1
|
Bhattacharya B, Bhattacharya S, Khatun S, Bhaktham NA, Maneesha M, Subathra Devi C. Wasp Venom: Future Breakthrough in Production of Antimicrobial Peptides. Protein J 2025; 44:35-47. [PMID: 39633224 DOI: 10.1007/s10930-024-10242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
The emergence of multi-drug-resistant pathogens and the decrease in the discovery of newer antibiotics have led to a quest for novel alternatives. Recently, wasp venom has spiked interest due to the presence of various active compounds, showcasing a diverse range of therapeutic effects. Wasps are creatures of the Hymenoptera order, and their venom chemically comprises antimicrobial peptides such as Anoplin, Mastoparan, Polybia-CP, Polydim-I, and Polybia MP1 that play a significant role in the biological effects of the venom. AMPs belong to the family of cationic peptides with α-helical structure, which exhibits a diversity of structural motifs and are crucial for innate immunity and defence in these creatures. These peptides demonstrate not only antimicrobial properties but also a wide range of other biological activities like anti-biofilm and anti-inflammatory, linked to their varying capacity to interact with biological membranes. Although wasp venom has the potential to be a cutting-edge natural source for the creation of new drugs, its usage is still restricted due to its availability and the lack of sophisticated methods for synthesizing its therapeutic components. Therefore, this review article provides insights about the therapeutic use of the wasp venom peptides against the antimicrobial-resistant pathogens, as well as its constraints and opportunities for future pharmacological development.
Collapse
Affiliation(s)
- Bikramjit Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Shreshtha Bhattacharya
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srinjana Khatun
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Namitha A Bhaktham
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - M Maneesha
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C Subathra Devi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Wang Q, Liu C, Chen M, Zhao J, Wang D, Gao P, Zhang C, Zhao H. Mastoparan M promotes functional recovery in stroke mice by activating autophagy and inhibiting ferroptosis. Biomed Pharmacother 2024; 174:116560. [PMID: 38583338 DOI: 10.1016/j.biopha.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Neuronal ferroptosis and autophagy are crucial in the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Mastoparan M (Mast-M), extracted from the crude venom of Vespa magnifica (Smith), comprises 14 amino acid residues. Previous studies suggested that Mast-M reduces neuronal damage following global CIRI, but its protective mechanisms remain unclear. The present study examined the effect of Mast-M on middle cerebral artery occlusion/reperfusion (MCAO/R) induced neurological deficits using Grip, Rotarod, Longa test, and TTC staining, followed by treating the mice for three days with Mast-M (20, 40, and 80 μg/kg, subcutaneously). The results demonstrate that Mast-M promotes functional recovery in mice post-ischemic stroke, evidenced by improved neurological impairment, reduced infarct volume and neuronal damage. Meanwhile, the level of iron (Fe2+) and malonyldialdehyde was decreased in the ischemic hemisphere of MCAO/R mice at 24 hours or 48 hours by Mast-M (80 μg/kg) treatment, while the expression of NRF2, x-CT, GPX4, and LC3B protein was increased. Furthermore, these findings were validated in three models-oxygen-glucose deprivation/ reoxygenation, H2O2-induced peroxidation, and erastin-induced ferroptosis-in hippocampal neuron HT22 cells or primary neurons. These data suggested that Mast-M activates autophagy as well as inhibits ferroptosis. Finally, autophagy inhibitors were introduced to determine the relationship between the autophagy and ferroptosis, indicating that Mast-M alleviates ferroptosis by activating autophagy. Taken together, this study described that Mast-M alleviates cerebral infarction, neurologic impairment, and neuronal damage by activating autophagy and inhibiting ferroptosis, presenting a potential therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
3
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
4
|
Baldo BA, Pham NH. Opioid toxicity: histamine, hypersensitivity, and MRGPRX2. Arch Toxicol 2023; 97:359-375. [PMID: 36344690 DOI: 10.1007/s00204-022-03402-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.
Collapse
Affiliation(s)
- Brian A Baldo
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia. .,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia.
| | - Nghia H Pham
- Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, NSW, 2065, Australia.,Department of Medicine, University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
5
|
Myo-D-inositol Trisphosphate Signalling in Oomycetes. Microorganisms 2022; 10:microorganisms10112157. [DOI: 10.3390/microorganisms10112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Oomycetes are pathogens of plants and animals, which cause billions of dollars of global losses to the agriculture, aquaculture and forestry sectors each year. These organisms superficially resemble fungi, with an archetype being Phytophthora infestans, the cause of late blight of tomatoes and potatoes. Comparison of the physiology of oomycetes with that of other organisms, such as plants and animals, may provide new routes to selectively combat these pathogens. In most eukaryotes, myo-inositol 1,4,5 trisphosphate is a key second messenger that links extracellular stimuli to increases in cytoplasmic Ca2+, to regulate cellular activities. In the work presented in this study, investigation of the molecular components of myo-inositol 1,4,5 trisphosphate signaling in oomycetes has unveiled similarities and differences with that in other eukaryotes. Most striking is that several oomycete species lack detectable phosphoinositide-selective phospholipase C homologues, the enzyme family that generates this second messenger, but still possess relatives of myo-inositol 1,4,5 trisphosphate-gated Ca2+-channels.
Collapse
|
6
|
Ruwanpathirana P, Priyankara D. Clinical manifestations of wasp stings: a case report and a review of literature. Trop Med Health 2022; 50:82. [PMID: 36307881 PMCID: PMC9615201 DOI: 10.1186/s41182-022-00475-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background Wasp stinging, a neglected tropical entity can have a myriad of local and systemic effects. We present a case of multi-organ injury following multiple wasp stings and a review of literature on the systemic manifestations of wasp stings.
Case presentation A 48-year-old Sri Lankan male who suffered multiple wasp stings, developed an anaphylactic shock with respiratory failure, which was treated with adrenaline and mechanical ventilation. Within the next 2 days the patient developed acute fulminant hepatitis, stage III acute kidney injury, rhabdomyolysis, haemolysis and thrombocytopenia. The patient was treated in the intensive care unit with ionopressors and continuous renal replacement therapy (CRRT). Haemoadsorbant therapy was used in adjunct with CRRT. There was a gradual recovery of the organ functions over the 1st week. However, the patient succumbed to fungal sepsis on the 16th day despite treatment. We conducted a literature review to identify the various clinical manifestations of wasp stinging. Wasp venom contains enzymes, amines, peptides and other compounds. These proteins can cause type 1 hypersensitive reactions ranging from local skin irritation to anaphylactic shock. Furthermore, the toxins can cause direct organ injury or delayed hypersensitivity reactions. The commonly affected organs are the kidneys, liver, and muscles. The effect on the haematological system manifests as coagulopathy and/or cytopenia. The heart, nervous system, lungs, intestines and skin can be affected rarely. Treatment is mainly supportive. Conclusion In conclusion, wasp envenomation can result in multi-organ injury and attention should be paid in doing further research and establishing evidence-based treatment practices.
Collapse
Affiliation(s)
- Pramith Ruwanpathirana
- Medical Intensive Unit, National Hospital Sri Lanka, 435/11, Thimbirigasyaya Road, Colombo 05, Sri Lanka.
| | - Dilshan Priyankara
- Medical Intensive Unit, National Hospital Sri Lanka, 435/11, Thimbirigasyaya Road, Colombo 05, Sri Lanka
| |
Collapse
|
7
|
de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci 2022; 9:824989. [PMID: 35813822 PMCID: PMC9263278 DOI: 10.3389/fmolb.2022.824989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Mariana S. Castro,
| |
Collapse
|
8
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
9
|
Microbiological investigation study for Apis mellifera yemenitica and Apis mellifera carnica bee venoms on selected bacterial strains. Braz J Microbiol 2022; 53:709-714. [PMID: 35239153 PMCID: PMC9151970 DOI: 10.1007/s42770-021-00656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
Bees are one of the ancient and the most social insects worldwide. They are of great economic and medical importance. Bee venom (BV) has many therapeutic effects and has been used since ancient times for the treatment of many diseases. The present study aimed to evaluate and compare the antibacterial effect of BV from two different bee subspecies Apis mellifera yemenitica (A. m. yemenitica) (indigenous strain) and Apis mellifera carnica (A. m. carnica) (carniolan strain) against selected Gram-positive and Gram-negative bacteria. Experimentally, venoms were extracted using an electrical venom collector from honey bee colonies of the subspecies, A. m. yemenitica and A. m. carnica, in Hail, Saudi Arabia. Each venom was tested against selected medically important Gram-negative strains, Salmonella Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, while Staphylococcus aureus was selected as Gram-positive test organism. The minimum inhibitory concentration (MIC) method was used to compare the effect of BV from the two subspecies on the growth of the selected bacterial strains. Results showed that BV from both subspecies could equally inhibit the growth of Salmonella Typhimurium, Pseudomonas aeruginosa, and Escherichia coli at an MIC of 10 mg/ml. However, S. aureus was inhibited by an MIC of 5 and 10 mg/ml of BV from A. m. carnica and A. m. yemenitica, respectively. This suggested that the BV of the carnica subspecie was more inhibitory to this Gram-positive pathogen than its counterpart produced by the yemenitica subspecies. The present study shows that bee venom has a promising antibacterial effect.
