complex of the mugineic acid-Fe(III) complex demonstrates that the azetidine nitrogen and secondary amine nitrogen, and both terminal carboxylate oxygens, coordinate as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen bind as axial donors in a nearly octahedral configuration. The iron-transport mechanism in gramineous plants appears to involve the excretion of mugineic acid from the roots, which aids Fe(III)-solubilization and reduction of Fe(III) to Fe(II). Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. To elucidate the heme environment of this novel Mn(II)-dependent extracellular enzyme, we studied its ESR and resonance Raman spectroscopic properties. Consequently, it is most likely that the heme environment of MnP resembles that of cytochrome c peroxidase. In addition, degradation methods using basidiomycetous fungi or Fe3+-H2O2 mixed reagent were developed for dioxins and polychlorinated biphenyls. The complete amino acid sequences of respective [2Fe-2S] ferredoxins were determined and compared with those of other higher plants. Finally, the toxic effects of iron on human health and the development of novel antibacterial drugs capable of inhibiting the iron transport system of Vibrio vulnificus are described.
Collapse
|
5
|
Kupryashina MA, Vetchinkina EP, Nikitina VE. Biofabrication of Discrete Silver and Gold Nanoparticles by the Bacterium Azospirillum brasilense: Mechanistic Aspects. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1111-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Chen C, Shrestha R, Jia K, Gao PF, Geisbrecht BV, Bossmann SH, Shi J, Li P. Characterization of Dye-decolorizing Peroxidase (DyP) from Thermomonospora curvata Reveals Unique Catalytic Properties of A-type DyPs. J Biol Chem 2015. [PMID: 26205819 DOI: 10.1074/jbc.m115.658807] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) comprise a new family of heme peroxidases, which has received much attention due to their potential applications in lignin degradation. A new DyP from Thermomonospora curvata (TcDyP) was identified and characterized. Unlike other A-type enzymes, TcDyP is highly active toward a wide range of substrates including model lignin compounds, in which the catalytic efficiency with ABTS (kcat(app)/Km(app) = (1.7 × 10(7)) m(-1) s(-1)) is close to that of fungal DyPs. Stopped-flow spectroscopy was employed to elucidate the transient intermediates as well as the catalytic cycle involving wild-type (wt) and mutant TcDyPs. Although residues Asp(220) and Arg(327) are found necessary for compound I formation, His(312) is proposed to play roles in compound II reduction. Transient kinetics of hydroquinone (HQ) oxidation by wt-TcDyP showed that conversion of the compound II to resting state is a rate-limiting step, which will explain the contradictory observation made with the aspartate mutants of A-type DyPs. Moreover, replacement of His(312) and Arg(327) has significant effects on the oligomerization and redox potential (E°') of the enzyme. Both mutants were found to promote the formation of dimeric state and to shift E°' to a more negative potential. Not only do these results reveal the unique catalytic property of the A-type DyPs, but they will also facilitate the development of these enzymes as lignin degraders.
Collapse
Affiliation(s)
| | | | | | - Philip F Gao
- the Protein Production Group, University of Kansas, Lawrence, Kansas 66045
| | | | | | - Jishu Shi
- Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506 and
| | - Ping Li
- From the Departments of Chemistry,
| |
Collapse
|
7
|
Kupryashina MA, Vetchinkina EP, Burov AM, Ponomareva EG, Nikitina VE. Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171401007x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Sangar S, Pal M, Moon LS, Jolly RS. A catalase-peroxidase for oxidation of β-lactams to their (R)-sulfoxides. BIORESOURCE TECHNOLOGY 2012; 115:102-110. [PMID: 21996477 DOI: 10.1016/j.biortech.2011.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
In this communication we report for the first time a biocatalytic method for stereoselective oxidation of β-lactams, represented by penicillin-G, penicillin-V and cephalosporin-G to their (R)-sulfoxides. The method involves use of a bacterium, identified as Bacillus pumilis as biocatalyst. The enzyme responsible for oxidase activity has been purified and characterized as catalase-peroxidase (KatG). KatG of B. pumilis is a heme containing protein showing characteristic heme spectra with soret peak at 406 nm and visible peaks at 503 and 635 nm. The major properties that distinguish B. pumilis KatG from other bacterial KatGs are (i) it is a monomer and contains one heme per monomer, whereas KatGs of other bacteria are dimers or tetramers and have low heme content of about one per dimer or two per tetramer and (ii) its 12-residue, N-terminal sequence obtained by Edman degradation did not show significant similarity with any of known KatGs.
Collapse
Affiliation(s)
- Shefali Sangar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | | | | |
Collapse
|
9
|
Zámocký M, Droghetti E, Bellei M, Gasselhuber B, Pabst M, Furtmüller PG, Battistuzzi G, Smulevich G, Obinger C. Eukaryotic extracellular catalase-peroxidase from Magnaporthe grisea - Biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie 2012; 94:673-83. [PMID: 21971530 PMCID: PMC3317519 DOI: 10.1016/j.biochi.2011.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/21/2011] [Indexed: 12/04/2022]
Abstract
All phytopathogenic fungi have two catalase-peroxidase paralogues located either intracellularly (KatG1) or extracellularly (KatG2). Here, for the first time a secreted bifunctional, homodimeric catalase-peroxidase (KatG2 from the rice blast fungus Magnaporthe grisea) has been produced heterologously with almost 100% heme occupancy and comprehensively investigated by using a broad set of methods including UV-Vis, ECD and resonance Raman spectroscopy (RR), thin-layer spectroelectrochemistry, mass spectrometry, steady-state & presteady-state spectroscopy. RR spectroscopy reveals that MagKatG2 shows a unique mixed-spin state, non-planar heme b, and a proximal histidine with pronounced imidazolate character. At pH 7.0 and 25 °C, the standard reduction potential E°' of the Fe(III)/Fe(II) couple for the high-spin native protein was found to fall in the range typical for the KatG family. Binding of cyanide was relatively slow at pH 7.0 and 25 °C and with a K(d) value significantly higher than for the intracellular counterpart. Demonstrated by mass spectrometry MagKatG2 has the typical Trp118-Tyr251-Met277 adduct that is essential for its predominantly catalase activity at the unique acidic pH optimum. In addition, MagKatG2 acts as a versatile peroxidase using both one- and two-electron donors. Based on these data, structure-function relationships of extracellular eukaryotic KatGs are discussed with respect to intracellular KatGs and possible role(s) in host-pathogen interaction.
