1
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Leask A, Fadl A, Naik A. A modest proposal: targeting αv integrin-mediated activation of latent TGFbeta as a novel therapeutic approach to treat scleroderma fibrosis. Expert Opin Investig Drugs 2024; 33:279-285. [PMID: 38393748 DOI: 10.1080/13543784.2024.2323528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION The potent profibrotic cytokine transforming growth factor-β (TGF-β) has been associated with the onset and progression of the fibrosis seen in the autoimmune connective tissue disease scleroderma (systemic sclerosis, SSc). AREA COVERED This review explores the data supporting the notion that TGF-β contributes to SSc fibrosis and examines why initiating clinical trials in SSc aimed at targeting integrin-mediated latent TGF-β activation is timely. EXPERT OPINION Targeting TGF-β directly has not been proven to be clinically effective in this disease. Conversely, targeting matrix stiffness, which perpetuates fibrosis, may have more promise. Intriguingly, targeting integrin-mediated activation of latent TGF-β, which bridges these concepts, may have therapeutic value.
Collapse
Affiliation(s)
- Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Asmaa Fadl
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Kundu AN, Dougan CE, Mahmoud S, Kilic A, Panagiotou A, Richbourg N, Irakoze N, Peyton SR. Tenascin-C Activation of Lung Fibroblasts in a 3D Synthetic Lung Extracellular Matrix Mimic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301493. [PMID: 37227134 PMCID: PMC10528529 DOI: 10.1002/adma.202301493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Indexed: 05/26/2023]
Abstract
The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that match the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro. Here, a synthetic, bioactive hydrogel is synthesized that mimics the native lung modulus and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin-binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which enables quiescent culture of human lung fibroblasts (HLFs). Stimulation with transforming growth factor β1 (TGF-β1), metastatic breast cancer conditioned media (CM), or tenascin-C-derived integrin-binding peptide activated hydrogel-encapsulated HLFs demonstrates multiple environmental methods to activate HLFs in a lung ECM-mimicking hydrogel. This lung hydrogel platform is a tunable, synthetic approach to studying the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.
Collapse
Affiliation(s)
- Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Samar Mahmoud
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Alara Kilic
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst
| | - Alexi Panagiotou
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Nathan Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
- Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA 01003
| |
Collapse
|
4
|
Kundu AN, Dougan CE, Mahmoud S, Kilic A, Panagiotou A, Irakoze N, Richbourg N, Peyton SR. Tenascin-C activation of lung fibroblasts in a 3D synthetic lung extracellular matrix mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529926. [PMID: 36865293 PMCID: PMC9980292 DOI: 10.1101/2023.02.24.529926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
The lung extracellular matrix (ECM) maintains the structural integrity of the tissue and regulates the phenotype and functions of resident fibroblasts. Lung-metastatic breast cancer alters these cell-ECM interactions, promoting fibroblast activation. There is a need for bio-instructive ECM models that contain the ECM composition and biomechanics of the lung to study these cell-matrix interactions in vitro . Here, we developed a synthetic, bioactive hydrogel that mimics the native lung modulus, and includes a representative distribution of the most abundant ECM peptide motifs responsible for integrin binding and matrix metalloproteinase (MMP)-mediated degradation in the lung, which promotes quiescence of human lung fibroblasts (HLFs). Stimulation with transforming growth factor β1 (TGF-β1), metastatic breast cancer conditioned media (CM), or tenascin-C activated these hydrogel-encapsulated HLFs in a manner reflective of their native in vivo responses. We propose this lung hydrogel platform as a tunable, synthetic approach to study the independent and combinatorial effects of ECM in regulating fibroblast quiescence and activation.
Collapse
Affiliation(s)
- Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Samar Mahmoud
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Alara Kilic
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst
| | - Alexi Panagiotou
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
| | - Ninette Irakoze
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Nathan Richbourg
- Department of Chemical Engineering, University of Massachusetts Amherst
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst
- Institute for Applied Life Sciences, University of Massachusetts Amherst, 240 Thatcher Way, Life Sciences Laboratory N531, Amherst, MA 01003
| |
Collapse
|
5
|
Liu NN, Zhao X, Tan JC, Liu S, Li BW, Xu WX, Peng L, Gu P, Li W, Shapiro R, Zheng X, Zhao W, Jiang YG, Chen D, Xu D, Wang H. Mycobiome Dysbiosis in Women with Intrauterine Adhesions. Microbiol Spectr 2022; 10:e0132422. [PMID: 35730962 PMCID: PMC9431258 DOI: 10.1128/spectrum.01324-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
The vaginal microbiota dysbiosis is closely associated with the development of reproductive diseases. However, the contribution of mycobiome to intrauterine adhesion (IUA) disease remains unknown. Harnessing 16S and ITS2 rDNA sequencing analysis, we investigate both bacterial and fungal microbiota compositions across 174 samples taken from both cervical canal (CC) and middle vagina (MV) sites of IUA patients. Overall, there is no significant difference in microbial diversity between healthy subjects (HS) and IUA patients. However, we observe the IUA-specific bacterial alterations such as increased Dialister and decreased Bifidobacterium and enriched fungal genera like increased Filobasidium and Exophiala. Moreover, site-specific fungal-bacterial correlation networks are discovered in both CC and MV samples of IUA patients. Mechanistic investigation shows that Candida parapsilosis, other than Candida albicans and Candida maltosa, prevents the exacerbation of inflammatory activities and fibrosis, and modulates bacterial microbiota during IUA progression in a rat model of IUA. Our study thus highlights the importance of mycobiota in IUA progression, which may facilitate the development of therapeutic target for IUA prevention. IMPORTANCE Intrauterine adhesion (IUA) often leads to hypomenorrhea, amenorrhea, repeat miscarriages, and infertility. It has been prevalent over the last few decades in up to 13% of women who experience pregnancy termination during the first trimester, and 30% of women undergo dilation and curettage after a late, spontaneous abortion. However, the pathogenesis of IUA remains unclear. Despite reports of microbiota dysbiosis during IUA progression, there is little information on the effect of fungal microbiota on the development of IUA. This study not only enhances our understanding of the mycobiome in IUA patients but also provides potential intervention strategies for prevention of IUA by targeting mycobiome.
Collapse
Affiliation(s)
- Ning-Ning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing-Cong Tan
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Liu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bo-Wen Li
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan-Xing Xu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Peng
- National Engineering and Research Center of Human Stem Cell, Guangxiu Hospital Hunan Normal University, Changsha, Hunan, China
| | - Pan Gu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Waixing Li
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yi-Guo Jiang
- The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dan Chen
- The Third Hospital Affiliated to the Chinese University of Hong Kong Shenzhen, Shenzhen, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Chattopadhyay S, Teixeira LBC, Kiessling LL, McAnulty JF, Raines RT. Bifunctional Peptide that Anneals to Damaged Collagen and Clusters TGF-β Receptors Enhances Wound Healing. ACS Chem Biol 2022; 17:314-321. [PMID: 35084170 DOI: 10.1021/acschembio.1c00745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor-β (TGF-β) plays important roles in wound healing. The activity of TGF-β is initiated upon the binding of the growth factor to the extracellular domains of its receptors. We sought to facilitate the activation by clustering these extracellular domains. To do so, we used a known peptide that binds to TGF-β receptors without diminishing their affinity for TGF-β. We conjugated this peptide to a collagen-mimetic peptide that can anneal to the damaged collagen in a wound bed. We find that the conjugate enhances collagen deposition and wound closure in mice in a manner consistent with the clustering of TGF-β receptors. This strategy provides a means to upregulate the TGF-β signaling pathway without adding exogenous TGF-β and could inspire means to treat severe wounds.
Collapse
Affiliation(s)
- Sayani Chattopadhyay
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan F. McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Rimdenoka O, Pilmane M. Evaluation of TGF-β1 and EGFR in Cleft Affected Lip Mucosa. Acta Med Litu 2021; 28:86-96. [PMID: 34393631 PMCID: PMC8311851 DOI: 10.15388/amed.2021.28.1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022] Open
Abstract
Background. The morphopathogenesis of orofacial cleft development is only partly understood; therefore, it is important to identify factors, which possibly could be involved in it. The aim of the study was to evaluate the distribution of TGF-β1 and EGFR-containing cells in cleft affected lip mucosa. Materials and Methods. The study group included lip mucosa tissue samples from 14 patients with orofacial cleft. The control group contained 11 healthy oral mucosa tissue samples. The tissue sections were stained by immunohistochemistry for TGF-β1 and EGFR. The expression of positive structures was graded semiquantitatively. IBM SPSS 26.0 was used for statistical analysis, Spearman`s rank correlation and Mann-Whitney U tests were performed. Results. Mostly few to moderate number (+/++) of TGF-β1-containing cells was found in epithelium, also the same number of fibroblasts and macrophages was seen in the lamina propria of cleft affected lip mucosa. Meanwhile, healthy oral mucosa on average demonstrated a moderate number (++) of TGF-β1-containing epithelial cells, fibroblasts, and macrophages. A variable, mostly indistinct number of EGFR-containing cells was seen in the epithelium of cleft affected lip mucosa, meanwhile, mostly no (0) EGFR positive cells were found in the epithelium of healthy mucosa. Statistically significantly less TGF-β1-containing cells were found in the epithelium of cleft affected lip mucosa than in the healthy mucosa (U=33.000; p=0.015). Also, the lamina propria of cleft affected lip mucosa showed statistically significantly less TGF-β1 immunoreactive fibroblasts and macrophages than the healthy mucosa (U=28.500; p=0.006). Conclusions. The decreased number of TGF-β1-containing epithelial cells, fibroblasts and macrophages in cleft affected lip mucosa proves the role of problematic tissue remodelation in the cleft pathogenesis. The distribution of EGFR in cleft affected and healthy mucosa is similar and possibly does not play a role in the cleft development of humans.