Collapse
|
10
|
Nubbemeyer B, George AAP, Kühl T, Pepanian A, Beck MS, Maghraby R, Boushehri MS, Muehlhaupt M, Pfeil EM, Annala SK, Ammer H, Imhof D, Pei D. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem Biol 2022; 17:463-473. [PMID: 35042325 PMCID: PMC11002716 DOI: 10.1021/acschembio.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical probes that specifically modulate the activity of heterotrimeric G proteins provide excellent tools for investigating G protein-mediated cell signaling. Herein, we report a family of selective peptidyl Gαi/s modulators derived from peptide library screening and optimization. Conjugation to a cell-penetrating peptide rendered the peptides cell-permeable and biologically active in cell-based assays. The peptides exhibit potent guanine-nucleotide exchange modulator-like activity toward Gαi and Gαs. Molecular docking and dynamic simulations revealed the molecular basis of the protein-ligand interactions and their effects on GDP binding. This study demonstrates the feasibility of developing direct Gαi/s modulators and provides a novel chemical probe for investigating cell signaling through GPCRs/G proteins.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
- BioSolveIT GmbH, An der Ziegelei 79, 53757, Sankt Augustin, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Rahma Maghraby
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Maryam Shetab Boushehri
- Pharmaceutical Technology and Biopharmacy, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Maximilian Muehlhaupt
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Suvi Katariina Annala
- Molecular, Cellular and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| | - Hermann Ammer
- Institute of Pharmacology, Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, 80539, Munich, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biosciences Building, 484 W 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
11
|
V V, Achar RR, M.U H, N A, T YS, Kameshwar VH, Byrappa K, Ramadas D. Venom peptides - A comprehensive translational perspective in pain management. Curr Res Toxicol 2021; 2:329-340. [PMID: 34604795 PMCID: PMC8473576 DOI: 10.1016/j.crtox.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Venom peptides have been evolving complex therapeutic interventions that potently and selectively modulate a range of targets such as ion channels, receptors, and signaling pathways of physiological processes making it potential therapeutic. Several venom peptides were deduced in vivo for clinical development targeting pain management, diabetes, cardiovascular diseases, antimicrobial activity. Several contributions have been detailed for a clear perspective for a better understanding of venomous animals, their venom, and their pharmacological effects. Here we unravel and summarize the recent advances in wide venom peptides across varieties of species for their therapeutics prospects.
Collapse
Affiliation(s)
- Vidya V
- K. S Hegde Medical Academy, NITTE (Deemed to be) University, Mangalore 575015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Himathi M.U
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Akshita N
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, S.S. Nagar, Mysuru 570 015, Karnataka, India
| | - Yogish Somayaji T
- Department of Post Graduate Studies and Research in Biochemistry, St. Aloysius College (Autonomous), Mangalore 575003, Karnataka, India
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara-571448, Nangamangala, Mandya, India
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
| | - K. Byrappa
- School of Natural Sciences, ACU-CRI, Adichunchanagiri University, BGSIT Campus, B.G. Nagara-571448, Nagamangala, Mandya, India
- Center for Material Science and Technology, Vijnana Bhavan, University of Mysore, Mysuru, Karnataka, India
| | - Dinesha Ramadas
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Adichunchanagiri University, B.G. Nagara-571448, Nagamangala, Mandya, India
| |
Collapse
|
12
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
13
|
Bevalian P, Pashaei F, Akbari R, Pooshang Bagheri K. Eradication of vancomycin-resistant Staphylococcus aureus on a mouse model of third-degree burn infection by melittin: An antimicrobial peptide from bee venom. Toxicon 2021; 199:49-59. [PMID: 34087287 DOI: 10.1016/j.toxicon.2021.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023]
Abstract
Third-degree burn infections caused by antibiotic-resistant bacteria are of high clinical concern. Chemical antibiotics are not promising in eradication of bacterial infections. In this challenging condition, antimicrobial peptides (AMPs) are recently introduced as novel promising agents to overcome the issue. Accordingly, our study aimed to evaluate the efficiency of 'melittin' as natural peptide in bee venom, in eradicating vancomycin resistant Staphylococcus aureus (VRSA) on a mouse model of third-degree burn infection. In vitro pharmacological value of melittin was determined by examining its inhibitory and killing activities on VRSA isolates at different doses and time periods. The action mechanism of 'melittin' was evaluated by fluorescent release assay and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. In vivo activity and toxicity of melittin were also examined on a mouse model of third-degree burn infection. The Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC) of melittin on all isolates ranged from '0.125-2 μg/mL' and '0.125-4 μg/mL', respectively. Rapid antibacterial activity of melittin on VRSA isolates was demonstrated by killing kinetics assays. Fluorometric and FE-SEM analyses indicated the membranolytic effects of melittin on VRSA isolates. The colonized VRSA bacteria were eradicated by melittin at 16 μg, in a single dose. No dermal toxicity and in vivo hemolysis were observed in the examined mice. The lack of in vivo toxicity of melittin along with its potent antibacterial activity indicated its promising therapeutic value as a topical drug against S. aureus associated third-degree burn infections.
Collapse
Affiliation(s)
- Parvaneh Bevalian
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Pashaei
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbari
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab., Biotechnology Dept., Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Zedan AMG, Sakran MI, Bahattab O, Hawsawi YM, Al-Amer O, Oyouni AAA, Nasr Eldeen SK, El-Magd MA. Oriental Hornet ( Vespa orientalis) Larval Extracts Induce Antiproliferative, Antioxidant, Anti-Inflammatory, and Anti-Migratory Effects on MCF7 Cells. Molecules 2021; 26:3303. [PMID: 34072744 PMCID: PMC8198668 DOI: 10.3390/molecules26113303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The use of insects as a feasible and useful natural product resource is a novel and promising option in alternative medicine. Several components from insects and their larvae have been found to inhibit molecular pathways in different stages of cancer. This study aimed to analyze the effect of aqueous and alcoholic extracts of Vespa orientalis larvae on breast cancer MCF7 cells and investigate the underlying mechanisms. Our results showed that individual treatment with 5% aqueous or alcoholic larval extract inhibited MCF7 proliferation but had no cytotoxic effect on normal Vero cells. The anticancer effect was mediated through (1) induction of apoptosis, as indicated by increased expression of apoptotic genes (Bax, caspase3, and p53) and decreased expression of the anti-apoptotic gene Bcl2; (2) suppression of intracellular reactive oxygen species; (3) elevation of antioxidant enzymes (CAT, SOD, and GPx) and upregulation of the antioxidant regulator Nrf2 and its downstream target HO-1; (4) inhibition of migration as revealed by in vitro wound healing assay and downregulation of the migration-related gene MMP9 and upregulation of the anti-migratory gene TIMP1; and (5) downregulation of inflammation-related genes (NFκB and IL8). The aqueous extract exhibited the best anticancer effect with higher antioxidant activities but lower anti-inflammatory properties than the alcoholic extract. HPLC analysis revealed the presence of several flavonoids and phenolic compounds with highest concentrations for resveratrol and naringenin in aqueous extract and rosmarinic acid in alcoholic extract. This is the first report to explain the intracellular pathway by which flavonoids and phenolic compounds-rich extracts of Vespa orientalis larvae could induce MCF7 cell viability loss through the initiation of apoptosis, activation of antioxidants, and inhibition of migration and inflammation. Therefore, these extracts could be used as adjuvants for anticancer drugs and as antioxidant and anti-inflammatory agents.