Collapse
Key Words
- extracellular catalase–peroxidase
- peroxidases–catalase superfamily
- phytopathogen
- oxidative stress
- resonance raman spectroscopy
- reduction potential
- 5c, five-coordinated
- 6c, six-coordinated
- apx, ascorbate peroxidase
- arp, arthromyces ramosus peroxidase
- bp1, barley peroxidase type 1
- cai, codon adaptation index
- caps, 3-(cyclohexylamino)propane-1-sulfonic acid
- ccd, charge-coupled device
- ccp, cytochrome c peroxidase
- cip, coprinus cinereus peroxidase
- ct, charge transfer
- l-dopa, 3,4-dihydroxy-l-phenylalanine
- e°′, reduction potential, referred to the standard hydrogen electrode, measured at ph 7.0
- ecd, electronic cd
- esi, electrospray ionization
- ha, hydroxyapatite
- hgt, horizontal gene transfer
- hrp, horseradish peroxidase
- hs, high-spin
- katg, catalase–peroxidase
- iptg, isopropyl-β-thiogalactopyranoside
- katg1, intracellular eukaryotic catalase–peroxidase
- katg2, extracellular eukaryotic catalase–peroxidase
- lc, liquid chromatography
- lip, lignin peroxidase
- ls, low-spin
- magkatg2, catalase–peroxidase from magnaporthe grisea
- mcac, metal chelate affinity chromatography
- mcd, monochlorodimedone
- mops, 4-morpholinepropane sulfonic acid
- mnp, manganese peroxidase
- nj, neighbor-joining method
- ottle, optically transparent thin-layer electrochemistry
- qs, quantum mixed-spin
- rr, resonance raman
- rt-pcr, reverse-transcription pcr
- sbp, soybean peroxidase
- she, standard hydrogen electrode
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Biochemistry, Department of Chemistry, Vienna Institute of Biotechnology at BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Gardner JD, Yi L, Ragsdale SW, Brunold TC. Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2. J Biol Inorg Chem 2010; 15:1117-27. [PMID: 20502928 PMCID: PMC2972362 DOI: 10.1007/s00775-010-0672-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
Abstract
Heme oxygenases (HOs) are monooxygenases that catalyze the first step in heme degradation, converting heme to biliverdin with concomitant release of Fe(II) and CO from the porphyrin macrocycle. Two heme oxygenase isoforms, HO-1 and HO-2, exist that differ in several ways, including a complete lack of Cys residues in HO-1 and the presence of three Cys residues as part of heme-regulatory motifs (HRMs) in HO-2. HRMs in other heme proteins are thought to directly bind heme, or to otherwise regulate protein stability or activity; however, it is not currently known how the HRMs exert these effects on HO-2 function. To better understand the properties of this vital enzyme and to elucidate possible roles of its HRMs, various forms of HO-2 possessing distinct alterations to the HRMs were prepared. In this study, variants with Cys265 in a thiol form are compared with those with this residue in an oxidized (part of a disulfide bond or existing as a sulfenate moiety) form. Absorption and magnetic circular dichroism spectroscopic data of these HO-2 variants clearly demonstrate that a new low-spin Fe(III) heme species characteristic of thiolate ligation is formed when Cys265 is reduced. Additionally, absorption, magnetic circular dichroism, and resonance Raman data collected at different temperatures reveal an intriguing temperature dependence of the iron spin state in the heme-HO-2 complex. These findings are consistent with the presence of a hydrogen-bonding network at the heme's distal side within the active site of HO-2 with potentially significant differences from that observed in HO-1.
Collapse
Affiliation(s)
- Jessica D. Gardner
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Li Yi
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
12
|
Ye L, Spiteller D, Ullrich R, Boland W, Nüske J, Diekert G. Fluoride-Dependent Conversion of Organic Compounds Mediated by Manganese Peroxidases in the Absence of Mn2+ Ions. Biochemistry 2010; 49:7264-71. [DOI: 10.1021/bi100831w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lidan Ye
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Dieter Spiteller
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - René Ullrich
- Department of Environmental Biotechnology, International Graduate School, 02763 Zittau, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jörg Nüske
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
13
|
Sundaramoorthy M, Gold MH, Poulos TL. Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem 2010; 104:683-90. [PMID: 20356630 PMCID: PMC2866031 DOI: 10.1016/j.jinorgbio.2010.02.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Manganese peroxidase (MnP) is an extracellular heme enzyme produced by the lignin-degrading white-rot fungus Phanerochaete chrysosporium. MnP catalyzes the peroxide-dependent oxidation of Mn(II) to Mn(III). The Mn(III) is released from the enzyme in complex with oxalate, enabling the oxalate-Mn(III) complex to serve as a diffusible redox mediator capable of oxidizing lignin, especially under the mediation of unsaturated fatty acids. One heme propionate and the side chains of Glu35, Glu39 and Asp179 have been identified as Mn(II) ligands in our previous crystal structures of native MnP. In our current work, new 0.93A and 1.05A crystal structures of MnP with and without bound Mn(II), respectively, have been solved. This represents only the sixth structure of a protein of this size at 0.93A resolution. In addition, this is the first structure of a heme peroxidase from a eukaryotic organism at sub-Angstrom resolution. These new structures reveal an ordering/disordering of the C-terminal loop, which is likely required for Mn binding and release. In addition, the catalytic Arg42 residue at the active site, normally thought to function only in the peroxide activation process, also undergoes ordering/disordering that is coupled to a transient H-bond with the Mn ligand, Glu39. Finally, these high-resolution structures also reveal the exact H atoms in several parts of the structure that are relevant to the catalytic mechanism.
Collapse
Affiliation(s)
| | - Michael H. Gold
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Portland, OR 97291-1000
| | - Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Chemistry, and Pharmaceutical Sciences University of California, Irvine, CA 92697-3900
| |
Collapse
|
14
|
Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 2009; 75:7509-18. [PMID: 19801472 DOI: 10.1128/aem.01121-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35 degrees C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 muM.min(-1), respectively. The apparent K(m) and k(cat)/K(m) values for Reactive Blue 5 were 3.6 muM and 1.2 x 10(7) M(-1) s(-1), respectively, while the apparent K(m) and k(cat)/K(m) values for H(2)O(2) were 5.8 muM and 6.6 x 10(6) M(-1) s(-1), respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to approximately 50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.
Collapse
|
15
|
Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 2008; 157:174-209. [PMID: 18581264 DOI: 10.1007/s12010-008-8279-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/05/2008] [Indexed: 10/21/2022]
Abstract
Lignin is the most abundant renewable source of aromatic polymer in nature, and its decomposition is indispensable for carbon recycling. It is chemically recalcitrant to breakdown by most organisms because of the complex, heterogeneous structure. The white-rot fungi produce an array of extracellular oxidative enzymes that synergistically and efficiently degrade lignin. The major groups of ligninolytic enzymes include lignin peroxidases, manganese peroxidases, versatile peroxidases, and laccases. The peroxidases are heme-containing enzymes with catalytic cycles that involve the activation by H2O2 and substrate reduction of compound I and compound II intermediates. Lignin peroxidases have the unique ability to catalyze oxidative cleavage of C-C bonds and ether (C-O-C) bonds in non-phenolic aromatic substrates of high redox potential. Manganese peroxidases oxidize Mn(II) to Mn(III), which facilitates the degradation of phenolic compounds or, in turn, oxidizes a second mediator for the breakdown of non-phenolic compounds. Versatile peroxidases are hybrids of lignin peroxidase and manganese peroxidase with a bifunctional characteristic. Laccases are multi-copper-containing proteins that catalyze the oxidation of phenolic substrates with concomitant reduction of molecular oxygen to water. This review covers the chemical nature of lignin substrates and focuses on the biochemical properties, molecular structures, reaction mechanisms, and related structures/functions of these enzymes.