Collapse
Affiliation(s)
- Olga Rimdenoka
- Riga Stradins University, Institute of Anatomy and Anthropology
| | - Māra Pilmane
- Riga Stradins University, Institute of Anatomy and Anthropology
| |
Collapse
|
8
|
Crosstalk between Epidermal Growth Factor Receptors (EGFR) and integrins in resistance to EGFR tyrosine kinase inhibitors (TKIs) in solid tumors. Eur J Cell Biol 2020; 99:151083. [PMID: 32381360 DOI: 10.1016/j.ejcb.2020.151083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/21/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is important in a variety of physiological and pathologic processes, including development, tumor invasion, and metastasis. Integrin-mediated attachment to ECM proteins has emerged to cue events primitively important for the transformed phenotype of human cancer cells. Cross-talk between integrins and growth factor receptors takes an increasingly prominent role in defining adhesion, motility, and cell growth. This functional interaction has expanded beyond to link integrins with resistance to Tyrosine kinase inhibitors (TKIs) of Epidermal Growth Factor Receptors (EGFRs). In this regard, integrin-mediated adhesion has two separate functions one as a clear collaborator with growth factor receptor signaling and the second as a basic mechanism contributing in Epithelial to Mesenchymal Transition (EMT) which affects response to chemotherapy. This review provides an overview of these mechanisms and describes treatment options for selectively targeting and disrupting integrin interaction to EGFR for cancer therapy.
Collapse
|
9
|
Glimm T, Bhat R, Newman SA. Multiscale modeling of vertebrate limb development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1485. [PMID: 32212250 DOI: 10.1002/wsbm.1485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/07/2022]
Abstract
We review the current state of mathematical modeling of cartilage pattern formation in vertebrate limbs. We place emphasis on several reaction-diffusion type models that have been proposed in the last few years. These models are grounded in more detailed knowledge of the relevant regulatory processes than previous ones but generally refer to different molecular aspects of these processes. Considering these models in light of comparative phylogenomics permits framing of hypotheses on the evolutionary order of appearance of the respective mechanisms and their roles in the fin-to-limb transition. This article is categorized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Mechanistic Models Developmental Biology > Developmental Processes in Health and Disease Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, Washington
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
10
|
Baror R, Neumann B, Segel M, Chalut KJ, Fancy SPJ, Schafer DP, Franklin RJM. Transforming growth factor-beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia 2019; 67:1374-1384. [PMID: 30861188 PMCID: PMC6563458 DOI: 10.1002/glia.23612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 01/26/2023]
Abstract
It is now well-established that the macrophage and microglial response to CNS demyelination influences remyelination by removing myelin debris and secreting a variety of signaling molecules that influence the behaviour of oligodendrocyte progenitor cells (OPCs). Previous studies have shown that changes in microglia contribute to the age-related decline in the efficiency of remyelination. In this study, we show that microglia increase their expression of the proteoglycan NG2 with age, and that this is associated with an altered micro-niche generated by aged, but not young, microglia that can divert the differentiation OPCs from oligodendrocytes into astrocytes in vitro. We further show that these changes in ageing microglia are generated by exposure to high levels of TGFβ. Thus, our findings suggest that the rising levels of circulating TGFβ known to occur with ageing contribute to the age-related decline in remyelination by impairing the ability of microglia to promote oligodendrocyte differentiation from OPCs, and therefore could be a potential therapeutic target to promote remyelination.
Collapse
Affiliation(s)
- Roey Baror
- Wellcome‐MRC Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
- Department of PaediatricsUniversity California San FranciscoSan FranciscoCalifornia
| | - Björn Neumann
- Wellcome‐MRC Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Segel
- Wellcome‐MRC Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Kevin J. Chalut
- Wellcome‐MRC Stem Cell InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Stephen P. J. Fancy
- Department of PaediatricsUniversity California San FranciscoSan FranciscoCalifornia
| | - Dorothy P. Schafer
- Department of Neurobiology and the Brudnik Neuropsychiatric InstituteUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | | |
Collapse
|
11
|
Zhang F, Qian J, Tao C, Wang Y, Lin S, You C, Yang M. Neutrophil to lymphocyte ratio predicts island sign in patients with intracranial hemorrhage. Medicine (Baltimore) 2018; 97:e13057. [PMID: 30383680 PMCID: PMC6221617 DOI: 10.1097/md.0000000000013057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our previously studies indicated that inflammatory responses are involved in the hematoma expansion (HE) after intracranial hemorrhage (ICH) ictus. Here, we aim to evaluate the correlations among the ratio of neutrophil to lymphocyte ratio (NLR), HE, and island sign in patients with ICH.Patients with spontaneous ICH were retrospectively included. Clinical characteristics, imaging features, and laboratory parameters were obtained. Multivariable analysis was performed to evaluate the association of NLR with HE or island sign. Receiver-operator analysis was also used to estimate their predictive abilities for HE and its imaging features.A total of 279 patients were enrolled in present study, and 78 patients had early hematoma growth, while 43 of them exhibited island sign. Elevation of both leukocyte (odds ratio [OR] 1.136, 95% confidence interval [CI] 1.037-1.245, P < .01) and neutrophil absolute numbers (OR 1.169, 95% CI 1.065-1.284, P < .01), as well as reduction of lymphocyte counts (OR 0.052, 95% CI 0.016-0.167, P < .01) were strongly associated with the existence of island sign. Moreover, despite the predictive ability of NLR on the existence of island sign (OR 1.063, 95% CI 1.036-1.090, P < .01), it also showed the best predictive accuracy (sensitivity 76.74%, specificity 79.66%, positive predictive value 40.70%, negative predictive value 94.90%, area under the curve 0.817) by comparing with peripheral leukocyte counts.The NLR could be used as an independently marker for reflecting the island sign in patients with ICH. Our findings indicated that systemic inflammatory responses might be involved in the pathologic process of active bleeding in cerebral.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology
| | - Juan Qian
- Department of Population and Quantitative Health, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Chuanyuan Tao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Sen Lin
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mu Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
12
|
The Streptococcus pyogenes fibronectin/tenascin-binding protein PrtF.2 contributes to virulence in an influenza superinfection. Sci Rep 2018; 8:12126. [PMID: 30108238 PMCID: PMC6092322 DOI: 10.1038/s41598-018-29714-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) and Streptococcus pyogenes (the group A Streptococcus; GAS) are important contributors to viral-bacterial superinfections, which result from incompletely defined mechanisms. We identified changes in gene expression following IAV infection of A549 cells. Changes included an increase in transcripts encoding proteins with fibronectin-type III (FnIII) domains, such as fibronectin (Fn), tenascin N (TNN), and tenascin C (TNC). We tested the idea that increased expression of TNC may affect the outcome of an IAV-GAS superinfection. To do so, we created a GAS strain that lacked the Fn-binding protein PrtF.2. We found that the wild-type GAS strain, but not the mutant, co-localized with TNC and bound to purified TNC. In addition, adherence of the wild-type strain to IAV-infected A549 cells was greater compared to the prtF.2 mutant. The wild-type strain was also more abundant in the lungs of mice 24 hours after superinfection compared to the mutant strain. Finally, all mice infected with IAV and the prtF.2 mutant strain survived superinfection compared to only 42% infected with IAV and the parental GAS strain, indicating that PrtF.2 contributes to virulence in a murine model of IAV-GAS superinfection.
Collapse
|
13
|
Kim HY, Kim MS, Kim SH, Joen D, Lee K. Protective Effects of Nintedanib against Polyhexamethylene Guanidine Phosphate-Induced Lung Fibrosis in Mice. Molecules 2018; 23:molecules23081974. [PMID: 30087305 PMCID: PMC6222351 DOI: 10.3390/molecules23081974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Nintedanib (NDN), a tyrosine kinase inhibitor, has been shown to have anti-tumor, anti-inflammatory, and anti-fibrotic effects in several reports. We investigated the protective effects of NDN against polyhexamethylene guanidine phosphate (PHMG)-induced lung fibrosis in mice. The following three experimental groups were evaluated: (1) vehicle control; (2) PHMG (1.1 mg/kg); and (3) PHMG & NDN (60 mg/kg). PHMG induced pulmonary inflammation and fibrosis by intratracheal instillation in mice. In contrast, NDN treatment effectively alleviated the PHMG induced lung injury, and attenuated the number of total cells and inflammatory cells in the bronchoalveolar lavage fluid, including the fibrotic histopathological changes, and also reduced the hydroxyproline content. NDN also significantly decreased the expression of inflammatory cytokines and fibrotic factors, and the activation of the NLRP3 inflammasome in lung tissues. These results suggest that NDN may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Toxicology Evaluation, Graduate School of Pre-Clinical Laboratory Science, Konyang University, Daejeon 35365, Korea.
| | - Min-Seok Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea.
| | - Doin Joen
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Korea Institute of Toxicology, 30, Baekhak 1-gil, Jeongeup-si 56212, Korea.