Collapse
Affiliation(s)
- Amina M. G. Zedan
- Biological and Environmental Sciences Department, Home Economic Faculty, Al Azhar University, Tanta 31732, Egypt;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31512, Egypt
| | - Omar Bahattab
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, MBC J04, Jeddah 21499, Saudi Arabia;
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Atif A. A. Oyouni
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia;
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
15
|
Miura Y. Nuclear magnetic resonance studies on conformation and stability of mastoparan in methanol. J Pept Sci 2021; 27:e3338. [PMID: 33973297 DOI: 10.1002/psc.3338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022]
Abstract
Mastoparan is a small peptide composed of 14 amino acid residues found in wasp venom. It penetrates into cytoplasm through the cell membranes and then binds to a G protein to stimulate the release of histamine. Conformation and its thermal stability of mastoparan from Vespula lewisi (MP) in methanol are investigated by using proton nuclear magnetic resonance (NMR) spectroscopy. On the basis of data on NOESY cross peaks, spin-spin coupling constants between an amide proton (NH) and an α-proton, NH chemical shift analyses, and temperature dependence of integrated intensity of NH resonance lines, we found that MP forms the helix between the 5th and 12th residues at low temperatures and the helix segment is maintained even at 54°C. This conformation is similar to that of MP bound to detergent micelles, and hence, methanol is considered to be appropriate as a membrane mimetic for MP. In connection with the function of the venom peptide, significance of high stability of the helical conformation is discussed.
Collapse
Affiliation(s)
- Yoshinori Miura
- Center for Advanced Instrumental Analysis, Kyushu University, Kasuga, Japan
| |
Collapse
|
16
|
Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties. Proc Natl Acad Sci U S A 2020; 117:26936-26945. [PMID: 33046640 DOI: 10.1073/pnas.2012379117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.
Collapse
|
17
|
Iakimova ET, Yordanova ZP, Cristescu SM, Harren FFM, Woltering EJ. Cell death associated release of volatile organic sulphur compounds with antioxidant properties in chemical-challenged tobacco BY-2 suspension cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153223. [PMID: 32645555 DOI: 10.1016/j.jplph.2020.153223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
The production of volatile organic compounds (VOCs) during programmed cell death (PCD) is still insufficiently studied and their implication in the process is not well understood. The present study demonstrates that the release of VOSCs with presumed antioxidant capacity (methanethiol, dimethylsulfide and dimethyldisulfide) accompanies the cell death in chemical-stressed tobacco BY-2 suspension cultured cells. The cells were exposed to cell death inducers of biotic nature mastoparan (MP, wasp venom) and camptothecin (CPT, alkaloid), and to the abiotic stress agent CdSO4. The VOCs emission was monitored by proton-transfer reaction mass spectrometry (PTR-MS). The three chemicals induced PCD expressing apoptotic-like phenotype. The identified VOSCs were emitted in response to MP and CPT but not in presence of Cd. The VOSCs production occurred within few hours after the administration of the elicitors, peaked up when 20-50 % of the cells were dead and further levelled off with cell death advancement. This suggests that VOSCs with antioxidant activity may contribute to alleviation of cell death-associated oxidative stress at medium severity of cell death in response to the stress factors of biotic origin. The findings provide novel information about cell death defence mechanisms in chemical-challenged BY-2 cells and show that PCD related VOSCs synthesis depends on the type of inducer.
Collapse
Affiliation(s)
- Elena T Iakimova
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands
| | - Zhenia P Yordanova
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Simona M Cristescu
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Frans F M Harren
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Ernst J Woltering
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
18
|
Jansen C, Shimoda LMN, Starkus J, Lange I, Rysavy N, Maaetoft-Udsen K, Tobita C, Stokes AJ, Turner H. In vitro exposure to Hymenoptera venom and constituents activates discrete ionotropic pathways in mast cells. Channels (Austin) 2020; 13:264-286. [PMID: 31237176 PMCID: PMC8670737 DOI: 10.1080/19336950.2019.1629225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Calcium entry is central to the functional processes in mast cells and basophils that contribute to the induction and maintenance of inflammatory responses. Mast cells and basophils express an array of calcium channels, which mediate responses to diverse stimuli triggered by small bioactive molecules, physicochemical stimuli and immunological inputs including antigens and direct immune cell interactions. These cells are also highly responsive to certain venoms (such as Hymenoptera envenomations), which cause histamine secretion, cytokine release and an array of pro-inflammatory functional responses. There are gaps in our understanding of the coupling of venom exposure to specific signaling pathways such as activation of calcium channels. In the present study, we performed a current survey of a model mast cell line selected for its pleiotropic responsiveness to multiple pro-inflammatory inputs. As a heterogenous stimulus, Hymenoptera venom activates multiple classes of conductance at the population level but tend to lead to the measurement of only one type of conductance per cell, despite the cell co-expressing multiple channel types. The data show that ICRAC, IARC, and TRPV-like currents are present in the model mast cell populations and respond to venom exposure. We further assessed individual venom components, specifically secretagogues and arachidonic acid, and identified the conductances associated with these stimuli in mast cells. Single-cell calcium assays and immunofluorescence analysis show that there is heterogeneity of channel expression across the cell population, but this heterogeneity does not explain the apparent selectivity for specific channels in response to exposure to venom as a composite stimulus.
Collapse
Affiliation(s)
- C Jansen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - L M N Shimoda
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - J Starkus
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - I Lange
- b Department of Pharmaceutical Sciences , Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo , Hilo , Hawai'i , USA
| | - N Rysavy
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - K Maaetoft-Udsen
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - C Tobita
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| | - A J Stokes
- c Department of Cell and Molecular Biology, Laboratory of Experimental Medicine, John A. Burns School of Medicine , University of Hawai'i , Honolulu , Hawai'i , USA
| | - H Turner
- a Laboratory of Immunology and Signal Transduction, Division of Natural Sciences and Mathematics , Chaminade University , Honolulu , Hawai'I , USA
| |
Collapse
|
19
|
Tan J, Wang W, Wu F, Li Y, Fan Q. Transcriptome profiling of venom gland from wasp species: de novo assembly, functional annotation, and discovery of molecular markers. BMC Genomics 2020; 21:427. [PMID: 32580761 PMCID: PMC7315503 DOI: 10.1186/s12864-020-06851-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
Background Vespa velutina, one of the most aggressive and fearful wasps in China, can cause grievous allergies and toxic reactions, leading to organ failure and even death. However, there is little evidence on molecular data regarding wasps. Therefore, we aimed to provide an insight into the transcripts expressed in the venom gland of wasps. Results In our study, high-throughput RNA sequencing was performed using the venom glands of four wasp species. First, the mitochondrial cytochrome C oxidase submit I (COI) barcoding and the neighbor joining (NJ) tree were used to validate the unique identity and lineage of each individual species. After sequencing, a total of 127,630 contigs were generated and 98,716 coding domain sequences (CDS) were predicted from the four species. The Gene ontology (GO) enrichment analysis of unigenes revealed their functional role in important biological processes (BP), molecular functions (MF) and cellular components (CC). In addition, c-type, p1 type, p2 type and p3 type were the most commonly found simple sequence repeat (SSR) types in the four species of wasp transcriptome. There were differences in the distribution of SSRs and single nucleotide polymorphisms (SNPs) among the four wasp species. Conclusions The transcriptome data generated in this study will improve our understanding on bioactive proteins and venom-related genes in wasp venom gland and provide a basis for pests control and other applications. To our knowledge, this is the first study on the identification of large-scale genomic data and the discovery of microsatellite markers from V. tropica ducalis and V. analis fabricius.