Collapse
|
16
|
|
17
|
Feng M, Tachikawa H, Wang X, Pfister TD, Gengenbach AJ, Lu Y. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. J Biol Inorg Chem 2003; 8:699-706. [PMID: 14505074 DOI: 10.1007/s00775-003-0460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 03/28/2003] [Indexed: 11/28/2022]
Abstract
Cytochrome c peroxidase (C cP) variants with an engineered Mn(II) binding site, including MnC cP [C cP(MI, G41E, V45E, H181D)], MnC cP(W191F), and MnC cP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200-700 cm(-1) and 1300-1650 cm(-1) regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of C cP(MI), the recombinant yeast C cP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the nu(3) mode indicate that a pure five-coordinate heme iron exists in C cP(MI) whereas a six-coordinate low-spin iron is the dominant species in the C cP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants C cP(MI, W191F) and C cP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H(2)O(2) and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnC cP(W191F, W51F).
Collapse
Affiliation(s)
- Manliang Feng
- Department of Chemistry, Jackson State University, Box 17910, Jackson, MS 39217-0510, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kanayama N, Tohru S, Keiichi K. Purification and characterization of an alkaline manganese peroxidase from Aspergillus terreus LD-1. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80075-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Nomura N, Deguchi T, Shigeno-Akutsu Y, Nakajima-Kambe T, Nakahara T. Gene structures and catalytic mechanisms of microbial enzymes able to biodegrade the synthetic solid polymers nylon and polyester polyurethane. Biotechnol Genet Eng Rev 2002; 18:125-47. [PMID: 11530686 DOI: 10.1080/02648725.2001.10648011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- N Nomura
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| | | | | | | | | |
Collapse
|
20
|
KANAYAMA NOZOMI, SUZUKI TOHRU, KAWAI KEIICHI. Purification and Characterization of an Alkaline Manganese Peroxidase from Aspergillus terreus LD-1. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.93.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Gelpke MD, Youngs HL, Gold MH. Role of arginine 177 in the MnII binding site of manganese peroxidase. Studies with R177D, R177E, R177N, and R177Q mutants. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7038-45. [PMID: 11106414 DOI: 10.1046/j.1432-1327.2000.01798.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported that Arg177 is involved in MnII binding at the MnII binding site of manganese peroxidase isozyme 1 (MnP1) of Phanerochaete chrysosporium by examining two mutants: R177A and R177K. We now report on additional mutants: R177D, R177E, R177N, and R177Q. These new mutant enzymes were produced by homologous expression in P. chrysosporium and were purified to homogeneity. The molecular mass and the UV/visible spectra of the ferric and oxidized intermediates of the mutant enzymes were similar to those of the wild-type enzyme, suggesting proper folding, heme insertion, and preservation of the heme environment. However, steady-state and transient-state kinetic analyses demonstrate significantly altered characteristics of MnII oxidation by these new mutant enzymes. Increased dissociation constants (Kd) and apparent Km values for MnII suggest that these mutations at Arg177 decrease binding of MnII to the enzyme. These lowered binding efficiencies, as observed with the R177A and R177K mutants, suggest that the salt-bridge between Arg177 and the MnII binding ligand Glu35 is disrupted in these new mutants. Decreased kcat values for MnII oxidation, decreased second-order rate constants for compound I reduction (k2app), and decreased first-order rate constants for compound II reduction (k3) indicate that these new mutations also decrease the electron-transfer rate. This decrease in rate constants for compounds I and II reduction was not observed in our previous study on the R177A and R177K mutations. The lower rate constants suggest that, even with high MnII concentrations, the MnII binding geometries may be altered in the MnII binding site of these new mutants. These new results, combined with the results from our previous study, clearly indicate a role for Arg177 in promoting efficient MnII binding and oxidation by MnP.
Collapse
Affiliation(s)
- M D Gelpke
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
22
|
Lukat-Rodgers GS, Wengenack NL, Rusnak F, Rodgers KR. Spectroscopic comparison of the heme active sites in WT KatG and its S315T mutant. Biochemistry 2000; 39:9984-93. [PMID: 10933819 DOI: 10.1021/bi0006870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KatG, the catalase-peroxidase from Mycobacterium tuberculosis, has been characterized by resonance Raman, electron spin resonance, and visible spectroscopies. The mutant KatG(S315T), which is found in about 50% of isoniazid-resistant clinical isolates, is also spectroscopically characterized. The electron spin resonance spectrum of ferrous nitrosyl KatG is consistent with a proximal histidine ligand. The Fe-His stretching vibration observed at 244 cm(-1) for ferrous wild-type KatG and KatG(S315T) confirms the imidazolate character of the proximal histidine in their five-coordinate high-spin complexes. The ferrous forms of wild-type KatG and KatG(S315T) are mixtures of six-coordinate low-spin and five-coordinate high-spin hemes. The optical and resonance Raman signatures of ferric wild-type KatG indicate that a majority of the heme exists in a five-coordinate high-spin state, but six-coordinate hemes are also present. At room temperature, more six-coordinate low-spin heme is observed in ferrous and ferric KatG(S315T) than in the WT enzyme. While the nature of the sixth ligand of LS ferric wild-type KatG is not completely clear, visible, resonance Raman, and electron spin resonance data of KatG(S315T) indicate that its sixth ligand is a neutral nitrogen donor. Possible effects of these differences on enzyme activity are discussed.
Collapse
Affiliation(s)
- G S Lukat-Rodgers
- Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105, USA.
| | | | | | | |
Collapse
|
23
|
Youngs HL, Moënne-Loccoz P, Loehr TM, Gold MH. Formation of a bis(histidyl) heme iron complex in manganese peroxidase at high pH and restoration of the native enzyme structure by calcium. Biochemistry 2000; 39:9994-10000. [PMID: 10933820 DOI: 10.1021/bi000679j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.
Collapse
Affiliation(s)
- H L Youngs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
24
|
Chouchane S, Lippai I, Magliozzo RS. Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation. Biochemistry 2000; 39:9975-83. [PMID: 10933818 DOI: 10.1021/bi0005815] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates.