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
14
|
Kuonen F, Surbeck I, Sarin KY, Dontenwill M, Rüegg C, Gilliet M, Oro AE, Gaide O. TGFβ, Fibronectin and Integrin α5β1 Promote Invasion in Basal Cell Carcinoma. J Invest Dermatol 2018; 138:2432-2442. [PMID: 29758283 DOI: 10.1016/j.jid.2018.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the most frequent human cancer and is becoming an important health problem in an aging population. Based on their clinical and histological characteristics, thick BCC are typically divided into low-risk nodular and high-risk infiltrative subtypes, although the underlying mechanisms are poorly understood. We have identified molecular mechanisms that explain the aggressiveness of high-risk infiltrative BCC, with a potential direct clinical impact. In this study, we first show that fibroblasts, transforming growth factor-β, and fibronectin are found preferentially in infiltrative human BCC. This allowed us to develop in vivo models for the study of infiltrative BCC, which in turn let us confirm the role of transforming growth factor-β in inducing peritumoral fibronectin deposition and tumor infiltration. We then show that fibronectin promotes adhesion and migration of BCC cell lines through integrin α5β1-mediated phosphorylation of focal adhesion kinase. Fittingly, both inhibition of integrin α5β1 and phospho-focal adhesion kinase prevent fibronectin-induced migration of BCC cells in vitro as well as BCC infiltration in vivo. Altogether, our results open important insights into the pathogenesis of aggressive infiltrative BCC and identify integrin α5β1 or focal adhesion kinase inhibition as promising strategies for the treatment of advanced BCC.
Collapse
Affiliation(s)
- François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland; Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA.
| | - Isabelle Surbeck
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Kavita Y Sarin
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Monique Dontenwill
- Laboratory of Biophotonic and Pharmacology, UMR7213 CNRS, University of Strasbourg, Strasbourg, France
| | - Curzio Rüegg
- Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Michel Gilliet
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Anthony E Oro
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Olivier Gaide
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
15
|
Newman SA, Glimm T, Bhat R. The vertebrate limb: An evolving complex of self-organizing systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:12-24. [PMID: 29325895 DOI: 10.1016/j.pbiomolbio.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
The paired appendages (fins or limbs) of jawed vertebrates contain an endoskeleton consisting of nodules, bars and, in some groups, plates of cartilage, or bone arising from replacement of cartilaginous templates. The generation of the endoskeletal elements occurs by processes involving production and diffusion of morphogens, with, variously, positive and negative feedback circuits, adhesion, and receptor dynamics with similarities to the mechanism for chemical pattern formation proposed by Alan Turing. This review presents a unified interpretation of the evolution and functioning of these mechanisms. Studies are described indicating that protocondensations, compacted mesenchymal cell aggregates that prefigure the appendicular skeleton, arise through the adhesive activity of galectin-1, a matricellular protein with skeletogenic homologs in all jawed vertebrates. In the cartilaginous and lobe-finned fishes (and to a variable extent in ray-finned fishes) it additionally cooperates with an isoform of galectin-8 to constitute a self-organizing network capable of generating arrays of preskeletal nodules, bars and plates. Further, in the tetrapods, a putative galectin-8 control module was acquired that may have enabled proximodistal increase in the number of protocondensations. In parallel to this, other self-organizing networks emerged that acted, via Bmp, Wnt, Sox9 and Runx2, as well as transforming factor-β and fibronectin, to convert protocondensations into skeletal tissues. The progressive appearance and integration of these skeletogenic networks over evolution occurred in the context of an independently evolved system of Hox protein and Shh gradients that interfaced with them to tune the spatial wavelengths and refine the identities of the resulting arrays of elements.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Chen S, Zhao B, Wang W, Shi L, Reis C, Zhang J. Predictors of hematoma expansion predictors after intracerebral hemorrhage. Oncotarget 2017; 8:89348-89363. [PMID: 29179524 PMCID: PMC5687694 DOI: 10.18632/oncotarget.19366] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 01/04/2023] Open
Abstract
Despite years of effort, intracerebral hemorrhage (ICH) remains the most devastating form of stroke with more than 40% 30-day mortality worldwide. Hematoma expansion (HE), which occurs in one third of ICH patients, is strongly predictive of worse prognosis and potentially preventable if high-risk patients were identified in the early phase of ICH. In this review, we summarize data from recent studies on HE prediction and classify those potential indicators into four categories: clinical (severity of consciousness disturbance; blood pressure; blood glucose at and after admission); laboratory (hematologic parameters of coagulation, inflammation and microvascular integrity status), radiographic (interval time from ICH onset; baseline volume, shape and density of hematoma; intraventricular hemorrhage; especially the spot sign and modified spot sign) and integrated predictors (9-point or 24-point clinical prediction algorithm and PREDICT A/B). We discuss those predictors’ underlying pathophysiology in HE and present opportunities to develop future therapeutic strategies.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Binjie Zhao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wei Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Preventive Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
17
|
Mamuya FA, Xie D, Lei L, Huang M, Tsuji K, Capen DE, Yang B, Weissleder R, Păunescu TG, Lu HAJ. Deletion of β1-integrin in collecting duct principal cells leads to tubular injury and renal medullary fibrosis. Am J Physiol Renal Physiol 2017; 313:F1026-F1037. [PMID: 28701310 DOI: 10.1152/ajprenal.00038.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022] Open
Abstract
The renal collecting duct (CD) contains two major cell types, intercalated (ICs) and principal cells (PCs). A previous report showed that deletion of β1-integrin in the entire renal CD causes defective CD morphogenesis resulting in kidney dysfunction. However, subsequent deletion of β1-integrin specifically in ICs and PCs, respectively, did not cause any morphological defects in the CDs. The discrepancy between these studies prompts us to reinvestigate the role of β1-integrin in CD cells, specifically in the PCs. We conditionally deleted β1-integrin in mouse CD PCs using a specific aquaporin-2 (AQP2) promoter Cre-LoxP system. The resulting mutant mice, β-1f/fAQP2-Cre+, had lower body weight, failed to thrive, and died around 8-12 wk. Their CD tubules were dilated, and some of them contained cellular debris. Increased apoptosis and proliferation of PCs were observed in the dilated CDs. Trichrome staining and electron microscopy revealed the presence of peritubular and interstitial fibrosis that is associated with increased production of extracellular matrix proteins including collagen type IV and fibronectin, as detected by immunoblotting. Further analysis revealed a significantly increased expression of transforming growth factor-β (TGF-β)-induced protein, fibronectin, and TGF-β receptor-1 mRNAs and concomitantly increased phosphorylation of SMAD-2 that indicates the activation of the TGF-β signaling pathway. Therefore, our data reveal that normal expression of β1-integrin in PCs is a critical determinant of CD structural and functional integrity and further support the previously reported critical role of β1-integrin in the development and/or maintenance of the CD structure and function.
Collapse
Affiliation(s)
- Fahmy A Mamuya
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Dongping Xie
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Physiology, Tongji University School of Medicine, Shanghai, China; and
| | - Lei Lei
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ming Huang
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Kenji Tsuji
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - BaoXue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Teodor G Păunescu
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hua A Jenny Lu
- Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; .,Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Li J, Yao W, Zhang L, Bao L, Chen H, Wang D, Yue Z, Li Y, Zhang M, Hao C. Genome-wide DNA methylation analysis in lung fibroblasts co-cultured with silica-exposed alveolar macrophages. Respir Res 2017; 18:91. [PMID: 28499430 PMCID: PMC5429546 DOI: 10.1186/s12931-017-0576-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/08/2017] [Indexed: 01/14/2023] Open
Abstract
Background Exposure to crystalline silica is considered to increase the risk of lung fibrosis. The primary effector cell, the myofibroblast, plays an important role in the deposition of extracellular matrix (ECM). DNA methylation change is considered to have a potential effect on myofibroblast differentiation. Therefore, the present study was designed to investigate the genome-wide DNA methylation profiles of lung fibroblasts co-cultured with alveolar macrophages exposed to crystalline silica in vitro. Methods AM/fibroblast co-culture system was established. CCK8 was used to assess the toxicity of AMs. mRNA and protein expression of collagen I, α-SMA, MAPK9 and TGF-β1 of fibroblasts after AMs exposed to 100 μg /ml SiO2 for 0–, 24–, or 48 h were determined by means of quantitative real-time PCR, immunoblotting and immunohistochemistry. Genomic DNA of fibroblasts was isolated using MeDIP-Seq to sequence. R software, GO, KEGG and Cytoscape were used to analyze the data. Results SiO2 exposure increased the expression of collagen I and α-SMA in fibroblasts in co-culture system. Analysis of fibroblast methylome identified extensive methylation changes involved in several signaling pathways, such as the MAPK signaling pathway and metabolic pathways. Several candidates, including Tgfb1 and Mapk9, are hubs who can connect the gene clusters. MAPK9 mRNA expression was significantly higher in fibroblast exposed to SiO2 in co-culture system for 48 h. MAPK9 protein expression was increased at both 24-h and 48-h treatment groups. TGF-β1 mRNA expression of fibroblast has a time-dependent manner, but we didn’t observe the TGF-β1 protein expression. Conclusion Tgfb1 and Mapk9 are helpful to explore the mechanism of myofibroblast differentiation. The genome-wide DNA methylation profiles of fibroblasts in this experimental silicosis model will be useful for future studies on epigenetic gene regulation during myofibroblast differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0576-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Li
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Wu Yao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Lin Zhang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Lei Bao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Huiting Chen
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Di Wang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Zhongzheng Yue
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Yiping Li
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Miao Zhang
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China
| | - Changfu Hao
- College of Public Health, Zhengzhou University, No.100, Kexue Road, Zhengzhou city, Henan province, China.