Collapse
Affiliation(s)
- Junjie Tan
- General Hospital of Western Theater Command, Chengdu, 610021, China.,CDC of Western Theater Command, PLA, Chengdu, 610021, China
| | - Wenbo Wang
- CDC of Western Theater Command, PLA, Chengdu, 610021, China
| | - Fan Wu
- General Hospital of Western Theater Command, Chengdu, 610021, China
| | - Yunming Li
- General Hospital of Western Theater Command, Chengdu, 610021, China
| | - Quanshui Fan
- CDC of Western Theater Command, PLA, Chengdu, 610021, China.
| |
Collapse
|
20
|
Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci Rep 2020; 10:10145. [PMID: 32576874 PMCID: PMC7311438 DOI: 10.1038/s41598-020-66995-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides have attracted attention as alternatives to conventional antibiotics. Previously, a novel antimicrobial peptide, melectin, consisting of 18 amino acids was isolated from the venom of a bee, Melecta albifrons. Here, we investigated the antibacterial activity of melectin against drug-resistant bacteria. Melectin showed broad-spectrum antimicrobial activity but low cytotoxicity and no hemolytic activity. Melectin maintained its antimicrobial activity at physiological salt concentrations. Melectin is an α-helical structure that binds to the bacterial membrane via electrostatic interactions and kills bacteria in a short time by bacterial membrane targeting. Collectively, our results suggest that melectin has antibacterial activity and anti-inflammatory activity.
Collapse
|
21
|
Silva ON, Franco OL, Neves BJ, Morais ÁCB, De Oliveira Neto JR, da Cunha LC, Naves LM, Pedrino GR, Costa EA, Fajemiroye JO. Involvement of the gabaergic, serotonergic and glucocorticoid mechanism in the anxiolytic-like effect of mastoparan-L. Neuropeptides 2020; 81:102027. [PMID: 32059939 DOI: 10.1016/j.npep.2020.102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Mastoparan-L (mast-L) is a cell-penetrating tetradecapeptide and stimulator of monoamine exocytosis. In the present study, we evaluated the anxiolytic-like effect of mast-L. Preliminary pharmacological tests were conducted to determine the most appropriate route of administration, extrapolate dose and detect potential toxic effects of this peptide. Oral and intracerebroventricular administration of mast-L (0.1, 0.3 or 0.9 mg.kg-1), diazepam (1 or 5 mg.kg-1), buspirone (10 mg.kg-1) or vehicle 10 mL.kg-1 was carried out prior to the exposure of mice to the anxiety models: open field, light-dark box and elevated plus-maze. To characterize the mechanism underlying the antianxiety-like effect of mast-L, pharmacological antagonism, blood plasma analysis, molecular docking, and receptor binding assays were performed. The absence of a neurotoxic sign, animal's death as well as lack of significant changes in the relative organ weight, hematological and biochemical parameters suggest that mast-L is relatively safe. The anxiolytic-like effect of mast-L was attenuated by flumazenil (antagonist of benzodiazepine binding site) and WAY100635 (selective antagonist of 5-HT1A receptors) pretreatments. Mast-L reduced plasma corticosterone and lowered the scoring function at GABAA -18.48 kcal/mol (Ki = 155 nM), 5-HT1A -22.39 kcal/mol (Ki = 130 nM), corticotropin-releasing factor receptor subtype 1 (CRF1) -11.95 kcal/mol (Ki = 299 nM) and glucocorticoid receptors (GR) -14.69 kcal/mol (Ki = 3552 nM). These data fit the binding affinity (Ki) and demonstrate the involvement of gabaergic, serotonergic and glucocorticoid mechanisms in the anxiolytic-like property of mast-L.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Bruno J Neves
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Álice Cristina B Morais
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil
| | - Jeronimo R De Oliveira Neto
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Luiz Carlos da Cunha
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Faculdade de Farmácia, Universidade Federal de Goiás, PMB 131, CEP 74001-970, Goiânia, Brazil
| | - Lara M Naves
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Gustavo R Pedrino
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Elson A Costa
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - James O Fajemiroye
- Centro Universitário de Anápolis, UniEvangélica, Av. Universitária Km 3,5 Cidade Universitária Anápolis/GO 75083-515, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil.
| |
Collapse
|
22
|
Abstract
Glucose-induced (physiological) insulin secretion from the islet β-cell involves interplay between cationic (i.e., changes in intracellular calcium) and metabolic (i.e., generation of hydrophobic and hydrophilic second messengers) events. A large body of evidence affirms support for novel regulation, by G proteins, of specific intracellular signaling events, including actin cytoskeletal remodeling, transport of insulin-containing granules to the plasma membrane for fusion, and secretion of insulin into the circulation. This article highlights the following aspects of GPCR-G protein biology of the islet. First, it overviews our current understanding of the identity of a wide variety of G protein regulators and their modulatory roles in GPCR-G protein-effector coupling, which is requisite for optimal β-cell function under physiological conditions. Second, it describes evidence in support of novel, noncanonical, GPCR-independent mechanisms of activation of G proteins in the islet. Third, it highlights the evidence indicating that abnormalities in G protein function lead to islet β-cell dysregulation and demise under the duress of metabolic stress and diabetes. Fourth, it summarizes observations of potential beneficial effects of GPCR agonists in preventing/halting metabolic defects in the islet β-cell under various pathological conditions (e.g., metabolic stress and inflammation). Lastly, it identifies knowledge gaps and potential avenues for future research in this evolving field of translational islet biology. Published 2020. Compr Physiol 10:453-490, 2020.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Center for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
23
|
Cote CK, Blanco II, Hunter M, Shoe JL, Klimko CP, Panchal RG, Welkos SL. Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microb Pathog 2020; 142:104050. [PMID: 32050093 DOI: 10.1016/j.micpath.2020.104050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| | - Irma I Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | | | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
24
|
Aquaporin regulation: Lessons from secretory vesicles. VITAMINS AND HORMONES 2020; 112:147-162. [DOI: 10.1016/bs.vh.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
25
|
Wu H, Gao S, Terakawa S. Inhibitory effects of fucoidan on NMDA receptors and l-type Ca 2+ channels regulating the Ca 2+ responses in rat neurons. PHARMACEUTICAL BIOLOGY 2019; 57:1-7. [PMID: 30734636 PMCID: PMC6374951 DOI: 10.1080/13880209.2018.1548626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/19/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Fucoidan, a sulphated polysaccharide extracted from brown algae [Fucus vesiculosus Linn. (Fucaceae)], has multiple biological activities. OBJECTIVE The effects of fucoidan on Ca2+ responses of rat neurons and its probable mechanisms with focus on glutamate receptors were examined. MATERIALS AND METHODS The neurons isolated from the cortex and hippocampi of Wistar rats in postnatal day 1 were employed. The intracellular Ca2+ responses triggered by various stimuli were measured in vitro by Fura-2/AM. Fucoidan at 0.5 mg/mL or 1.5 mg/mL was applied for 3 min to determine its effects on Ca2+ responses. RT-PCR was used to determine the mRNA expression of neuron receptors treated with fucoidan at 0.5 mg/mL for 3 h. RESULTS The Ca2+ responses induced by NMDA were 100% suppressed by fucoidan, and those induced by Bay K8644 90% in the cortical neurons. However, fucoidan has no significant effect on the Ca2+ responses of cortical neurons induced by AMPA or quisqualate. Meanwhile, the Ca2+ responses of hippocampal neurons induced by glutamate, ACPD or adrenaline, showed only a slight decrease following fucoidan treatment. RT-PCR assays of cortical and hippocampal neurons showed that fucoidan treatment significantly decreased the mRNA expression of NMDA-NR1 receptor and the primer pair for l-type Ca2+ channels, PR1/PR2. DISCUSSION AND CONCLUSIONS Our data indicate that fucoidan suppresses the intracellular Ca2+ responses by selectively inhibiting NMDA receptors in cortical neurons and l-type Ca2+ channels in hippocampal neurons. A wide spectrum of fucoidan binding to cell membrane may be useful for designing a general purpose drug in future.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Cerebellar Cortex/cytology
- Cerebellar Cortex/drug effects
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/pharmacology
- Hippocampus/cytology
- Hippocampus/drug effects
- N-Methylaspartate/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Polysaccharides/pharmacology
- Rats
- Rats, Wistar
- Receptors, AMPA/metabolism
- Receptors, Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
Affiliation(s)
- Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, China;
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, China;
| | - Susumu Terakawa