Collapse
Affiliation(s)
- S Chouchane
- Department of Chemistry, Brooklyn College CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210-2889, USA
| | | | | |
Collapse
|
25
|
Seibold SA, Cerda JF, Mulichak AM, Song I, Garavito RM, Arakawa T, Smith WL, Babcock GT. Peroxidase activity in prostaglandin endoperoxide H synthase-1 occurs with a neutral histidine proximal heme ligand. Biochemistry 2000; 39:6616-24. [PMID: 10828979 DOI: 10.1021/bi0002333] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) convert arachidonic acid to prostaglandin H(2) (PGH(2)), the committed step in prostaglandin and thromboxane formation. Interaction of peroxides with the heme sites in PGHSs generates a tyrosyl radical that catalyzes subsequent cyclooxygenase chemistry. To study the peroxidase reaction of ovine oPGHS-1, we combined spectroscopic and directed mutagenesis data with X-ray crystallographic refinement of the heme site. Optical and Raman spectroscopy of oxidized oPGHS-1 indicate that its heme iron (Fe(3+)) exists exclusively as a high-spin, six-coordinate species in the holoenzyme and in heme-reconstituted apoenzyme. The sixth ligand is most likely water. The cyanide complex of oxidized oPGHS-1 has a six-coordinate, low-spin ferric iron with a v[Fe-CN] frequency at 445 cm(-)(1); a monotonic sensitivity to cyanide isotopomers that indicates the Fe-CN adduct has a linear geometry. The ferrous iron in reduced oPGHS-1 adopts a high-spin, five-coordinate state that is converted to a six-coordinate, low-spin geometry by CO. The low-frequency Raman spectrum of reduced oPGHS-1 reveals two v[Fe-His] frequencies at 206 and 222 cm(-)(1). These vibrations, which disappear upon addition of CO, are consistent with a neutral histidine (His388) as the proximal heme ligand. The refined crystal structure shows that there is a water molecule located between His388 and Tyr504 that can hydrogen bond to both residues. However, substitution of Tyr504 with alanine yields a mutant having 46% of the peroxidase activity of native oPGHS-1, establishing that bonding of Tyr504 to this water is not critical for catalysis. Collectively, our results show that the proximal histidine ligand in oPGHS-1 is electrostatically neutral. Thus, in contrast to most other peroxidases, a strongly basic proximal ligand is not necessary for peroxidase catalysis by oPGHS-1.
Collapse
Affiliation(s)
- S A Seibold
- Department of Biochemistry, Department of Chemistry and the LASER Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sollewijn Gelpke MD, Moënne-Loccoz P, Gold MH. Arginine 177 is involved in Mn(II) binding by manganese peroxidase. Biochemistry 1999; 38:11482-9. [PMID: 10471300 DOI: 10.1021/bi990943c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-directed mutations R177A and R177K in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium were generated. The mutant enzymes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter, purified to homogeneity, and characterized by spectroscopic and kinetic methods. The UV-vis spectra of the ferric and oxidized states and resonance Raman spectra of the ferric state were similar to those of the wild-type enzyme, indicating that the heme environment was not significantly affected by the mutations at Arg177. Apparent K(m) values for Mn(II) were approximately 20-fold greater for the R177A and R177K MnPs than for wild-type MnP. However, the apparent K(m) values for the substrates, H(2)O(2) and ferrocyanide, and the k(cat) values for Mn(II) and ferrocyanide oxidation were similar to those of the wild-type enzyme. The second-order rate constants for compound I (MnPI) reduction of the mutant MnPs by Mn(II) were approximately 10-fold lower than for wild-type MnP. In addition, the K(D) values calculated from the first-order plots of MnP compound II (MnPII) reduction by Mn(II) for the mutant enzymes were approximately 22-fold greater than for wild-type MnP. In contrast, the first-order rate constants for MnPII reduction by Mn(II) were similar for the mutant and wild-type MnPs. Furthermore, second-order rate constants for the wild-type and mutant enzymes for MnPI formation, for MnPI reduction by bromide, and for MnPI and MnPII reduction by ferrocyanide were not significantly changed. These results indicate that both the R177A and R177K mutations specifically affect the binding of Mn, whereas the rate of electron transfer from Mn(II) to the oxidized heme apparently is not affected.
Collapse
Affiliation(s)
- M D Sollewijn Gelpke
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA
| | | | | |
Collapse
|
27
|
Banci L, Bertini I, Capannoli C, Del Conte R, Tien M. Spectroscopic characterization of active mutants of manganese peroxidase: mutations on the proximal side affect calcium binding of the distal side. Biochemistry 1999; 38:9617-25. [PMID: 10423239 DOI: 10.1021/bi9825697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mutants at position 242 of manganese peroxidase (MnP), where the native Asp has been substituted with a Ser or a Glu, have been shown to be active, and are here characterized by electronic, EPR, and NMR spectroscopies. We have also mutated another residue on the proximal side, Phe 190 to Val and Leu, yielding active mutants. When studied by the above-mentioned spectroscopies, the mutants at both positions 242 and 190 exhibit three pH-dependent transitions. In contrast to the transitions observed at low and high pH, the spectroscopic studies reveal that the transition at intermediate pH has pK(a) values up to 2 units lower for the mutants at D242E and -S and F190V than for the wild type. This process is due to the ionization of a group that affects the transition to the bis-histidine coordination at the iron. The observed changes in the pK(a) values are related to the altered affinity of the calcium-binding site in the distal pocket. Other variations are observed in the other two pK(a) values. Characterization of the cyanide derivatives indicates that the location and orientation of the distal and proximal His residues are essentially identical to that in the wild type. Our results indicate that mutations on the proximal side residues can affect changes in the distal side. In particular, deprotonation of a group, whose pK(a) is influenced by the nature of the residues in the proximal side, produces a movement of helix B, which in turn induces the coordination of the distal His and the loss of the distal calcium ion.
Collapse
Affiliation(s)
- L Banci
- Department of Chemistry, Centro di Risononze Magnetiche, University of Florence, Italy
| | | | | | | | | |
Collapse
|
28
|
Banci L, Bertini I, Dal Pozzo L, Del Conte R, Tien M. Monitoring the role of oxalate in manganese peroxidase. Biochemistry 1998; 37:9009-15. [PMID: 9636044 DOI: 10.1021/bi972879+] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The water proton relaxation rate measurements between 0.01 and 50 MHz on water solutions containing the cyanide adduct of the manganese-depleted manganese peroxidase (MnP-CN-) and increasing amounts of Mn2+ have been determined. The proton relaxivity curves have shown evidence of the formation of the protein/Mn2+ complex and have been analyzed in order to obtain spin Hamiltonian parameters and correlation times. Oxalate is shown not to alter the above profiles. This suggests that no protein-Mn2+-oxalate ternary complex is formed and that oxalate does not remove Mn2+ from the protein. On the basis of high-resolution 1H NMR experiments, we propose that Ce3+ and Gd3+ bind at the manganese site, and, on the basis of the charge, we propose that they may mimic Mn3+. The water proton relaxation rates of water solutions containing manganese-depleted MnP-CN- and increasing amounts of Gd3+ have been measured and analyzed. Oxalate is shown to remove the trivalent metal ions. This suggests that trivalent metal ions bind oxalate and diffuse away from the protein presumably as oxalate complexes. Implications for the enzymatic mechanism are discussed.