| |
Collapse
|
19
|
Varadaraj A, Jenkins LM, Singh P, Chanda A, Snider J, Lee NY, Amsalem-Zafran AR, Ehrlich M, Henis YI, Mythreye K. TGF-β triggers rapid fibrillogenesis via a novel TβRII-dependent fibronectin-trafficking mechanism. Mol Biol Cell 2017; 28:1195-1207. [PMID: 28298487 PMCID: PMC5415016 DOI: 10.1091/mbc.e16-08-0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 02/02/2023] Open
Abstract
There is increased recycling of soluble fibronectin from the cell surface for fibrillogenesis. This recycling is regulated by TGF-β in a transcription- and SMAD-independent manner via specific TβRII and integrin α5β1 interactions. The recycling of fibronectin is Rab11 dependent and is required for TGF-β–induced cell migration. Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β–induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface–internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Priyanka Singh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - Anindya Chanda
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29201
| | - John Snider
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208
| | - N Y Lee
- Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, OH 43210
| | | | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav I Henis
- Department of Neurobiology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 .,Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
20
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
21
|
Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore LW, Lemmon CA. Fibronectin fibrils regulate TGF-β1-induced Epithelial-Mesenchymal Transition. Matrix Biol 2017; 60-61:157-175. [PMID: 28109697 DOI: 10.1016/j.matbio.2017.01.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a dynamic process through which epithelial cells transdifferentiate from an epithelial phenotype into a mesenchymal phenotype. Previous studies have demonstrated that both mechanical signaling and soluble growth factor signaling facilitate this process. One possible point of integration for mechanical and growth factor signaling is the extracellular matrix. Here we investigate the role of the extracellular matrix (ECM) protein fibronectin (FN) in this process. We demonstrate that inhibition of FN fibrillogenesis blocks activation of the Transforming Growth Factor-Beta (TGF-β) signaling pathway via Smad2 signaling, decreases cell migration and ultimately leads to inhibition of EMT. Results show that soluble FN, FN fibrils, or increased contractile forces are insufficient to independently induce EMT. We further demonstrate that inhibition of latent TGF-β1 binding to FN fibrils via either a monoclonal blocking antibody against the growth factor binding domain of FN or through use of a FN deletion mutant that lacks the growth factor binding domains of FN blocks EMT progression, indicating a novel role for FN in EMT in which the assembly of FN fibrils serves to localize TGF-β1 signaling to drive EMT.
Collapse
Affiliation(s)
- Lauren A Griggs
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Nadiah T Hassan
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Roshni S Malik
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Brian P Griffin
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Brittany A Martinez
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Lynne W Elmore
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, 101 W Franklin St., Richmond, VA 23220, United States.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, 101 W Franklin St., Richmond, VA 23220, United States.
| |
Collapse
|
22
|
The Discovery and Early Days of TGF-β: A Historical Perspective. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021865. [PMID: 27328871 DOI: 10.1101/cshperspect.a021865] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factors (TGFs) were discovered as activities that were secreted by cancer cells, and later by normal cells, and had the ability to phenotypically and reversibly transform immortalized fibroblasts. TGF-β distinguished itself from TGF-α because it did not bind to the same epidermal growth factor (EGF) receptor as TGF-α and, therefore, acted through different cell-surface receptors and signaling mediators. This review summarizes the discovery of TGF-β, the early developments in its molecular and biological characterization with its many biological activities in different cell and tissue contexts and its roles in disease, the realization that there is a family of secreted TGF-β-related proteins with many differentiation functions in development and activities in normal cell and tissue physiology, and the subsequent identification and characterization of the receptors and effectors that mediate TGF-β family signaling responses.
Collapse
|
23
|
Bagchi RA, Lin J, Wang R, Czubryt MP. Regulation of fibronectin gene expression in cardiac fibroblasts by scleraxis. Cell Tissue Res 2016; 366:381-391. [PMID: 27324126 DOI: 10.1007/s00441-016-2439-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
The glycoprotein fibronectin is a key component of the extracellular matrix. By interacting with numerous matrix and cell surface proteins, fibronectin plays important roles in cell adhesion, migration and intracellular signaling. Up-regulation of fibronectin occurs in tissue fibrosis, and previous studies have identified the pro-fibrotic factor TGFβ as an inducer of fibronectin expression, although the mechanism responsible remains unknown. We have previously shown that a key downstream effector of TGFβ signaling in cardiac fibroblasts is the transcription factor scleraxis, which in turn regulates the expression of a wide variety of extracellular matrix genes. We noted that fibronectin expression tracked closely with scleraxis expression, but it was unclear whether scleraxis directly regulated the fibronectin gene. Here, we report that scleraxis acts via two E-box binding sites in the proximal human fibronectin promoter to govern fibronectin expression, with the second E-box being both sufficient and necessary for scleraxis-mediated fibronectin expression to occur. A combination of electrophoretic mobility shift and chromatin immunoprecipitation assays indicated that scleraxis interacted to a greater degree with the second E-box. Over-expression or knockdown of scleraxis resulted in increased or decreased fibronectin expression, respectively, and scleraxis null mice presented with dramatically decreased immunolabeling for fibronectin in cardiac tissue sections compared to wild-type controls. Furthermore, scleraxis was required for TGFβ-induced fibronectin expression: TGFβ lost its ability to induce fibronectin expression following scleraxis knockdown. Together, these results demonstrate a novel and required role for scleraxis in the regulation of cardiac fibroblast fibronectin gene expression basally or in response to TGFβ.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Division of Cardiology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, RC2- Room 8450, Aurora, CO, 80045, USA
| | - Justin Lin
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ryan Wang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
Human Keratoconus Cell Contractility is Mediated by Transforming Growth Factor-Beta Isoforms. J Funct Biomater 2015; 6:422-38. [PMID: 26096146 PMCID: PMC4493522 DOI: 10.3390/jfb6020422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Keratoconus (KC) is a progressive disease linked to defects in the structural components of the corneal stroma. The extracellular matrix (ECM) is secreted and assembled by corneal keratocytes and regulated by transforming growth factor-β (TGF-β). We have previously identified alterations in the TGF-β pathway in human keratoconus cells (HKCs) compared to normal corneal fibroblasts (HCFs). In our current study, we seeded HKCs and HCFs in 3D-collagen gels to identify variations in contractility, and expression of matrix metalloproteases (MMPs) by HKCs in response the TGF-β isoforms. HKCs showed delayed contractility with decreased Collagen I:Collagen V ratios. TGF-β1 significantly increased ECM contraction, Collagen I, and Collagen V expression by HKCs. We also found that HKCs have significantly decreased Collagen I:Collagen III ratios suggesting a potential link to altered collagen isoform expression in KC. Our findings show that HKCs have significant variations in collagen secretion in a 3D collagen gel and have delayed contraction of the matrix compared to HCFs. For the first time, we utilize a collagen gel model to characterize the contractility and MMP expression by HKCs that may contribute to the pathobiology of KC.
Collapse
|
25
|
Boroujerdi A, Welser-Alves JV, Milner R. Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5. Angiogenesis 2015; 18:255-64. [PMID: 25812799 DOI: 10.1007/s10456-015-9464-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/22/2015] [Indexed: 11/27/2022]
Abstract
Vascular remodeling involves a highly coordinated break-down and build-up of the vascular basal lamina and inter-endothelial tight junction proteins. In light of the important role of matrix metalloproteinases (MMPs) in tissue remodeling, the goal of this study was to examine the role of MMP-9 in remodeling of cerebral blood vessels, both in hypoxia-induced angiogenesis and in the vascular pruning that accompanies the switch from hypoxia back to normoxia. In a chronic mild hypoxia model of cerebrovascular remodeling, gel zymography revealed that MMP-9 levels were increased, both during hypoxic-induced angiogenesis and in the post-hypoxic pruning response. Interestingly, compared to wild-type mice, MMP-9 KO mice showed no alteration in hypoxic-induced angiogenesis, but did show marked delay in post-hypoxic vascular pruning. In wild-type mice, vascular pruning was associated with fragmentation of vascular laminin and the tight junction protein claudin-5, while this process was markedly attenuated in MMP-9 KO mice. In vitro experiments showed that hypoxia stimulated MMP-9 expression in brain endothelial cells but not pericytes. These results show that while MMP-9 is not essential for hypoxic-induced cerebral angiogenesis, it plays an important role in post-hypoxic vascular pruning by degrading laminin and claudin-5.
Collapse
Affiliation(s)
- Amin Boroujerdi
- Department of Molecular and Experimental Medicine, MEM-132, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | |
Collapse
|
26
|
Morgan DL, Merrick BA, Gerrish KE, Stockton PS, Wang Y, Foley JF, Gwinn WM, Kelly FL, Palmer SM, Ton TVT, Flake GP. Gene expression in obliterative bronchiolitis-like lesions in 2,3-pentanedione-exposed rats. PLoS One 2015; 10:e0118459. [PMID: 25710175 PMCID: PMC4339611 DOI: 10.1371/journal.pone.0118459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/19/2015] [Indexed: 11/21/2022] Open
Abstract
Obliterative bronchiolitis (OB) is an irreversible lung disease characterized by progressive fibrosis in the small airways with eventual occlusion of the airway lumens. OB is most commonly associated with lung transplant rejection; however, OB has also been diagnosed in workers exposed to artificial butter flavoring (ABF) vapors. Research has been limited by the lack of an adequate animal model of OB, and as a result the mechanism(s) is unclear and there are no effective treatments for this condition. Exposure of rats to the ABF component, 2,3-pentanedione (PD) results in airway lesions that are histopathologically similar to those in human OB. We used this animal model to evaluate changes in gene expression in the distal bronchi of rats with PD-induced OB. Male Wistar Han rats were exposed to 200 ppm PD or air 6 h/d, 5 d/wk for 2-wks. Bronchial tissues were laser microdissected from serial sections of frozen lung. In exposed lungs, both fibrotic and non-fibrotic airways were collected. Following RNA extraction and microarray analysis, differential gene expression was evaluated. In non-fibrotic bronchi of exposed rats, 4683 genes were significantly altered relative to air-exposed controls with notable down-regulation of many inflammatory cytokines and chemokines. In contrast, in fibrotic bronchi, 3807 genes were significantly altered with a majority of genes being up-regulated in affected pathways. Tgf-β2 and downstream genes implicated in fibrosis were significantly up-regulated in fibrotic lesions. Genes for collagens and extracellular matrix proteins were highly up-regulated. In addition, expression of genes for peptidases and peptidase inhibitors were significantly altered, indicative of the tissue remodeling that occurs during airway fibrosis. Our data provide new insights into the molecular mechanisms of OB. This new information is of potential significance with regard to future therapeutic targets for treatment.