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
26
|
Freire DO, da Cunha NB, Leite ML, Kostopoulos AGC, da Silva SNB, Souza ACB, Nolasco DO, Franco OL, Mortari MR, Dias SC. Wasp venom peptide, synoeca‐MP, fromSynoeca surinamashows antimicrobial activity against human and animal pathogenic microorganisms. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel O. Freire
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Michel L. Leite
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Alessandra G. C. Kostopoulos
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Sheila N. B. da Silva
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Adolfo C. B. Souza
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
| | - Diego O. Nolasco
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| | - Octávio L. Franco
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
- S‐Inova Biotech, Pós‐graduação em BiotecnologiaUniversidade Católica Dom Bosco Campo Grande Brazil
| | - Márcia R. Mortari
- Neuropharmacology Laboratory, Department of Physiological SciencesInstitute of Biological Sciences, University of Brasilia Brasilia Brazil
- Universidade de Brasília, Pós‐Graduação em Biologia Animal, Campus Universitário Darcy Ribeiro Brasília Brazil
| | - Simoni C. Dias
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de Brasília Brasília Brazil
| |
Collapse
|
27
|
Civciristov S, Halls ML. Signalling in response to sub-picomolar concentrations of active compounds: Pushing the boundaries of GPCR sensitivity. Br J Pharmacol 2019; 176:2382-2401. [PMID: 30801691 DOI: 10.1111/bph.14636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is evidence for ultra-sensitive responses to active compounds at concentrations below picomolar levels by proteins and receptors found in species ranging from bacteria to mammals. We have recently shown that such ultra-sensitivity is also demonstrated by a wide range of prototypical GPCRs, and we have determined the molecular mechanisms behind these responses for three family A GPCRs: the relaxin receptor, RXFP1; the β2 -adrenoceptor; and the M3 muscarinic ACh receptor. Interestingly, there are reports of similar ultra-sensitivity by more than 15 human GPCR families, in addition to other human receptors and channels. These occur through a diverse range of signalling pathways and produce modulation of important physiological processes, including neuronal transmission, chemotaxis, gene transcription, protein/ion uptake and secretion, muscle contraction and relaxation, and phagocytosis. Here, we summarise the accumulating evidence of ultra-sensitive receptor signalling to show that this is a common, though currently underappreciated, property of GPCRs. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Gi Protein Modulation of the Potassium Channel TASK-2 Mediates Vesicle Osmotic Swelling to Facilitate the Fusion of Aquaporin-2 Water Channel Containing Vesicles. Cells 2018; 7:cells7120276. [PMID: 30572630 PMCID: PMC6315517 DOI: 10.3390/cells7120276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022] Open
Abstract
Vesicle fusion is a fundamental cell biological process similar from yeasts to humans. For secretory vesicles, swelling is considered a step required for the expulsion of intravesicular content. Here this concept is revisited providing evidence that it may instead represent a general mechanism. We report the first example that non-secretory vesicles, committed to insert the Aquaporin-2 water channel into the plasma membrane, swell and this phenomenon is required for fusion to plasma membrane. Through an interdisciplinary approach, using atomic force microscope (AFM), a fluorescence-based assay of vesicle volume changes and NMR spectroscopy to measure water self-diffusion coefficient, we provide evidence that Gi protein modulation of potassium channel TASK-2 localized in AQP2 vesicles, is required for vesicle swelling. Estimated intravesicular K⁺ concentration in AQP2 vesicles, as measured by inductively coupled plasma mass spectrometry, was 5.3 mM, demonstrating the existence of an inwardly K⁺ chemical gradient likely generating an osmotic gradient causing vesicle swelling upon TASK-2 gating. Of note, abrogation of K⁺ gradient significantly impaired fusion between vesicles and plasma membrane. We conclude that vesicle swelling is a potentially important prerequisite for vesicle fusion to the plasma membrane and may be required also for other non-secretory vesicles, depicting a general mechanism for vesicle fusion.
Collapse
|
29
|
Kachel HS, Buckingham SD, Sattelle DB. Insect toxins - selective pharmacological tools and drug/chemical leads. CURRENT OPINION IN INSECT SCIENCE 2018; 30:93-98. [PMID: 30553492 DOI: 10.1016/j.cois.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 06/09/2023]
Abstract
Insect toxins comprise a diverse array of chemicals ranging from small molecules, polyamines and peptide toxins. Many target nervous system and neuromuscular ion channels and so rapidly affect the behaviour of animals to which the toxin is applied or injected. Other modes of action have also been identified. Wasps, bees, flies, beetles and ants generate a rich arsenal of channel-active toxins, some of which offer selective pharmacological probes that target particular ion channels, while others act on more than one type of channel. Philanthotoxins from the digger wasp have been fruitful in adding to our understanding of ligand-gated ion channels both in the nervous system and at neuromuscular junctions. Fire ants produce the toxic alkaloid solenopsin, a molecule which has stimulated attempts to generate synthetic compounds with insecticidal activity. Apamin from bee venom targets calcium-activated potassium channels, which can in turn influence the release of neuropeptides. Melittin, another bee venom component, is a membrane-acting peptide. The saliva of the assassin bug contains toxins that target the voltage-gated calcium channels of their insect prey. Certain beetles produce diamphotoxin, a haemolytic peptide toxin with traditional use as an arrow poison and others generate leptinotarsin with similar properties. Mastoparan is a powerful peptide toxin present in the venom of wasps. Its toxic actions can be engineered out leaving a potent antimicrobial molecule of interest. In this short review we describe the actions of selected insect toxins and evaluate their potential as neuroactive pharmacological tools, candidate lead molecules for insect control and therapeutic candidates with potential antimicrobial, antiviral and anti-cancer applications.
Collapse
Affiliation(s)
- Hamid S Kachel
- General Science Department, College of Basic Education, University of Zakho, Zakho, Kurdistan Region, Iraq
| | - Steven D Buckingham
- Centre for Respiratory Biology, UCL Respiratory, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
30
|
Evaluation Synergistic Effect of TiO2, ZnO Nanoparticles and Amphiphilic Peptides (Mastoparan-B, Indolicidin) Against Drug-Resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2018. [DOI: 10.5812/pedinfect.57920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Rungsa P, Peigneur S, Daduang S, Tytgat J. Purification and biochemical characterization of VesT1s, a novel phospholipase A1 isoform isolated from the venom of the greater banded wasp Vespa tropica. Toxicon 2018; 148:74-84. [DOI: 10.1016/j.toxicon.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
|
32
|
Howl J, Howl L, Jones S. The cationic tetradecapeptide mastoparan as a privileged structure for drug discovery: Enhanced antimicrobial properties of mitoparan analogues modified at position-14. Peptides 2018; 101:95-105. [PMID: 29337270 DOI: 10.1016/j.peptides.2018.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Mastoparan (MP) peptides, distributed in insect venoms, induce a local inflammatory response post envenomation. Most endogenous MPs share common structural elements within a tetradecapeptide sequence that adopts an amphipathic helix whilst traversing biological membranes and when bound to an intracellular protein target. Rational modifications to increase cationic charge density and amphipathic helicity engineered mitoparan (MitP), a mitochondriotoxic bioportide and potent secretagogue. Following intracellular translocation, MitP is accreted by mitochondria thus indicating additional utility as an antimicrobial agent. Hence, the objectives of this study were to compare the antimicrobial activities of a structurally diverse set of cationic cell penetrating peptides, including both MP and MitP sequences, and to chemically engineer analogues of MitP for potential therapeutic applications. Herein, we confirm that, like MP, MitP is a privileged structure for the development of antimicrobial peptides active against both prokaryotic and eukaryotic pathogens. Collectively, MitP and target-selective chimeric analogues are broad spectrum antibiotics, with the Gram-negative A. baumannii demonstrating particular susceptibility. Modifications of MitP by amino acid substitution at position-14 produced peptides, Δ14MitP analogues, with unique pharmacodynamic properties. One example, [Ser14]MitP, lacks both cytotoxicity against human cell lines and mast cell secretory activity yet retains selective activity against the encapsulated yeast C. neoformans.