Collapse
Affiliation(s)
- L Banci
- Department of Chemistry, University of Florence, Italy
| | | | | | | | | |
Collapse
|
29
|
Deguchi T, Kitaoka Y, Kakezawa M, Nishida T. Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 1998; 64:1366-71. [PMID: 9546174 PMCID: PMC106156 DOI: 10.1128/aem.64.4.1366-1371.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A nylon-degrading enzyme found in the extracellular medium of a ligninolytic culture of the white rot fungus strain IZU-154 was purified by ion-exchange chromatography, gel filtration chromatography, and hydrophobic chromatography. The characteristics of the purified protein (i.e., molecular weight, absorption spectrum, and requirements for 2,6-dimethoxyphenol oxidation) were identical to those of manganese peroxidase, which was previously characterized as a key enzyme in the ligninolytic systems of many white rot fungi, and this result led us to conclude that nylon degradation is catalyzed by manganese peroxidase. However, the reaction mechanism for nylon degradation differed significantly from the reaction mechanism reported for manganese peroxidase. The nylon-degrading activity did not depend on exogenous H2O2 but nevertheless was inhibited by catalase, and superoxide dismutase inhibited the nylon-degrading activity strongly. These features are identical to those of the peroxidase-oxidase reaction catalyzed by horseradish peroxidase. In addition, alpha-hydroxy acids which are known to accelerate the manganese peroxidase reaction inhibited the nylon-degrading activity strongly. Degradation of nylon-6 fiber was also investigated. Drastic and regular erosion in the nylon surface was observed, suggesting that nylon is degraded to soluble oligomers and that nylon is degraded selectively.
Collapse
Affiliation(s)
- T Deguchi
- Environmental Technology Research Section, Kobe Steel, Ltd., Japan.
| | | | | | | |
Collapse
|
30
|
Sheng D, Gold MH. Haloperoxidase activity of manganese peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 1997; 345:126-34. [PMID: 9281319 DOI: 10.1006/abbi.1997.0217] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Manganese peroxidase (MnP) from Phanerochaete chrysosporium exhibits haloperoxidase activity at low pH. In the presence of hydrogen peroxide, MnP oxidizes bromide and iodide as measured by the formation of tribromide and triiodide complexes and the halogenation of various organic substrates. The optimum pHs for bromide and iodide oxidation are 2.5 and 3.0, respectively. Transient-state kinetic studies show that the reaction between MnP compound I and bromide or iodide occurs via a single two-electron step process, obeying second-order kinetics. The second-order rate constants for MnP compound I reduction by bromide and iodide are (4.1 +/- 0.2) x 10(3) and (1.1 +/- 0.1) x 10(5) m-1 s-1, respectively, at pH 3.0. MnP brominates a variety of aromatic substrates, including veratryl (3,4-di-methoxybenzyl) alcohol (I) to produce of 2-bromo-4,5-dimethoxybenzyl alcohol (II). MnP also hydrobrominates cinnamic acid (VI) to produce 2-bromo-3-hydroxyphenylpropionic acid (VII). With 3,4-dimethoxycinnamic acid (III) as the substrate, two bromination products are identified: trans-2-bromo-1-(3, 4-dimethoxyphenyl) ethylene (IV) and 2-bromo-3-(3, 4-dimethoxyphenyl)-3-hydroxypropionic acid (V). MnP also brominates 1,3-dicarbonyl compounds such as monochlorodimedone and malonic acid. Incubation of MnP with bromide and H2O2 in the absence of organic substrates results in enzyme inactivation. MnP binds halides to produce characteristic optical difference spectra. From these spectra, apparent dissociation constants at pH 3.0 are determined to be 0.13, 20, and 45 mm for fluoride, chloride, and bromide, respectively.
Collapse
Affiliation(s)
- D Sheng
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | |
Collapse
|
31
|
Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem 1997; 272:17574-80. [PMID: 9211904 DOI: 10.1074/jbc.272.28.17574] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Manganese peroxidase (MnP), an extracellular heme enzyme from the lignin-degrading basidiomycetous fungus, Phanerochaete chrysosporium, catalyzes the oxidation of MnII to MnIII. The latter, acting as a diffusible redox mediator, is capable of oxidizing a variety of lignin model compounds. The proposed MnII binding site of MnP consists of a heme propionate, three acidic ligands (Glu-35, Glu-39, and Asp-179), and two water molecules. Using crystallographic methods, this binding site was probed by altering the amount of MnII bound to the protein. Crystals grown in the absence of MnII, or in the presence of EDTA, exhibited diminished electron density at this site. Crystals grown in excess MnII exhibited increased electron density at the proposed binding site but nowhere else in the protein. This suggests that there is only one major MnII binding site in MnP. Crystal structures of a single mutant (D179N) and a double mutant (E35Q,D179N) at this site were determined. The mutant structures lack a cation at the MnII binding site. The structure of the MnII binding site is altered significantly in both mutants, resulting in increased access to the solvent and substrate.
Collapse
Affiliation(s)
- M Sundaramoorthy
- Department of Molecular Biology & Biochemistry and Physiology & Biophysics, University of California, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|
32
|
Gruenke LD, Sun J, Loehr TM, Waskell L. Resonance Raman spectral properties and stability of manganese protoporphyrin IX cytochrome b5. Biochemistry 1997; 36:7114-25. [PMID: 9188711 DOI: 10.1021/bi970407p] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structure and stability of cytochrome b5 reconstituted with manganese protoporphyrin IX instead of iron protoporphyrin IX has been investigated by resonance Raman spectroscopy and stopped-flow visible spectroscopy. The resonance Raman spectrum of MnIII cytochrome b5 was consistent with a high-spin hexacoordinate MnIII protoporphyrin IX structure that converted to a high-spin pentacoordinate structure at higher laser power. The resonance Raman spectrum of MnII cytochrome b5 indicated a high-spin pentacoordinate structure which was independent of laser power. Studies of the binding of MnIII protoporphyrin IX to apocytochrome b5 indicated that the MnIII-containing porphyrin bound much less tightly to the protein than did heme. Although the second-order rate constant at 20 degrees C for the association of heme with apocytochrome b5 (4.5 x 10(7) M(-1) s(-1)) was estimated to be only 1 order of magnitude higher than that with Mn protoporphyrin IX (3.3 x 10(6) M(-1) s(-1)), the dissociation of manganese substituted cytochrome b5 into the apoprotein and free Mn protoporphyrin IX occurs with a first-order rate constant of 1.2 x 10(-2) s(-1) at 20 degrees C while the dissociation of heme from cytochrome b5 at room temperature occurs 3 orders of magnitude more slowly with a first-order rate constant of 1.67 x 10(-5) s(-1) [Vergeres, G., Chen, D. Y., Wu, F.F., & Waskell, L. (1993) Arch. Biochem. Biophys. 305, 231-241]. The equilibrium dissociation constant for manganese-substituted cytochrome b5 increased with temperature from 4 nM at 20 degrees C to 14 nM at 37 degrees C. These results suggest that, in the reconstituted cytochrome P450 metabolizing system, especially in studies done with low protein concentrations (0.1 microM), and at elevated temperatures (37 degrees C), as much as 30% of the manganese-substituted cytochrome b5 may dissociate to free Mn-protoporphyrin IX and apocytochrome b5.