Collapse
Affiliation(s)
- Daniel L. Morgan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - B. Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Kevin E. Gerrish
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Patricia S. Stockton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Yu Wang
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Julie F. Foley
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - William M. Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Francine L. Kelly
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Scott M. Palmer
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thai-Vu T. Ton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Gordon P. Flake
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
27
|
Song JA, Park HJ, Yang MJ, Jung KJ, Yang HS, Song CW, Lee K. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy. Food Chem Toxicol 2014; 69:267-75. [PMID: 24769016 DOI: 10.1016/j.fct.2014.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 02/02/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy.
Collapse
Affiliation(s)
- Jeong Ah Song
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Hyun-Ju Park
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Mi-Jin Yang
- Toxicopathology Center, Non-human Primate Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Kyung Jin Jung
- Analytical Center, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Hyo-Seon Yang
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea
| | - Chang-Woo Song
- Division of Toxicological Research, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Non-human Primate, Korea Institute of Toxicology, Jeongeup-si, Jeollabukdo 580-185, Republic of Korea.
| |
Collapse
|
28
|
Gagen D, Faralli JA, Filla MS, Peters DM. The role of integrins in the trabecular meshwork. J Ocul Pharmacol Ther 2013; 30:110-20. [PMID: 24266581 DOI: 10.1089/jop.2013.0176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). However, integrins are not just adhesion receptors. They can act as "bidirectional signal transducers" that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. Among the activities regulated by integrins are cell adhesion, assembly of the ECM, growth factor signaling, apoptosis, organization of the cytoskeleton, and cytoskeleton-mediated processes such as contraction, endocytosis, and phagocytosis. Integrins regulate these activities through a complex network of intracellular signaling kinases and adaptor proteins that associate with the transmembrane and cytoplasmic domains of the integrin subunits. In this review, we will discuss how some of the known integrin-mediated activities can control the function of the trabecular meshwork. We will also discuss how integrin activity is a tightly regulated process that involves conformation changes within the heterodimer which are mediated by specific integrin-binding proteins.
Collapse
Affiliation(s)
- Debjani Gagen
- 1 Department of Pathology and Laboratory Medicine, Medical Science Center, University of Wisconsin , Madison, Wisconsin
| | | | | | | |
Collapse
|
29
|
Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/etp.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Chronic cerebral hypoxia promotes arteriogenic remodeling events that can be identified by reduced endoglin (CD105) expression and a switch in β1 integrins. J Cereb Blood Flow Metab 2012; 32:1820-30. [PMID: 22739620 PMCID: PMC3434638 DOI: 10.1038/jcbfm.2012.94] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic cerebral hypoxia leads to a strong vascular remodeling response, though little is known about which part of the vascular tree is modified, or whether this response includes formation of new arterial vessels. In this study, we examined this process in detail, analyzing how hypoxia (8% O(2) for 14 days) alters the size distribution of vessels, number of arteries/arterioles, and expression pattern of endoglin (CD105), a marker of angiogenic endothelial cells in tumors. We found that cerebral hypoxia promoted the biggest increase in the number of medium to large size vessels, and this correlated with increased numbers of alpha smooth muscle actin (α-SMA)-positive arterial vessels. Surprisingly, hypoxia induced a marked reduction in CD105 expression on brain endothelial cells (BECs) within remodeling arterial vessels, and these BECs also displayed an angiogenic switch in β1 integrins (from α6 to α5), previously described for developmental angiogenesis. In vitro, transforming growth factor (TGF)-β1 also promoted this switch of BEC β1 integrins. Together, these results show that cerebral hypoxia promotes arteriogenesis, and identify reduced CD105 expression as a novel marker of arteriogenesis. Furthermore, our data suggest a mechanistic model whereby BECs in remodeling arterial vessels downregulate CD105 expression, which alters TGF-β1 signaling, to promote a switch in β1 integrins and arteriogenic remodeling.
Collapse
|
31
|
Brunswick AS, Hwang BY, Appelboom G, Hwang RY, Piazza MA, Connolly ES. Serum biomarkers of spontaneous intracerebral hemorrhage induced secondary brain injury. J Neurol Sci 2012; 321:1-10. [PMID: 22857988 DOI: 10.1016/j.jns.2012.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 06/13/2012] [Accepted: 06/23/2012] [Indexed: 01/01/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with a high rate of morbidity and mortality. It is now believed that much of this damage occurs in the subacute period following the initial insult via a cascade of complex pathophysiologic pathways that continues to be investigated. Increased levels of certain serum proteins have been identified as biomarkers that may reflect or directly participate in the inflammation, blood brain barrier disruption, endothelial dysfunction, and neuronal and glial toxicity that occur during this secondary period of cerebral injury. Some of these biomarkers have the potential to serve as therapeutic targets or surrogate endpoints for future research or clinical trials. Others may someday augment current clinical techniques in diagnosis, risk-stratification, prognostication, treatment decision and measurement of therapeutic efficacy. While much work remains to be done, biomarkers show significant potential to expand clinical options and improve clinical management, thereby reducing mortality and improving functional outcomes in ICH patients.
Collapse
Affiliation(s)
- Andrew S Brunswick
- Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011; 158:181-96. [PMID: 21925115 PMCID: PMC3324184 DOI: 10.1016/j.trsl.2011.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/04/2011] [Accepted: 05/24/2011] [Indexed: 01/14/2023]
Abstract
Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis.
Collapse
|
33
|
To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. FIBROGENESIS & TISSUE REPAIR 2011; 4:21. [PMID: 21923916 PMCID: PMC3182887 DOI: 10.1186/1755-1536-4-21] [Citation(s) in RCA: 385] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes.
Collapse
Affiliation(s)
- Wing S To
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Nuffield Department of Orthopedic Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London, W6 8LH, UK.
| | | |
Collapse
|
34
|
Hayashida T, Jones JCR, Lee CK, Schnaper HW. Loss of beta1-integrin enhances TGF-beta1-induced collagen expression in epithelial cells via increased alphavbeta3-integrin and Rac1 activity. J Biol Chem 2010; 285:30741-51. [PMID: 20650890 DOI: 10.1074/jbc.m110.105700] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor β (TGF-β) promotes tissue fibrosis via the receptor-specific Smad pathway and non-canonical pathways. We recently reported that TGF-β1-stimulated collagen expression by cultured kidney cells requires integrin-dependent activation of focal adhesion kinase (FAK) and consequent ERK MAP kinase activity leading to Smad3 linker region phosphorylation. Here, we defined a role for αvβ3-integrin in this non-canonical pathway. A human kidney tubular cell line in which β1-integrin was knocked down (β1-k/d) demonstrated enhanced type I collagen mRNA expression and promoter activity. A second shRNA to either αv-integrin or β3-integrin, but not to another αv-binding partner, β6-integrin, abrogated the enhanced COL1A2 promoter activity in β1-k/d cells. Although αvβ3-integrin surface expression levels were not different, αvβ3-integrins colocalized with sites of focal adhesion significantly more in β1-k/d cells, and activated αvβ3-integrin was detected only in β1-k/d cells. Further, the collagen response was decreased by a function-blocking antibody or a peptide inhibitor of αvβ3-integrin. In cells lacking αvβ3-integrin, the responses were attenuated, whereas the response was enhanced in αvβ3-overexpressing cells. Rac1 and ERK, previously defined mediators for this non-canonical pathway, showed increased activities in β1-k/d cells. Finally, inhibition of αvβ3-integrin decreased Rac1 activity and COL1A2 promoter activity in β1-k/d cells. Together, our results indicate that decreasing β1 chain causes αvβ3-integrin to become functionally dominant and promotes renal cell fibrogenesis via Rac1-mediated ERK activity.