Collapse
Affiliation(s)
- John Howl
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom.
| | - Lewis Howl
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| | - Sarah Jones
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
33
|
Bridges RJ, Bradbury NA. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking. Handb Exp Pharmacol 2018; 245:385-425. [PMID: 29460152 DOI: 10.1007/164_2018_103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.
Collapse
Affiliation(s)
- Robert J Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, USA.
| |
Collapse
|
34
|
Affiliation(s)
- I. W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| |
Collapse
|
35
|
Wu H, Gao S, Fu M, Sakurai T, Terakawa S. Fucoidan inhibits Ca2+ responses induced by a wide spectrum of agonists for G‑protein‑coupled receptors. Mol Med Rep 2017; 17:1428-1436. [PMID: 29138822 PMCID: PMC5780082 DOI: 10.3892/mmr.2017.8035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/06/2017] [Indexed: 01/03/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has been used in traditional Chinese herbal medicine to treat thyroid tumors for many years. Although a number of its cellular effects have been investigated, the role of fucoidan in molecular signaling, particularly in Ca2+ signaling, remains largely unknown. In the present study, the effects of fucoidan on Ca2+ responses in HeLa cells, human umbilical vein endothelial cells and astrocytes were investigated using a wide range of receptor agonists. Fucoidan inhibited the increase in intracellular free calcium concentration that was induced by histamine, ATP, compound 48/80 and acetylcholine. The responses induced by the same agonists in the absence of extracellular Ca2+ were also markedly suppressed by fucoidan. Reverse transcription-polymerase chain reaction demonstrated that 0.5 and 1.0 mg/ml fucoidan treatment for 3 h decreased histamine receptor 1 expression in HeLa cells. Similarly, the expressions of purinergic receptor P2Y, G-protein coupled (P2YR)1, P2YR2 and P2YR11 were significantly downregulated within cells pretreated with 1.0 mg/ml fucoidan for 3 h, and 0.5 mg/ml fucoidan significantly inhibited P2YR1 and P2YR11 expression. The results demonstrated that fucoidan may exert a wide spectrum of inhibitory effects on Ca2+ responses and that fucoidan may inhibit a number of different G-protein coupled receptors associated with Ca2+ dynamics.
Collapse
Affiliation(s)
- Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Min Fu
- The Research Institute of The McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Takashi Sakurai
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431‑3192, Japan
| | - Susumu Terakawa
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431‑3192, Japan
| |
Collapse
|
36
|
Solis GP, Bilousov O, Koval A, Lüchtenborg AM, Lin C, Katanaev VL. Golgi-Resident Gαo Promotes Protrusive Membrane Dynamics. Cell 2017; 170:939-955.e24. [PMID: 28803726 DOI: 10.1016/j.cell.2017.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
To form protrusions like neurites, cells must coordinate their induction and growth. The first requires cytoskeletal rearrangements at the plasma membrane (PM), the second requires directed material delivery from cell's insides. We find that the Gαo-subunit of heterotrimeric G proteins localizes dually to PM and Golgi across phyla and cell types. The PM pool of Gαo induces, and the Golgi pool feeds, the growing protrusions by stimulated trafficking. Golgi-residing KDELR binds and activates monomeric Gαo, atypically for G protein-coupled receptors that normally act on heterotrimeric G proteins. Through multidimensional screenings identifying > 250 Gαo interactors, we pinpoint several basic cellular activities, including vesicular trafficking, as being regulated by Gαo. We further find small Golgi-residing GTPases Rab1 and Rab3 as direct effectors of Gαo. This KDELR → Gαo → Rab1/3 signaling axis is conserved from insects to mammals and controls material delivery from Golgi to PM in various cells and tissues.
Collapse
Affiliation(s)
- Gonzalo P Solis
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland.
| | - Oleksii Bilousov
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Anne-Marie Lüchtenborg
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Chen Lin
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1011 Lausanne, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation.
| |
Collapse
|
37
|
Laha SS, Naik AR, Kuhn ER, Alvarez M, Sujkowski A, Wessells RJ, Jena BP. Nanothermometry Measure of Muscle Efficiency. NANO LETTERS 2017; 17:1262-1268. [PMID: 28112520 DOI: 10.1021/acs.nanolett.6b05092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite recent advances in thermometry, determination of temperature at the nanometer scale in single molecules to live cells remains a challenge that holds great promise in disease detection among others. In the present study, we use a new approach to nanometer scale thermometry with a spatial and thermal resolution of 80 nm and 1 mK respectively, by directly associating 2 nm cadmium telluride quantum dots (CdTe QDs) to the subject under study. The 2 nm CdTe QDs physically adhered to bovine cardiac and rabbit skeletal muscle myosin, enabling the determination of heat released when ATP is hydrolyzed by both myosin motors. Greater heat loss reflects less work performed by the motor, hence decreased efficiency. Surprisingly, we found rabbit skeletal myosin to be more efficient than bovine cardiac. We have further extended this approach to demonstrate the gain in efficiency of Drosophila melanogaster skeletal muscle overexpressing the PGC-1α homologue spargel, a known mediator of improved exercise performance in humans. Our results establish a novel approach to determine muscle efficiency with promise for early diagnosis and treatment of various metabolic disorders including cancer.
Collapse
Affiliation(s)
- Suvra S Laha
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Akshata R Naik
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Eric R Kuhn
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Maysen Alvarez
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Alyson Sujkowski
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Robert J Wessells
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Bhanu P Jena
- Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
38
|
Marutani T, Hattori T, Tsutsumi K, Koike Y, Harada A, Noguchi K, Kiso Y, Mukai H. Mitochondrial protein-derived cryptides: Are endogenous N-formylated peptides including mitocryptide-2 components of mitochondrial damage-associated molecular patterns? Biopolymers 2017; 106:580-7. [PMID: 26600263 DOI: 10.1002/bip.22788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/08/2022]
Abstract
Recently, much attention has been paid to "nonclassical" bioactive peptides, which are fragmented peptides simultaneously produced during maturation and degradation of various functional proteins. We identified many fragmented peptides derived from various mitochondrial proteins including mitocryptide-1 and mitocryptide-2 that efficiently activate neutrophils. These endogenous, functionally active, fragmented peptides are referred to as "cryptides." Among them, mitocryptide-2 is an N-formylated cryptide cleaved from mitochondrial cytochrome b that is encoded in mitochondrial DNA (mtDNA). It is known that 13 proteins encoded in mtDNA are translated in mitochondria as N-formylated forms, suggesting the existence of endogenous N-formylated peptides other than mitocryptide-2. Here, we investigated the effects of N-formylated peptides presumably cleaved from mtDNA-encoded proteins other than cytochrome b on the functions of neutrophilic cells to elucidate possible regulation by endogenous N-formylated cryptides. Four N-formylated cryptides derived from cytochrome c oxidase subunit I and NADH dehydrogenase subunits 4, 5, and 6 among 12 peptides from mtDNA-encoded proteins efficiently induced not only migration but also β-hexosaminidase release, which is an indicator of neutrophilic phagocytosis, in HL-60 cells differentiated into neutrophilic cells. These activities were comparable to or higher than those induced by mitocryptide-2. Although endogenous N-formylated peptides that are contained in mitochondrial damage-associated molecular patterns (DAMPs) have yet to be molecularly identified, they have been implicated in innate immunity. Thus, N-formylated cryptides including mitocryptide-2 are first-line candidates for the contents of mitochondrial DAMPs to promote innate immune responses. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 580-587, 2016.