Collapse
Affiliation(s)
- L D Gruenke
- Department of Anesthesia and the Liver Center, University of California, and the Veterans Administration Medical Center, San Francisco 94121, USA
| | | | | | | |
Collapse
|
33
|
Cohen JD, Bao W, Renganathan V, Subramaniam SS, Loehr TM. Resonance Raman spectroscopic studies of cellobiose dehydrogenase from Phanerochaete chrysosporium. Arch Biochem Biophys 1997; 341:321-8. [PMID: 9169022 DOI: 10.1006/abbi.1997.9987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellobiose dehydrogenase (CDH), an extracellular hemoflavoenzyme produced by cellulose-degrading cultures of Phanerochaete chrysosporium, oxidizes cellobiose to cellobionolactone. The enzyme contains one 6-coordinate, low-spin b-type heme and one FAD cofactor per monomeric protein. In this work, resonance Raman (RR) spectra are reported for the oxidized, reduced, and deflavo forms of CDH as well as the individual flavin and heme domains of the enzyme obtained by peptide proteolysis. The RR spectra of the flavin and heme groups of CDH were assigned by comparison to the spectra of other hemoflavoenzymes and model compounds. Proteolytic cleavage of the CDH domains had only a minimal spectroscopic effect on the vibrational modes of the heme and FAD cofactors. Excitation of the oxidized CDH holoenzyme at 413 or 442 nm resulted in photoreduction of the heme. However, the same excitation wavelength used on the deflavo form of the enzyme or on the heme domain alone did not cause photoreduction, indicating that photoinitiated electron transfer requires the FAD cofactor. These observations suggest an enzymatic mechanism whereby reducing equivalents obtained from the oxidation of cellobiose are transferred from the FAD to the heme. A similar mechanism has been proposed for flavocytochrome b2 of Saccharomyces cerevisiae which oxidizes lactate to pyruvate (A. Desbois et al., 1989, Biochemistry 28, 8011-8022).
Collapse
Affiliation(s)
- J D Cohen
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|
34
|
Kishi K, Hildebrand DP, Kusters-van Someren M, Gettemy J, Mauk AG, Gold MH. Site-directed mutations at phenylalanine-190 of manganese peroxidase: effects on stability, function, and coordination. Biochemistry 1997; 36:4268-77. [PMID: 9100022 DOI: 10.1021/bi962627t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of site-directed mutants, F190Y, F190L, F190I, and F190A, in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium was generated by overlap extension with the polymerase chain reaction. The mutant genes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The manganese peroxidase variants (MnPs) were purified and characterized by kinetic and spectroscopic methods. At pH 4.5, the UV-vis spectra of the ferric and oxidized states of the mutant proteins were very similar to those of the wild-type enzyme. Steady-state kinetic analyses showed that the apparent Km and k(cat) values for MnII and H2O2 also were similar to the corresponding values for the wild-type MnP. The apparent Km and k(cat) values for ferrocyanide oxidation by MnP were not affected by the F190Y, F190L, or F190I mutations; however, the apparent Km value for ferrocyanide oxidation by the F190A mutant MnP was approximately 1/8 of that for the wild-type enzyme. Likewise, the apparent k(cat) value for ferrocyanide oxidation by the MnP F190A mutant was approximately 4-fold greater than the corresponding k(cat) for the wild-type MnP. The stabilities of both the native and oxidized states of MnP were significantly affected by several of the mutations at Phe190. Replacement of Phe190 by either Ile or Ala significantly destabilized the resultant proteins to thermal denaturation. Moreover, the rates of spontaneous reduction of the oxidized intermediates, MnP compounds I and II, were dramatically increased for the F190A mutant relative to the rates observed for the wild-type enzyme. The spectroscopic properties of the wild-type and F190 mutant MnPs were examined as a function of pH. At room temperature, increasing pH from 5.0 to 8.5 induced a FeIII high- to low-spin transition for all of the MnP proteins. This transition may involve direct coordination of the distal His residue to the heme iron to produce bishistidinyl coordination as suggested by magnetic circular dichroism spectroscopy. The pH at which this transition occurred was considerably lower for the F190A and F190I variants and suggests that Phe190 plays a critical role in stabilizing the heme environment of MnP.
Collapse
Affiliation(s)
- K Kishi
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yeung BK, Wang X, Sigman JA, Petillo PA, Lu Y. Construction and characterization of a manganese-binding site in cytochrome c peroxidase: towards a novel manganese peroxidase. CHEMISTRY & BIOLOGY 1997; 4:215-21. [PMID: 9115415 DOI: 10.1016/s1074-5521(97)90291-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Manganese-binding sites are found in several heme peroxidases, namely manganese peroxidase (MnP), chloroperoxidase, and the cationic isozyme of peanut peroxidase. The Mn-binding site in MnP is of particular interest. Oxidation of Mn(II) to Mn(III) is a key step in the biodegradation of lignin, a complex phenylpropanoid polymer, as well as many aromatic pollutants. Cytochrome c peroxidase (CcP), which is structurally homologous to MnP despite a poor sequence homology, does not bind manganese. Thus, engineering a Mn-binding site into CcP will allow us to elucidate principles behind designing metal-binding sites in proteins, to understand the structure and function of this class of Mn-binding centers, and to prepare novel enzymes that can degrade both lignin and other xenobiotic compounds. RESULTS Based on a comparison of the crystal structures of CcP and MnP, a site-directed triple mutant (Gly41-->Glu, Val45-->Glu, His181-->Asp) of residues near the putative Mn-binding site in CcP was prepared and purified to homogeneity. Titrating MnSO4 into freshly prepared mutant CcP resulted in electronic absorption spectral changes similar to those observed in MnP. The calculated apparent dissociation constant and the stoichiometry of Mn-binding of CCP were also similar to MnP. Titration with MnSO4 resulted in the disappearance of specific paramagnetically shifted nuclear magnetic resonance spectroscopy signals assigned to residues close to the putative Mn-binding site in the mutant CcP. None of the spectral features were observed in wild-type CcP. In addition, the triple mutant was capable of oxidizing Mn(II) at least five times more efficiently than the native CcP. CONCLUSIONS A Mn-binding site has been created in CcP and based on our spectroscopic studies the designed Mn-binding site is similar to the Mn-binding site in MnP. The results provide a basis for understanding the structure and function of the Mn-binding site and its role in different heme peroxidases.
Collapse
Affiliation(s)
- B K Yeung
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
36
|
Périé FH, Sheng D, Gold MH. Purification and characterization of two manganese peroxidase isozymes from the white-rot basidiomycete Dichomitus squalens. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:139-48. [PMID: 8917615 DOI: 10.1016/s0167-4838(96)00096-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two manganese peroxidase isozymes, MnP1 and MnP2, were purified from the extracellular medium of ligninolytic cultures of Dichomitus squalens. The proteins were purified to homogeneity using DEAE-Sepharose chromatography and Mono Q fast protein liquid chromatography. MnP1 and MnP2 have molecular masses of 48000 and 48900 Da, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both isozymes are glycoproteins and each contains one iron protoporphyrin IX as a prosthetic group. The pl values of MnP1 and MnP2 are 4.15 and 3.90, respectively. N-Terminal amino-acid analysis suggests that these proteins are encoded by distinct genes. The Soret bands of the native ferric enzymes (408 nm and 406 nm, respectively) are shifted to 434 nm in the reduced enzymes and to 422 nm in the reduced-CO complexes. EPR g-values of the native enzymes are essentially identical to those for other MnPs and lignin peroxidases, and they confirm the high-spin state of the iron. The addition of 1 equivalent of H2O2 to either of the native ferric isozymes yields spectra which are characteristic of compound 1. Successive additions of 1 equivalent of ferrocyanide and 1 equivalent of H2O2 to the native enzymes yield spectra which are characteristic of compound II. Both MnP isozymes oxidize Mn2+ to Mn3+ in the presence of organic acid chelators. The MnP isozymes are produced by D. squalens only when the cells are grown in the presence of Mn.