Collapse
Affiliation(s)
- Tomoko Hayashida
- Division of Kidney Diseases, Department of Pediatrics, the Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
35
|
Maruhashi T, Kii I, Saito M, Kudo A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 2010; 285:13294-303. [PMID: 20181949 DOI: 10.1074/jbc.m109.088864] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intra- and intermolecular covalent cross-linking between collagen fibrils, catalyzed by lysyl oxidase (LOX), determines the mechanical properties of connective tissues; however, mechanisms that regulate the collagen cross-linking according to tissue specificity are not well understood. Here we show that periostin, a secretory protein in the dense connective tissues, promotes the activation of LOX. Previous studies showed that periostin null mice exhibit reduced collagen cross-linking in their femurs, periosteum, infarcted myocardium, and tendons. Presently, we showed that active LOX protein, formed by cleavage of its propeptide by bone morphogenetic protein-1 (BMP-1), was decreased in calvarial osteoblast cells derived from periostin null mice. Overexpression of periostin promoted the proteolytic cleavage of the propeptide, which increased the amount of active LOX protein. The results of co-immunoprecipitation and solid phase binding assays revealed that periostin interacted with BMP-1. Furthermore, this interaction probably resulted in enhanced deposition of BMP-1 on the extracellular matrix, suggesting that this enhanced deposition would lead to cleavage of the propeptide of LOX. Thus, we demonstrated that periostin supported BMP-1-mediated proteolytic activation of LOX on the extracellular matrix, which promoted collagen cross-linking.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
36
|
Lygoe KA, Wall I, Stephens P, Lewis MP. Role of vitronectin and fibronectin receptors in oral mucosal and dermal myofibroblast differentiation. Biol Cell 2008; 99:601-14. [PMID: 17516912 DOI: 10.1042/bc20070008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND INFORMATION The activation of fibroblasts into myofibroblasts is a crucial event in healing that is linked to remodelling and scar formation, therefore we determined whether regulation of myofibroblast differentiation via integrins might affect wound healing responses in populations of patient-matched HOFs (human oral fibroblasts) compared with HDFs (human dermal fibroblasts). RESULTS Both the HOF and HDF cell types underwent TGF-beta1 (transforming growth factor-beta1)-induced myofibroblastic differentiation [upregulation of the expression of alpha-sma (alpha-smooth muscle actin)], although analysis of unstimulated cells indicated that HOFs contained higher basal levels of alpha-sma than HDFs (P<0.05). Functional blocking antibodies against the integrin subunits alpha 5 (fibronectin) or alpha v (vitronectin) were used to determine whether the effects of TGF-beta1 were regulated via integrin signalling pathways. alpha-sma expression in both HOFs and HDFs was down-regulated by antibodies against both alpha 5 and alpha v. Functionally, TGF-beta1 inhibited cell migration in an in vitro wound model and increased the contraction of collagen gels. Greater contraction was evident for HOFs compared with HDFs, both with and without stimulation by TGF-beta1 (P<0.05). When TGF-beta1-stimulated cells were incubated with blocking antibodies against alpha 5 and alpha v, gel contraction was decreased to that of non-stimulated cells; however, blocking alpha v or alpha 5 could not restore cellular migration in both HOFs and HDFs. CONCLUSIONS Despite intrinsic differences in their basal state, the cellular events associated with TGF-beta1-induced myofibroblastic differentiation are common to both HOFs and HDFs, and appear to require differential integrin usage; up-regulation of alpha-sma expression and increases in collagen gel contraction are vitronectin- and fibronectin-receptor-dependent processes, whereas wound re-population is not.
Collapse
Affiliation(s)
- Kate A Lygoe
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, 256 Grays Inn Road, London WC1X 8LD, UK
| | | | | | | |
Collapse
|
37
|
Moir LM, Burgess JK, Black JL. Transforming growth factor beta 1 increases fibronectin deposition through integrin receptor alpha 5 beta 1 on human airway smooth muscle. J Allergy Clin Immunol 2008; 121:1034-9.e4. [PMID: 18243286 DOI: 10.1016/j.jaci.2007.12.1159] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 11/24/2007] [Accepted: 12/19/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Integrin receptors signal to and from the extracellular matrix. Altered expression of the integrin receptors, such as the fibronectin receptor alpha(5)beta(1), might be implicated in extracellular matrix accumulation in airway remodeling in asthma. OBJECTIVE We examined the effect of TGF-beta stimulation on integrin alpha(5)beta(1) expression and the role of alpha(5)beta(1) in fibronectin deposition and proliferation. METHODS Integrin subunit alpha(5) and beta(1) expression in airway smooth muscle (ASM) from subjects with and without asthma was examined by means of PCR and flow cytometry. The effect of blocking alpha(5)beta(1) receptor on ASM proliferation to FBS was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay. Cells were stimulated with TGF-beta in the presence or absence of extracellular signal-regulated kinase, phosphoinositide-3 kinase, or p38 inhibitors and antibodies to the alpha(5) and beta(1) subunits. The effect of blocking alpha(5)beta(1) receptor on fibronectin deposition was assessed by means of immunocytochemistry. RESULTS Proliferation of ASM cells from asthmatic and nonasthmatic subjects was inhibited by blocking the fibronectin receptor subunit alpha(5)beta(1). TGF-beta-induced alpha(5)beta(1) was extracellular signal-regulated kinase dependent but not phosphoinositide-3 kinase or p38 dependent. Blockade of the alpha(5)beta(1) receptor inhibited TGF-beta-induced fibronectin matrix deposition. CONCLUSION Through its increased expression by the profibrotic stimulus TGF-beta, integrin alpha(5)beta(1) might be important in regulating fibronectin deposition.
Collapse
Affiliation(s)
- Lyn M Moir
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|
38
|
Figueiredo CC, Deccache PMS, Lopes-Bezerra LM, Morandi V. TGF-beta1 induces transendothelial migration of the pathogenic fungus Sporothrix schenckii by a paracellular route involving extracellular matrix proteins. MICROBIOLOGY-SGM 2007; 153:2910-2921. [PMID: 17768235 DOI: 10.1099/mic.0.2006/005421-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sporotrichosis, a mycosis caused by Sporothrix schenckii, is characterized by lymphocutaneous lesions. In immunocompromised hosts, this fungus may invade the bloodstream and disseminate to other tissues, such as lung and bone. Our group previously showed that S. schenckii yeasts adhere to endothelial monolayers and that this interaction is modulated by cytokines. Using 3.0 mum-pore culture inserts, the present work shows that transforming growth factor (TGF)-beta1 led to a 80+/-26 % increase in fungal migration across endothelial monolayers and inhibited fungus internalization by 55+/-23.5 %, when compared to untreated cells. The major surface endothelial molecules recognized by S. schenckii were not modulated by TGF-beta1. These data suggested that a paracellular route is preferentially used by S. schenckii during the transmigration of cultured endothelial cells. It was further observed that TGF-beta1 increased the subendothelial matrix exposure and that anti-fibronectin (anti-FN) and anti-laminin (anti-LM) antibodies abolished the increase in S. schenckii association with endothelial monolayers induced by TGF-beta1. These antibodies also inhibited (38.2+/-4.29 % and 50.8+/-17.3 %, respectively) the adhesion of S. schenckii to freshly prepared native endothelial matrices. Furthermore, transendothelial migration of S. schenckii was blocked by anti-FN and anti-LM antibodies. These data indicate that TGF-beta1-induced S. schenckii adhesion to endothelial monolayers results from the increased exposure of the subendothelial extracellular matrix and that this event may contribute to the enhancement of transendothelial migration.
Collapse
Affiliation(s)
- Camila C Figueiredo
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Paula M S Deccache
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Leila M Lopes-Bezerra
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Verônica Morandi
- Departamento de Biologia Celular e Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
39
|
Abstract
Wound healing comprises an ordered sequence of events including cell migration and proliferation, synthesis of extracellular matrix, angiogenesis and remodelling. TGF-beta regulates many of these processes. Animal models are used to study healing of simple linear incision wounds and deeper dermal wounds under normal and impaired conditions. TGF-beta increases the rate of healing and the breaking strength of the repaired tissue. It also enhances angiogenesis and consequent blood flow to dermal wounds, partly by stimulating the local release of other growth factors. TGF-beta reverses the adverse affects of glucocorticoids on wound healing and thus may be useful in the treatment of chronic ulcers or wounds in patients whose normal responses have been impaired by therapy with steroids, radiation or other drugs.
Collapse
Affiliation(s)
- E P Amento
- Genentech, Inc, South San Francisco, CA 94080
| | | |
Collapse
|
40
|
Kimura M, Kawahito Y, Hamaguchi M, Nakamura T, Okamoto M, Matsumoto Y, Endo H, Yamamoto A, Ishino H, Wada M, Omoto A, Tsubouchi Y, Kohno M, Yoshikawa T. SKL-2841, a dual antagonist of MCP-1 and MIP-1 beta, prevents bleomycin-induced skin sclerosis in mice. Biomed Pharmacother 2007; 61:222-8. [PMID: 17147981 DOI: 10.1016/j.biopha.2006.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/06/2006] [Indexed: 10/23/2022] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by fibrosis and excessive collagen deposition in the skin and various internal organs. In early stages of SSc, the dermis reveals infiltration of inflammatory cells associated with increased collagen synthesis. SKL-2841 was initially synthesized as a novel small molecule antagonist of MCP-1. In this study, we indicated that SKL-2841 also exerts anti-chemotactic activity for MIP-1 beta in mouse spleen cells. In the early stages of bleomycin-induced skin lesions, immunohistochemical analysis showed the expression of both MCP-1 and MIP-1 beta in dermal inflammatory cells. Moreover, intraperitoneal administration of SKL-2841 suppressed the infiltration of inflammatory mononuclear cells and polymorphonuclear cells in the acute phase and also significantly suppressed fibrillization in the chronic phase in bleomycin-induced scleroderma, compared with PBS treatment. These findings suggest that SKL-2841 has potential as a compound for the treatment of conditions associated with skin fibrosis such as SSc.