Collapse
Affiliation(s)
- Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Tatsuya Hattori
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Koki Tsutsumi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yusuke Koike
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Akihiko Harada
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Kosuke Noguchi
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| |
Collapse
|
39
|
Silva JC, Neto LM, Neves RC, Gonçalves JC, Trentini MM, Mucury-Filho R, Smidt KS, Fensterseifer IC, Silva ON, Lima LD, Clissa PB, Vilela N, Guilhelmelli F, Silva LP, Rangel M, Kipnis A, Silva-Pereira I, Franco OL, Junqueira-Kipnis AP, Bocca AL, Mortari MR. Evaluation of the antimicrobial activity of the mastoparan Polybia-MPII isolated from venom of the social wasp Pseudopolybia vespiceps testacea (Vespidae, Hymenoptera). Int J Antimicrob Agents 2017; 49:167-175. [PMID: 28108242 DOI: 10.1016/j.ijantimicag.2016.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
Mastoparans, a class of peptides found in wasp venom, have significant effects following a sting as well as useful applications in clinical practice. Among these is their potential use in the control of micro-organisms that cause infectious diseases with a significant impact on society. Thus, the present study describes the isolation and identification of a mastoparan peptide from the venom of the social wasp Pseudopolybia vespiceps and evaluated its antimicrobial profile against bacteria (Staphylococcus aureus and Mycobacterium abscessus subsp. massiliense), fungi (Candida albicans and Cryptococcus neoformans) and in vivo S. aureus infection. The membrane pore-forming ability was also assessed. The mastoparan reduced in vitro and ex vivo mycobacterial growth by 80% at 12.5 µM in infected peritoneal macrophages but did not affect the shape of bacterial cells at the dose tested (6.25 µM). The peptide also showed potent action against S. aureus in vitro (EC50 and EC90 values of 1.83 µM and 2.90 µM, respectively) and reduced the in vivo bacterial load after 6 days of topical treatment (5 mg/kg). Antifungal activity was significant, with EC50 and EC90 values of 12.9 µM and 15.3 µM, respectively, for C. albicans, and 11 µM and 22.70 µM, respectively, for C. neoformans. Peptides are currently attracting interest for their potential in the design of antimicrobial drugs, particularly due to the difficulty of micro-organisms in developing resistance to them. In this respect, Polybia-MPII proved to be highly effective, with a lower haemolysis rate compared with peptides of the same family.
Collapse
Affiliation(s)
- Juliana C Silva
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Lázaro M Neto
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Diseases and Public Heath, Federal University of Goiás, Goiânia, Brazil
| | - Rogério C Neves
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Diseases and Public Heath, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Gonçalves
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Monalisa M Trentini
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Diseases and Public Heath, Federal University of Goiás, Goiânia, Brazil
| | - Ricardo Mucury-Filho
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Karina S Smidt
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Isabel C Fensterseifer
- Center for Proteomics and Biochemical Analyses, Genomic Science and Biotechnology Graduate Program, Catholic University of Brasília, Brasília, Brazil; Molecular Pathology Graduate Program, University of Brasilia, Brasília, Brazil
| | - Osmar N Silva
- Center for Proteomics and Biochemical Analyses, Genomic Science and Biotechnology Graduate Program, Catholic University of Brasília, Brasília, Brazil; Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Lilian D Lima
- Laboratory of Immunopathology, Butantan Institute, Sao Paulo, SP, Brazil
| | - Patricia B Clissa
- Laboratory of Immunopathology, Butantan Institute, Sao Paulo, SP, Brazil
| | - Nathália Vilela
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Fernanda Guilhelmelli
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Luciano P Silva
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Laboratory of Mass Spectrometry, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Marisa Rangel
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Laboratory of Immunopathology, Butantan Institute, Sao Paulo, SP, Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Diseases and Public Heath, Federal University of Goiás, Goiânia, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Octavio L Franco
- Center for Proteomics and Biochemical Analyses, Genomic Science and Biotechnology Graduate Program, Catholic University of Brasília, Brasília, Brazil; Molecular Pathology Graduate Program, University of Brasilia, Brasília, Brazil; Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil; S-Inova Biotech, Graduate Biotechnology Program, Dom Bosco Catholic University, Campo Grande, Brazil
| | - Ana P Junqueira-Kipnis
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Diseases and Public Heath, Federal University of Goiás, Goiânia, Brazil
| | - Anamelia L Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia R Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
40
|
Hisaoka-Nakashima K, Matsumoto C, Azuma H, Taki S, Takebayashi M, Nakata Y, Morioka N. Pharmacological Activation Gi/o Protein Increases Glial Cell Line-Derived Neurotrophic Factor Production through Fibroblast Growth Factor Receptor and Extracellular Signal-Regulated Kinase Pathway in Primary Cultured Rat Cortical Astrocytes. Biol Pharm Bull 2017; 40:1759-1766. [DOI: 10.1248/bpb.b17-00383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| | - Chie Matsumoto
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| | - Honami Azuma
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| | - Sayaka Taki
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center
- Department of Psychiatry, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer Center
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
41
|
Bernhards RC, Cote CK, Amemiya K, Waag DM, Klimko CP, Worsham PL, Welkos SL. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice. Arch Microbiol 2016; 199:277-301. [PMID: 27738703 PMCID: PMC5306356 DOI: 10.1007/s00203-016-1303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3–180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Collapse
Affiliation(s)
- R C Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
- Present Address: Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, 21010-5424, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - K Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - D M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - C P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - P L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
42
|
Shivnaraine RV, Fernandes DD, Ji H, Li Y, Kelly B, Zhang Z, Han YR, Huang F, Sankar KS, Dubins DN, Rocheleau JV, Wells JW, Gradinaru CC. Single-Molecule Analysis of the Supramolecular Organization of the M2 Muscarinic Receptor and the Gαi1 Protein. J Am Chem Soc 2016; 138:11583-98. [DOI: 10.1021/jacs.6b04032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rabindra V. Shivnaraine
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Dennis D. Fernandes
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Huiqiao Ji
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yuchong Li
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Brendan Kelly
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Krembil Research
Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Zhenfu Zhang
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yi Rang Han
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Fei Huang
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Krishana S. Sankar
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - David N. Dubins
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jonathan V. Rocheleau
- Department
of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Institute
of Biomedical and Biomaterial Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - James W. Wells
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Claudiu C. Gradinaru
- Department
of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
43
|
Surve CR, To JY, Malik S, Kim M, Smrcka AV. Dynamic regulation of neutrophil polarity and migration by the heterotrimeric G protein subunits Gαi-GTP and Gβγ. Sci Signal 2016; 9:ra22. [PMID: 26905427 DOI: 10.1126/scisignal.aad8163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the Gi family of heterotrimeric guanine nucleotide-binding proteins (G proteins) releases βγ subunits, which are the major transducers of chemotactic G protein-coupled receptor (GPCR)-dependent cell migration. The small molecule 12155 binds directly to Gβγ and activates Gβγ signaling without activating the Gαi subunit in the Gi heterotrimer. We used 12155 to examine the relative roles of Gαi and Gβγ activation in the migration of neutrophils on surfaces coated with the integrin ligand intercellular adhesion molecule-1 (ICAM-1). We found that 12155 suppressed basal migration by inhibiting the polarization of neutrophils and increasing their adhesion to ICAM-1-coated surfaces. GPCR-independent activation of endogenous Gαi and Gβγ with the mastoparan analog Mas7 resulted in normal migration. Furthermore, 12155-treated cells expressing a constitutively active form of Gαi1 became polarized and migrated. The extent and duration of signaling by the second messenger cyclic adenosine monophosphate (cAMP) were enhanced by 12155. Inhibiting the activity of cAMP-dependent protein kinase (PKA) restored the polarity of 12155-treated cells but did not decrease their adhesion to ICAM-1 and failed to restore migration. Together, these data provide evidence for a direct role of activated Gαi in promoting cell polarization through a cAMP-dependent mechanism and in inhibiting adhesion through a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Chinmay R Surve
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Jesi Y To
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Immunology and Microbiology, University of Rochester, Rochester, NY 14642, USA
| | - Alan V Smrcka
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA. Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
44
|
Lee SH, Baek JH, Yoon KA. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps. Toxins (Basel) 2016; 8:32. [PMID: 26805885 PMCID: PMC4773785 DOI: 10.3390/toxins8020032] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.
Collapse
Affiliation(s)
- Si Hyeock Lee
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Kyungjae Andrew Yoon
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
| |
Collapse
|
45
|
The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons. Neural Plast 2015; 2016:4258171. [PMID: 26881110 PMCID: PMC4736189 DOI: 10.1155/2016/4258171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/26/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022] Open
Abstract
Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation.