Collapse
Affiliation(s)
- F H Périé
- Department of Chemistry, Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | |
Collapse
|
37
|
Kishi K, Kusters-van Someren M, Mayfield MB, Sun J, Loehr TM, Gold MH. Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry 1996; 35:8986-94. [PMID: 8688436 DOI: 10.1021/bi960679c] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of site-directed mutants, E35Q, E39Q, and E35Q-D179N, in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium, was created by overlap extension, using the polymerase chain reaction. The mutant genes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The mutant manganese peroxidases (MnPs) were purified and characterized. The molecular masses of the mutant proteins, as well as UV-vis spectral features of their oxidized states, were very similar to those of the wild-type enzyme. Resonance Raman spectral results indicated that the heme environment of the mutant MnP proteins also was similar to that of the wild-type protein. Steady-state kinetic analyses of the E35Q and E39Q mutant MnPs yielded K(m) values for the substrate MnII that were approximately 50-fold greater than the corresponding K(m) value for the wild-type enzyme. Likewise, the kcat values for MnII oxidation were approximately 300-fold lower than that for wild-type MnP. With the E35Q-D179N double mutant, the K(m) value for MnII was approximately 120-fold greater, and the kcat value was approximately 1000-fold less than that for the wild-type MnP1. Transient-state kinetic analysis of the reduction of MnP compound II by MnII allowed the determination of the equilibrium dissociation constants (KD) and first- order rate constants for the mutant proteins. The KD values were approximately 100-fold higher for the single mutants and approximately 200-fold higher for the double mutant, as compared with the wild-type enzyme. The first-order rate constants for the single and double mutants were approximately 200-fold and approximately 4000-fold less, respectively, than that of the wild-type enzyme. In contrast, the K(m) values for H2O2 and the rates of compound I formation were similar for the mutant and wild-type MnPs. The second-order rate constants for p-cresol and ferrocyanide reduction of the mutant compounds II also were similar to those of the wild-type enzyme.
Collapse
Affiliation(s)
- K Kishi
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sun J, Osborne JP, Kahlow MA, Kaysser TM, Hil JJ, Gennis RB, Loehr TM. Resonance Raman studies of Escherichia coli cytochrome bd oxidase. Selective enhancement of the three heme chromophores of the "as-isolated" enzyme and characterization of the cyanide adduct. Biochemistry 1995; 34:12144-51. [PMID: 7547954 DOI: 10.1021/bi00038a007] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Sun
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Youn HD, Yim YI, Kim K, Hah YC, Kang SO. Spectral characterization and chemical modification of catalase-peroxidase from Streptomyces sp. J Biol Chem 1995; 270:13740-7. [PMID: 7775429 DOI: 10.1074/jbc.270.23.13740] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Catalase-peroxidase was purified to near homogeneity from Streptomyces sp. The enzyme was composed of two subunits with a molecular mass of 78 kDa and contained 1.05 mol of protoporphyrin IX/mol of dimeric protein. The absorption and resonance Raman spectra of the native and its cyano-enzyme were closely similar to those of other heme proteins with a histidine as the fifth ligand. However, the peak from tyrosine ring at approximately 1612 cm-1, which is unique in catalases, was not found in resonance Raman spectra of catalase-peroxidase. The electron paramagnetic resonance spectrum of the native enzyme revealed uniquely two sets of rhombic signals, which were converted to a single high spin, hexacoordinate species after the addition of sodium formate. Cyanide bound to the sixth coordination position of the heme iron, thereby converting the enzyme to a low spin, hexacoordinate species. The time-dependent inactivation of the enzyme with diethyl pyrocarbonate and its kinetic analysis strongly suggested the occurrence of histidine residue. From the above-mentioned spectroscopic results and chemical modification, it was deduced that the native enzyme is predominantly in the high spin, ferric form and has a histidine as the fifth ligand.
Collapse
Affiliation(s)
- H D Youn
- Department of Microbiology, College of Natural Sciences, Seoul National University, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Mayfield MB, Kishi K, Alic M, Gold MH. Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 1994; 60:4303-9. [PMID: 7811070 PMCID: PMC201985 DOI: 10.1128/aem.60.12.4303-4309.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was used to drive expression of mnp1, the gene encoding Mn peroxidase isozyme 1, in primary metabolic cultures of Phanerochaete chrysosporium. A 1,100-bp fragment of the P. chrysosporium gpd promoter region was fused upstream of the mnp1 gene to construct plasmid pAGM1, which contained the Schizophyllum commune ade5 gene as a selectable marker. pAGM1 was used to transform a P. chrysosporium ade1 auxotroph to prototrophy. Ade+ transformants were screened for peroxidase activity on a solid medium containing high carbon and high nitrogen (2% glucose and 24 mM NH4 tartrate) and o-anisidine as the peroxidase substrate. Several transformants that expressed high peroxidase activities were purified and analyzed further in liquid cultures. Recombinant Mn peroxidase (rMnP) was expressed and secreted by transformant cultures on day 2 under primary metabolic growth conditions (high carbon and high nitrogen), whereas endogenous wild-type mnp genes were not expressed under these conditions. Expression of rMnP was not influenced by the level of Mn in the culture medium, as previously observed for the wild-type Mn peroxidase (wtMnP). The amount of active rMnP expressed and secreted in this system was comparable to the amount of enzyme expressed by the wild-type strain under ligninolytic conditions. rMnP was purified to homogeneity by using DEAE-Sepharose chromatography, Blue Agarose chromatography, and Mono Q column chromatography. The M(r) and absorption spectrum of rMnP were essentially identical to the M(r) and absorption spectrum of wtMnP, indicating that heme insertion, folding, and secretion were normal.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M B Mayfield
- Department of Chemistry, Biochemistry, and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000
| | | | | | | |
Collapse
|
41
|
Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30056-9] [Citation(s) in RCA: 301] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Orth AB, Rzhetskaya M, Cullen D, Tien M. Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase-encoding genes. Gene 1994; 148:161-5. [PMID: 7926830 DOI: 10.1016/0378-1119(94)90251-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two heme proteins, manganese peroxidase (MnP) and lignin peroxidase (LiP), play key roles in the fungal depolymerization of lignin. Many cDNA and genomic clones encoding these peroxidases have been published. We report here on the cDNA lambda MP-2 encoding the MnP isozyme H3 from Phanerochaete chrysosporium strain BKM-F-1767. We also demonstrate that the MnP-encoding gene, lambda MP-1, encoding isozyme H4, and lambda MP-2 reside on separate chromosomes from each other and from the LiP-encoding genes. From these results, it is apparent that lambda MP-2 is not linked to lambda MP-1 or other genes believed to be involved in lignin depolymerization, such as the LiP and glyoxal oxidase.