Collapse
Affiliation(s)
- Mizuho Kimura
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Walsh P, Häkkinen L, Pernu H, Knuuttila M, Larjava H. Expression of fibronectin-binding integrins in gingival epithelium in drug-induced gingival overgrowth. J Periodontal Res 2007; 42:144-51. [PMID: 17305873 DOI: 10.1111/j.1600-0765.2006.00927.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Gingival overgrowth is a side-effect of nifedipine and cyclosporin medications. Integrins are transmembrane glycoproteins that mediate cell adhesion, regulate cell proliferation and participate in the regulation of tissue fibrosis. The aim of this study was to investigate whether expression of epithelial cell integrins is linked to the development of drug-induced gingival overgrowth. MATERIAL AND METHODS Human gingival biopsies of patients taking nifedipine, cyclosporin, or a combination of both medications, were used. Expression of the alpha5beta1, alphavbeta1 and alphavbeta6 integrins, and of cellular extra domain A of fibronectin, was localized in frozen sections using immunohistochemistry. RESULTS The activated conformation of the beta1, alpha5beta1 and alphavbeta6 integrins were more frequently expressed in distinct locations in the oral epithelium in the combined drug group. Cellular extra domain A of fibronectin, a ligand for both alpha5beta1 and alphavbeta6 integrins, was expressed within the connective tissue of all groups. It was also expressed around the basal keratinocytes of the control, nifedipine and cyclosporin-induced gingival overgrowth groups, but not in the combined medication group. No relationship between the presence of inflammation and integrin expression was found. CONCLUSION The results indicate that expression of certain integrins is up-regulated in the epithelium of drug-induced gingival overgrowth where they could participate in controlling the formation of elongated rete ridges and tissue fibrosis.
Collapse
Affiliation(s)
- P Walsh
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
42
|
Qiu Z, Kwon AH, Kamiyama Y. Effects of Plasma Fibronectin on the Healing of Full-Thickness Skin Wounds in Streptozotocin-Induced Diabetic Rats. J Surg Res 2007; 138:64-70. [PMID: 17161431 DOI: 10.1016/j.jss.2006.06.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/08/2006] [Accepted: 06/12/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Fibronectin has been shown to assist in wound healing. Impaired wound healing in diabetes mellitus is characterized by a reduction in plasma fibronectin (pFn) at the wound site. This study investigated whether topical application of pFn could improve the impaired wound healing in diabetic rats. MATERIALS AND METHODS Full-thickness skin wounds were created on the backs of streptozotocin (STZ)-induced diabetic rats. Immediately, human pFn was introduced into the wound bed, while wounds receiving human serum albumin or normal saline were used as controls. Wound closure was monitored using well-recognized wound-healing parameters: epithelialization, vascularization, collagen deposition, and migration of fibroblasts were examined histologically. Transforming growth factor (TGF)-beta1 was measured by immunochemistry. Hydroxyproline levels also were assessed in the wound skin. RESULTS Wound closure was significantly accelerated by local application of pFn. Furthermore, pFn-treated wounds showed increased fibroblast vascularization, collagen regeneration, and epithelialization. The numbers of infiltrating fibroblasts expressing TGF-beta1 and hydroxyproline levels in pFn-treated wounds were significantly higher than those in the controls. CONCLUSIONS pFn can improve the impaired healing of diabetic wounds and this effect might involve an increase in the activity of fibroblasts and increased release of TGF-beta1.
Collapse
Affiliation(s)
- Zeyu Qiu
- Department of Surgery, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | |
Collapse
|
43
|
Nesti LJ, Caterson EJ, Li WJ, Chang R, McCann TD, Hoek JB, Tuan RS. TGF-β1 calcium signaling in osteoblasts. J Cell Biochem 2007; 101:348-59. [PMID: 17211850 DOI: 10.1002/jcb.21180] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) action is known to be initiated by its binding to multiple cell surface receptors containing serine/threonine kinase domains that act to stimulate a cascade of signaling events in a variety of cell types. We have previously shown that TGF-beta1 and BMP-2 treatment of primary human osteoblasts (HOBs) enhances cell-substrate adhesion. In this report, we demonstrate that TGF-beta1 elicits a rapid, transient, and oscillatory rise in the intracellular Ca(2+) concentration, [Ca(2+)](i), that is necessary for enhancement of cell adhesion in HOBs but does not alter the phosphorylation state of Smad proteins. This rise in [Ca(2+)](i) in HOB is not observed in the absence of extracellular calcium or when the cells are treated with the L-type Ca(2+) channel blocker, nifedipine, but is stimulated upon treatment with the L-type Ca(2+) channel agonist, Bay K 8644, or under high K(+) conditions. The rise in [Ca(2+)](i) is severely attenuated after treatment of the cells with thapsigargin, a selective endoplasmic reticulum Ca(2+) pump inhibitor. TGF-beta1 enhancement of HOB adhesion to tissue culture polystyrene is also inhibited in cells treated with nifedipine. These data suggest that intracellular Ca(2+) signaling is an important second messenger of the TGF-beta1 signal transduction pathway in osteoblast function.
Collapse
Affiliation(s)
- Leon J Nesti
- Department of Orthopaedics and Rehabilitation, Walter Reed Army Medical Center, Washington, DC 20307, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sozen I, Arici A. Cellular biology of myomas: interaction of sex steroids with cytokines and growth factors. Obstet Gynecol Clin North Am 2006; 33:41-58. [PMID: 16504805 DOI: 10.1016/j.ogc.2005.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many investigators who have been trying to delineate the pathophysiology of leiomyomata believe in the autocrine-paracrine model of tumor growth,where ovarian hormones act as regulators of gene expression in cells. These affected cells overproduce the stimulatory and fibrogenic cytokines and growth factors to which they respond, resulting in sustained, self-stimulated proliferation and fibrogenesis. A number of cytokines and growth factors have been investigated in leiomyomata to determine which cytokines or factors may be responsible for mediating the growth-promoting effects of ovarian hormones. A review of the literature reveals that TGF-3 is the only growth factor shown to be overexpressed in leiomyomata versus myometrium, hormonally regulated both in vivo and in vitro, and both mitogenic and fibrogenic in these tissues. The authors believe that, given the extent and depth of the current research on the cellular biology of leiomyoma, the cellular mechanisms responsible in the pathogenesis of leiomyoma will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level, which undoubtedly will have a major impact on the number of hysterectomies being performed for a"fibroid uterus."
Collapse
Affiliation(s)
- Ibrahim Sozen
- Department of Obstetrics and Gynecology, Anadolu Health Center, Anadolu CAD No: 1, Cay.rova mevkii, Gebze, 41400 Kocaeli, Turkey.
| | | |
Collapse
|
45
|
Haiping Z, Takayama K, Uchino J, Harada A, Adachi Y, Kura S, Caicun Z, Tsuzuki T, Nakanishi Y. Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-β type II receptor gene. Cancer Gene Ther 2006; 13:864-72. [PMID: 16710346 DOI: 10.1038/sj.cgt.7700959] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate whether radiation-induced pneumonitis in the mouse-irradiated lung could be prevented by recombinant adenovirus-mediated soluble transforming growth factor-beta (TGF-beta) type II receptor gene therapy. Radiation fibrosis-prone mice (C57BL/6J) were randomly divided into four groups consisting of a (1) control group (sham-irradiated); (2) radiation (RT)-alone group; (3) RT+AdCMVsTbetaR group and (4) RT+AdCMVluc group. The RT-alone and sham-irradiated mice were killed at several time points after thoracic irradiation with a single dose of 9 Gy, and then the TGF-beta1 concentrations in serum and broncho-alveolar lavage fluid (BALF) were quantified by enzyme-linked immunosorbent assay (ELISA). We used an adenoviral vector expressing a soluble TGF-beta type II receptor (AdCMVsTbetaR), which can bind to TGF-beta and then block the TGF-beta receptor-mediated signal transduction. The C57BL/6J mice were intraperitoneally (i.p.) injected with either 5 x 10(8) plaque-forming units of AdCMVsTbetaR or AdCMVluc, a control adenovirus-expressing luciferase, a week preceding and a week following the X-ray thoracic irradiation. Four weeks after irradiation, the mice were killed and the concentration of TGF-beta1 in the serum and BALF were then measured using ELISA and the lung tissue specimens were examined histopathologically. Following thoracic irradiation with a single dose of 9 Gy, radiation-induced TGF-beta1 release in the serum reached the first peak concentration at 12 h and then declined. It reached a maximal value at 2 weeks after irradiation. In the BALF, the TGF-beta1 concentration was appreciable within the first hour and thereafter declined. It reached a maximal value at 3 days after irradiation. A one-time i.p. injection of AdCMVsTbetaR 1 week before irradiation could not completely suppress the two peaks of the radiation-induced TGF-beta1 increase, whereas an injection a week preceding and a week following thoracic irradiation was able to suppress those two peaks thoroughly. The TGF-beta1 was completely suppressed in the AdCMVsTbetaR-treated mouse serum and BALF; however, no statistical difference was observed in the serum and BALF between the AdCMVluc-infected mice and the control mice at 4 weeks after irradiation (P < 0.05). A histopathological examination showed only mild radiation pneumonitis in the irradiated lungs of AdCMVsTbetaR-treated mice in comparison to the AdCMVluc-infected and RT-alone mice. Our results demonstrated that TGF-beta1 plays an important role in radiation pneumonitis, thus suggesting that the adenovirus-mediated overexpression in soluble TGF-beta type II receptor gene therapy may be a potentially feasible and effective strategy for the prevention of radiation pneumonitis.