Collapse
|
46
|
Antón Palma B, Leff Gelman P, Medecigo Ríos M, Calva Nieves JC, Acevedo Ortuño R, Matus Ortega ME, Hernández Calderón JA, Hernández Miramontes R, Flores Zamora A, Salazar Juárez A. Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue. BMC Neurosci 2015; 16:65. [PMID: 26463686 PMCID: PMC4603347 DOI: 10.1186/s12868-015-0206-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. Methods The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (–CONH2) and free α-carboxylic acid (−COO−) isovariant of the valine residue. Results P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Conclusions Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or as a specific immunoreagent in immunotherapy settings (used to reduce tumor growth and tumorigenesis) among many others.
Collapse
Affiliation(s)
- Benito Antón Palma
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Philippe Leff Gelman
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico. .,Department of Neuroscience, National Institute of Perinatology, Montes Urales # 800, 11000, México D.F., Mexico.
| | - Mayra Medecigo Ríos
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Juan Carlos Calva Nieves
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Rodolfo Acevedo Ortuño
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Maura Epifanía Matus Ortega
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Jorge Alberto Hernández Calderón
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Ricardo Hernández Miramontes
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Anabel Flores Zamora
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| | - Alberto Salazar Juárez
- Molecular Neurobiology and Addictive Neurochemistry Laboratory, National Institute of Psychiatry, Calzada México-Xochimilco #101, 14370, México D.F., Mexico.
| |
Collapse
|
47
|
Souza BMD, Cabrera MPDS, Gomes PC, Dias NB, Stabeli RG, Leite NB, Neto JR, Palma MS. Structure-activity relationship of mastoparan analogs: Effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity. Peptides 2015; 72:164-74. [PMID: 25944744 DOI: 10.1016/j.peptides.2015.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
In this study, a series of mastoparan analogs were engineered based on the strategies of Ala and Lys scanning in relation to the sequences of classical mastoparans. Ten analog mastoparans, presenting from zero to six Lys residues in their sequences were synthesized and assayed for some typical biological activities for this group of peptide: mast cell degranulation, hemolysis, and antibiosis. In relation to mast cell degranulation, the apparent structural requirement to optimize this activity was the existence of one or two Lys residues at positions 8 and/or 9. In relation to hemolysis, one structural feature that strongly correlated with the potency of this activity was the number of amino acid residues from the C-terminus of each peptide continuously embedded into the zwitterionic membrane of erythrocytes-mimicking liposomes, probably due to the contribution of this structural feature to the membrane perturbation. The antibiotic activity of mastoparan analogs was directly dependent on the apparent extension of their hydrophilic surface, i.e., their molecules must have from four to six Lys residues between positions 4 and 11 of the peptide chain to achieve activities comparable to or higher than the reference antibiotic compounds. The optimization of the antibacterial activity of the mastoparans must consider Lys residues at the positions 4, 5, 7, 8, 9, and 11 of the tetradecapeptide chain, with the other positions occupied by hydrophobic residues, and with the C-terminal residue in the amidated form. These requirements resulted in highly active AMPs with greatly reduced (or no) hemolytic and mast cell degranulating activities.
Collapse
Affiliation(s)
- Bibiana Monson de Souza
- Institute of Biosciences, Department of Biology, Center for the Study of Social Insects, UNESP-Univ. Estadual Paulista, Campus of Rio Claro, Rio Claro, SP, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia (iii), Salvador, BA, Brazil
| | - Marcia Perez Dos Santos Cabrera
- Department of Chemistry and Environmental Sciences, IBILCE, UNESP-Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Paulo Cesar Gomes
- Department of Clinical Analysis, Proteomic Center, Faculty of Pharmaceutical Sciences, UNESP-Univ. Estadual Paulista, Campus of Araraquara, Araraquara, SP, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia (iii), Salvador, BA, Brazil
| | - Nathalia Baptista Dias
- Institute of Biosciences, Department of Biology, Center for the Study of Social Insects, UNESP-Univ. Estadual Paulista, Campus of Rio Claro, Rio Claro, SP, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia (iii), Salvador, BA, Brazil
| | - Rodrigo Guerino Stabeli
- Fundação Oswaldo Cruz, Ministério da Saúde, VPPLR, FIOCRUZ Rio de Janeiro, Rio de Janeiro, SP, Brazil
| | - Natalia Bueno Leite
- Department of Physics, IBILCE, UNESP-Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - João Ruggiero Neto
- Department of Physics, IBILCE, UNESP-Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, SP, Brazil
| | - Mario Sergio Palma
- Institute of Biosciences, Department of Biology, Center for the Study of Social Insects, UNESP-Univ. Estadual Paulista, Campus of Rio Claro, Rio Claro, SP, Brazil; Instituto Nacional de Ciência e Tecnologia (INCT) em Imunologia (iii), Salvador, BA, Brazil.
| |
Collapse
|
48
|
Pharmacological Alternatives for the Treatment of Neurodegenerative Disorders: Wasp and Bee Venoms and Their Components as New Neuroactive Tools. Toxins (Basel) 2015; 7:3179-209. [PMID: 26295258 PMCID: PMC4549745 DOI: 10.3390/toxins7083179] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are relentlessly progressive, severely impacting affected patients, families and society as a whole. Increased life expectancy has made these diseases more common worldwide. Unfortunately, available drugs have insufficient therapeutic effects on many subtypes of these intractable diseases, and adverse effects hamper continued treatment. Wasp and bee venoms and their components are potential means of managing or reducing these effects and provide new alternatives for the control of neurodegenerative diseases. These venoms and their components are well-known and irrefutable sources of neuroprotectors or neuromodulators. In this respect, the present study reviews our current understanding of the mechanisms of action and future prospects regarding the use of new drugs derived from wasp and bee venom in the treatment of major neurodegenerative disorders, including Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
|
49
|
Xie J, Gou Y, Zhao Q, Li S, Zhang W, Song J, Mou L, Li J, Wang K, Zhang B, Yang W, Wang R. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. J Pept Sci 2015; 21:599-607. [PMID: 25891396 DOI: 10.1002/psc.2781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
The increased emergence of multidrug-resistant bacteria is perceived as a critical public health threat, creating an urgent need for the development of novel classes of antimicrobials. Cell-penetrating peptides that share common features with antimicrobial peptides have been found to have antimicrobial activity and are currently being considered as potential alternatives to antibiotics. Transportan 10 is a chimeric cell-penetrating peptide that has been reported to transport biologically relevant cargoes into mammalian cells and cause damage to microbial membranes. In this study, we designed a series of TP10 analogues and studied their structure-activity relationships. We first evaluated the antimicrobial activities of these compounds against multidrug-resistant bacteria, which are responsible for most nosocomial infections. Our results showed that several of these compounds had potent antimicrobial and biofilm-inhibiting activities. We also measured the toxicity of these compounds, finding that Lys substitution could increase the antimicrobial activity but significantly enhanced the cytotoxicity. Pro introduction could reduce the cytotoxicity but disrupted the helical structure, resulting in a loss of activity. In the mechanistic studies, TP10 killed bacteria by membrane-active and DNA-binding activities. In conclusion, TP10 and its analogues could be developed into promising antibiotic candidates for the treatment of infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuanmei Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingyi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 2015; 7:1126-50. [PMID: 25835385 PMCID: PMC4417959 DOI: 10.3390/toxins7041126] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 12/14/2022] Open
Abstract
While knowledge of the composition and mode of action of bee and wasp venoms dates back 50 years, the therapeutic value of these toxins remains relatively unexploded. The properties of these venoms are now being studied with the aim to design and develop new therapeutic drugs. Far from evaluating the extensive number of monographs, journals and books related to bee and wasp venoms and the therapeutic effect of these toxins in numerous diseases, the following review focuses on the three most characterized peptides, namely melittin, apamin, and mastoparan. Here, we update information related to these compounds from the perspective of applied science and discuss their potential therapeutic and biotechnological applications in biomedicine.
Collapse
Affiliation(s)
- Miguel Moreno
- Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, Barcelona 08028, Spain.
| | - Ernest Giralt
- Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, Barcelona 08028, Spain.
| |
Collapse
|