Collapse
Affiliation(s)
- A B Orth
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16803
| | | | | | | |
Collapse
|
43
|
|
44
|
|
45
|
Kang SO, Shin KS, Han YH, Youn HD, Hah YC. Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1163:158-64. [PMID: 8387825 DOI: 10.1016/0167-4838(93)90177-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A peroxidase was purified 98.3-fold from the culture filtrate of Pleurotus ostreatus with an overall yield of 12.4%. The molecular mass determined by gel filtration was found to be approx. 140 kDa. SDS-PAGE revealed that the enzyme consists of two identical subunits with a molecular mass of approx. 72 kDa. The pI value of this enzyme is approx. 4.3. The enzyme contains 41% carbohydrate by weight, and aspartic acid and asparagine (16.8%), and glutamic acid and glutamine (12.0%). The enzyme has the highest affinity toward synaptic acid and affinity towards various phenolic compounds containing methoxyl and p-hydroxyl groups, directly attached to the benzene ring. However, the enzyme does not react with veratryl alcohol and shows no affinity for nonphenolic compounds. The optimal reaction pH and temperature are 4.0 and 40 degrees C, respectively. The catalytic mechanism of the enzymic reaction is of the Ping-Pong type. The activity of the enzyme is competitively inhibited by high concentrations of H2O2 and its Ki value is 1.70 mM against H2O2. This enzyme contains approx. 1 mol of heme per mol of one subunit of the enzyme. The pyridine hemochrome spectrum of the enzyme indicates that the heme of P. ostreatus peroxidase is iron protoporphyrin IX. The EPR spectrum of the native peroxidase shows the presence of a high-spin ferric complex with g values at 6.102, 5.643 and 1.991.
Collapse
Affiliation(s)
- S O Kang
- Department of Microbiology, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | |
Collapse
|
46
|
Wariishi H, Valli K, Gold M. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35893-9] [Citation(s) in RCA: 730] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Tuor U, Wariishi H, Schoemaker HE, Gold MH. Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an alpha-carbonyl model compound. Biochemistry 1992; 31:4986-95. [PMID: 1599925 DOI: 10.1021/bi00136a011] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Manganese peroxidase (MnP) oxidized 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-(hydroxymethyl)-2-methoxyphenoxy) -1,3-dihydroxypropane (I) in the presence of MnII and H2O2 to yield 1-(3,5-dimethoxy-4-hydroxyphenyl)- 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-1-oxo-3-hydroxypropane (II), 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanal (V), syringaldehyde (VI), vanillyl alcohol (VII), and vanillin (VIII). MnP oxidized II to yield 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), vanillyl alcohol (VII), vanillin (VIII), syringic acid (IX), and 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanoic acid (X). A chemically prepared MnIII-malonate complex catalyzed the same reactions. Oxidation of I and II in H2(18)O under argon resulted in incorporation of one atom of 18O into the quinone III and into the hydroquinone IV. Incorporation of one atom of oxygen from H2(18)O into syringic acid (IX) and the phenoxypropanoic acid X was also observed in the oxidation of II. These results are explained by mechanisms involving the initial one-electron oxidation of I or II by enzyme-generated MnIII to produce a phenoxy radical. This intermediate is further oxidized by MnIII to a cyclohexadienyl cation. Loss of a proton, followed by rearrangement of the quinone methide intermediate, yields the C alpha-oxo dimer II as the major product from substrate I. Alternatively, cyclohexadienyl cations are attacked by water. Subsequent alkyl-phenyl cleavage yields the hydroquinone IV and the phenoxypropanal V from I, and IV and the phenoxypropanoic acid X from II, respectively. The initial phenoxy radical also can undergo C alpha-C beta bond cleavage, yielding syringaldehyde (VI) and a C6-C2-ether radical from I and syringic acid (IX) and the same C6-C2-ether radical from II. The C6-C2-ether radical is scavenged by O2 or further oxidized by MnIII, subsequently leading to release of vanillyl alcohol (VII). VII and IV are oxidized to vanillin (VIII) and the quinone III, respectively.
Collapse
Affiliation(s)
- U Tuor
- Department of Chemical and Biological Sciences, Oregon Graduate Institute of Science and Technology, Beaverton 97006-1999
| | | | | | | |
Collapse
|
48
|
Pease EA, Aust SD, Tien M. Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 1991; 179:897-903. [PMID: 1898410 DOI: 10.1016/0006-291x(91)91903-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cDNA encoding Mn peroxidase isozyme H4 from Phanerochaete chrysosporium was recombined into a baculovirus and heterologously expressed in Sf9 cells. The recombinant Mn peroxidase has the same molecular weight as the native enzyme as determined by SDS-PAGE and cross-reacts with a Mn peroxidase-specific antibody. The recombinant enzyme has a slightly lower pI than the native fungal isozyme H4 indicating some differences in post-translational modification. Phenol red, guaiacol, and vanillylacetone, substrates of the native Mn peroxidase, are oxidized by the recombinant enzyme. All of the activities are dependent on both Mn (II) and H2O2.
Collapse
Affiliation(s)
- E A Pease
- Department of Molecular and Cell Biology, Pennsylvania State University University Park 16802
| | | | | |
Collapse
|
49
|
Tuisel H, Grover TA, Lancaster JR, Bumpus JA, Aust SD. Inhibition of lignin peroxidase H2 by sodium azide. Arch Biochem Biophys 1991; 288:456-62. [PMID: 1654834 DOI: 10.1016/0003-9861(91)90220-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 from Phanerochaete chrysosporium and H2O2 was strongly inhibited by sodium azide. Inhibition was competitive with respect to veratryl alcohol (Ki = 1-2 microM) and uncompetitive with respect to H2O2. In contrast, sodium azide bound to the native enzyme at pH 6.0 with an apparent dissociation constant (KD) of 126 mM. Formation of azidyl radicals was detected by ESR spin trapping techniques. The enzymes is nearly completely inactivated in four turnovers. The H2O2-activated enzyme intermediate (compound I) reacted with sodium azide to form a new species rather than be reduced to the enzyme intermediate compound II. The new species has absorption maxima at 418, 540, and 570 nm, suggesting the formation of a ferrous-lignin peroxidase-NO complex. Confirmation of this assignment was obtained by low-temperature ESR spectroscopy. An identical complex could be simulated by the addition of nitrite to the reduced enzyme. The enzyme intermediate compound II is readily reduced by sodium azide to native enzyme with essentially no loss of activity.
Collapse
Affiliation(s)
- H Tuisel
- Biotechnology Center, Utah State University, Logan 84322-4700
| | | | | | | | | |
Collapse
|
50
|
Hurst JK, Loehr TM, Curnutte JT, Rosen H. Resonance Raman and electron paramagnetic resonance structural investigations of neutrophil cytochrome b558. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52340-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|