Collapse
Affiliation(s)
- Z Haiping
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Roman J, Rivera HN, Roser-Page S, Sitaraman SV, Ritzenthaler JD. Adenosine induces fibronectin expression in lung epithelial cells: implications for airway remodeling. Am J Physiol Lung Cell Mol Physiol 2005; 290:L317-25. [PMID: 16183671 DOI: 10.1152/ajplung.00118.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is an extracellular nucleoside that is elevated in tissues during hypoxia and ischemia reperfusion and has been implicated in asthma and other lung disorders. There, adenosine is considered an important modulator of physiological functions and inflammation, but its effects on matrix expression and turnover during tissue remodeling are unknown. We examined the effects of adenosine on lung epithelial cells with particular attention to the expression of fibronectin, a matrix glycoprotein highly expressed in injured tissues that has been implicated in wound healing. In A549 lung epithelial cells, we found that adenosine induced expression of fibronectin mRNA and protein in a dose- and time-dependent manner and found that the stimulatory effect of adenosine was inhibited by specific adenosine receptor antagonists. Adenosine stimulation was associated with increased levels of intracellular cAMP and with phosphorylation and DNA binding of the cAMP response element binding protein (CREB), known for its ability to stimulate fibronectin gene transcription. To confirm the latter, A549 cells were transfected with a DNA construct containing the human fibronectin promoter connected to a luciferase reporter gene. Adenosine stimulated transcription of the gene, and this effect was blocked by inhibitors of protein kinase activation. Finally, we tested primary lung fibroblasts and primary alveolar epithelial type II cells and found increased fibronectin expression in response to adenosine. Overall, our observations suggest that adenosine might modulate tissue remodeling by stimulating fibronectin expression in lung epithelial cells through induction of purinergic receptor-mediated signals that target CREB phosphorylation and stimulate fibronectin gene transcription.
Collapse
Affiliation(s)
- Jesse Roman
- Department of Medicine, Emory University School of Medicine, and Veterans Affairs Medical Center, Whitehead Biomedical Research Bldg., 615 Michael St., Ste. 205-M, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
47
|
Jaeger LA, Spiegel AK, Ing NH, Johnson GA, Bazer FW, Burghardt RC. Functional effects of transforming growth factor beta on adhesive properties of porcine trophectoderm. Endocrinology 2005; 146:3933-42. [PMID: 15961561 DOI: 10.1210/en.2005-0090] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In pigs, expression and amounts of biologically active TGFbetas at the conceptus-maternal interface increase significantly as conceptuses elongate and begin the implantation process. Before their activation, secreted TGFbetas are noncovalently associated with their respective, isoform-specific latency-associated peptides (LAPs), which contain the Arg-Gly-Asp (RGD) amino acid sequence that serves as a ligand for numerous integrins. Objectives of this study were to determine whether TGFbeta1 increases production of fibronectin by porcine trophectoderm, whether porcine trophectoderm adheres specifically to fibronectin and LAP, and whether functional interactions between porcine trophectoderm and the two TGFbeta-associated proteins, fibronectin and LAP, are integrin mediated. Porcine trophectoderm cells (pTr2) were cultured in presence of TGFbeta1, LAP, or pan-neutralizing anti-TGFbeta antibody; TGFbeta specifically increased (P < 0.05) fibronectin mRNA levels, as determined by Northern and slot blot analyses. Immunofluorescence microscopy demonstrated a TGFbeta-induced increase in fibronectin in pTr2 cells. In dispersed cell adhesion assays, adhesion of pTr2 cells to fibronectin was inhibited by an RGD-containing peptide (P < 0.05) and pTr2 cells attached to recombinant LAP but not to an LAP mutant, which contained an RGE sequence rather than the RGD site (P < 0.05). Fibronectin- and LAP-coated microbeads induced integrin activation at apical surfaces of both trophectoderm and uterine luminal epithelial cells, as indicated by aggregation and transmembrane accumulation of talin detected with immunofluorescence microscopy. Cell surface biotinylation and immunoprecipitation revealed integrin subunits alphav and beta1 on apical membranes of pTr2 cells. These results suggest multiple effects of TGFbeta at the porcine conceptus-maternal interface, including integrin-mediated conceptus-maternal communication through LAP.
Collapse
Affiliation(s)
- Laurie A Jaeger
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Beggs ML, Nagarajan R, Taylor-Jones JM, Nolen G, Macnicol M, Peterson CA. Alterations in the TGFbeta signaling pathway in myogenic progenitors with age. Aging Cell 2004; 3:353-61. [PMID: 15569352 DOI: 10.1111/j.1474-9728.2004.00135.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myogenic progenitors in adult muscle are necessary for the repair, maintenance and hypertrophy of post-mitotic muscle fibers. With age, fat deposition and fibrosis contribute to the decline in the integrity and functional capacity of muscles. In a previous study we reported increased accumulation of lipid in myogenic progenitors obtained from aged mice, accompanied by an up-regulation of genes involved in adipogenic differentiation. The present study was designed to extend our understanding of how aging affects the fate and gene expression profile of myogenic progenitors. Affymetrix murine U74 Genechip analysis was performed using RNA extracted from myogenic progenitors isolated from adult (8-month-old) and aged (24-month-old) DBA/2JNIA mice. The cells from the aged animals exhibited major alterations in the expression level of many genes directly or indirectly involved with the TGFbeta signaling pathway. Our data indicate that with age, myogenic progenitors acquire the paradoxical phenotype of being both TGFbeta activated based on overexpression of TGFbeta-inducible genes, but resistant to the differentiation-inhibiting effects of exogenous TGFbeta. The overexpression of TGFbeta-regulated genes, such as connective tissue growth factor, may play a role in increasing fibrosis in aging muscle.
Collapse
Affiliation(s)
- Marjorie L Beggs
- Department of Geriatrics, Reynolds Center on Aging, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Silva Y, Leira R, Tejada J, Lainez JM, Castillo J, Dávalos A. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 2004; 36:86-91. [PMID: 15550687 DOI: 10.1161/01.str.0000149615.51204.0b] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE To investigate whether molecular markers of inflammation and endothelial injury are associated with early growth of intracerebral hemorrhage (ICH). METHODS In a multicenter prospective study, we determined concentrations of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), matrix metalloproteinase-9 (MMP-9), and cellular fibronectin (c-Fn) in blood samples obtained on admission from 183 patients with primary hemispheric ICH of <12 hours' duration. Patients had a neurological evaluation and a computed tomography (CT) scan performed at baseline and at 48+/-6 hours. Early growth of the ICH was defined as a volume increase >33% between the 2 CT examinations for ICH with a baseline volume <20 mL and >10% for ICH > or =20 mL. Clinical, radiological, and biochemical predictive factors of ICH enlargement were analyzed by logistic regression analysis. RESULTS Fifty-four (29.5%) patients showed a relevant early growth of ICH. High leukocyte count and fibrinogen levels, low platelet count, and intraventricular bleeding were associated with early ICH growth in bivariate analyses. Plasma concentrations of IL-6 (median [quartiles]: 19.6 [13.6; 29.9] versus 15.9 [11.5; 19.8] pg/mL), TNF-alpha (13.5 [8.4; 30.5] versus 8.7 [4.7; 13.5] pg/mL), MMP-9 (153.3 [117.7; 204.7] versus 70.6 [47.8; 103.8] ng/mL), and c-Fn (8.8 [6.2; 12.5] versus 2.8 [1.6; 4.2] microg/mL) were significantly higher in patients with early growth of ICH (all P<0.001). C-Fn levels >6 microg/mL (OR, 92; 95%CI, 22 to 381; P<0.0001) and IL-6>24 pg/mL (OR, 16; 95%CI, 2.3 to 119; P=0.005) were independently associated with ICH enlargement in the logistic regression analysis. CONCLUSIONS Molecular signatures of vascular injury and inflammatory markers in the early acute phase of ICH are associated with subsequent enlargement of the hematoma.
Collapse
Affiliation(s)
- Yolanda Silva
- Department of Neurology, Hospital Doctor Josep Trueta, Girona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Roman J, Ritzenthaler JD, Boles B, Lois M, Roser-Page S. Lipopolysaccharide induces expression of fibronectin α5β1-integrin receptors in human monocytic cells in a protein kinase C-dependent fashion. Am J Physiol Lung Cell Mol Physiol 2004; 287:L239-49. [PMID: 15064224 DOI: 10.1152/ajplung.00244.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
LPS is an outer-membrane glycolipid component of gram-negative bacteria known for its fervent ability to activate monocytic cells and for its potent proinflammatory capabilities. In addition, LPS triggers the release of cytokines and chemokines as well as cell-cell adhesion molecules. We postulate that LPS may also affect the expression of matrix-binding integrin receptors, thereby modulating cell-adhesive functions in monocytic cells. To test this hypothesis, we investigated the effects of LPS on the expression of the integrin α5β1, a fibronectin receptor, in a human monocytic cell line (U937) as well as in isolated human peripheral blood mononuclear cells (PBMCs). We found that LPS increased the expression of α5β1receptors and enhanced the adherence of U937 cells and PBMCs to fibronectin-coated surfaces; this was blocked by anti-α5β1antibodies. LPS increased α5-subunit mRNA accumulation in a dose- and time-dependent manner. The induction by LPS occurred, at least in part, at the level of gene transcription as indicated by experiments using α5intact and deletion promoter constructs. LPS-induced α5gene transcription was associated with rapid induction of conventional PKC-α protein and activity, was blocked by PKC inhibitors, and was mimicked by lipid A. Finally, we found that an anti-CD14 antibody was able to inhibit the LPS response. Overall, the data suggest that LPS stimulates α5gene transcription via CD14 and PKC-dependent signals to enhance the expression of functional α5β1receptors in monocytic cells. This process may help stimulate monocytic cell activation and facilitate their migration into fibronectin-containing tissues during infection.
Collapse
Affiliation(s)
- Jesse Roman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, and The Atlanta Veterans Affairs Medical Center, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|