1
|
Autosomal Recessive Stickler Syndrome. Genes (Basel) 2022; 13:genes13071135. [PMID: 35885918 PMCID: PMC9324312 DOI: 10.3390/genes13071135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Stickler syndrome (SS) is a genetic disorder with manifestations in the eye, ear, joints, face and palate. Usually inherited in a dominant fashion due to heterozygous pathogenic variants in the collagen genes COL2A1 and COL11A1, it can rarely be inherited in a recessive fashion from variants in COL9A1, COL9A2, and COL9A3, COL11A1, as well as the non-collagen genes LRP2, LOXL3 and GZF1. We review the published cases of recessive SS, which comprise 40 patients from 23 families. Both homozygous and compound heterozygous pathogenic variants are found. High myopia is near-universal, and sensorineural hearing loss is very common in patients with variants in genes for type IX or XI collagen, although hearing appears spared in the LRP2 and LOXL3 patients and is variable in GZF1. Cleft palate is associated with type XI collagen variants, as well as the non-collagen genes, but is so far unreported with type IX collagen variants. Retinal detachment has occurred in 18% of all cases, and joint pain in 15%. However, the mean age of this cohort is 11 years old, so the lifetime incidence of both problems may be underestimated. This paper reinforces the importance of screening for SS in congenital sensorineural hearing loss, particularly when associated with myopia, and the need to warn patients and parents of the warning signs of retinal detachment, with regular ophthalmic review.
Collapse
|
2
|
Nixon TRW, Alexander P, Richards A, McNinch A, Bearcroft PWP, Cobben J, Snead MP. Homozygous Type IX collagen variants (COL9A1, COL9A2, and COL9A3) causing recessive Stickler syndrome-Expanding the phenotype. Am J Med Genet A 2019; 179:1498-1506. [PMID: 31090205 DOI: 10.1002/ajmg.a.61191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 11/08/2022]
Abstract
Stickler syndrome (SS) is characterized by ophthalmic, articular, orofacial, and auditory manifestations. SS is usually autosomal dominantly inherited with variants in COL2A1 or COL11A1. Recessive forms are rare but have been described with homozygous variants in COL9A1, COL9A2, and COL9A3 and compound heterozygous COL11A1 variants. This article expands phenotypic descriptions in recessive SS due to variants in genes encoding Type IX collagen. Clinical features were assessed in four families. Genomic DNA samples derived from venous blood were collected from family members. Six affected patients were identified from four pedigrees with variants in COL9A1 (one family, one patient), COL9A2 (two families, three patients), and COL9A3 (one family, two patients). Three variants were novel. All patients were highly myopic with congenital megalophthalmos and abnormal, hypoplastic vitreous gel, and all had sensorineural hearing loss. One patient had severe arthropathy. Congenital megalophthalmos and myopia are common to dominant and recessive forms of SS. Sensorineural hearing loss is more common and severe in recessive SS. We suggest that COL9A1, COL9A2, and COL9A3 be added to genetic screening panels for patients with congenital hearing loss. Although recessive SS is rare, early diagnosis would have a high impact for children with potentially dual sensory impairment, as well as identifying risk to future children.
Collapse
Affiliation(s)
- Thomas R W Nixon
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Philip Alexander
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Allan Richards
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Annie McNinch
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip W P Bearcroft
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jan Cobben
- North West Thames Regional Genetic Services, Northwick Park Hospitals NHS Foundation Trust, London, UK.,Department of Pediatrics, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Martin P Snead
- School of Clinical Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Vitreoretinal Service, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Isolation and Characterisation of Major and Minor Collagens from Hyaline Cartilage of Hoki ( Macruronus novaezelandiae). Mar Drugs 2019; 17:md17040223. [PMID: 31013845 PMCID: PMC6521242 DOI: 10.3390/md17040223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
The composition and properties of collagen in teleost (bony fish) cartilage have never been studied. In this study, we aimed to identify and characterise all collagen species in the nasal cartilage of hoki (Macruronus novaezelandiae). Four native collagen species were extracted using two techniques, and isolated with differential salt precipitation. We were able to assign the identity of three of these collagen species on the basis of solubility, SDS-PAGE and amino acid analyses. We found that hoki cartilage contains the major collagen, type II, and the minor collagens, type IX and type XI, which are homologous to those found in mammal and chicken cartilage. Using these extraction protocols, we also isolated a full-length type IX collagen from cartilage for the first time. In addition, we detected a 90 kDa, highly glycosylated collagen that has not been identified in any other species. For each isolate, structural and biochemical characterisations were performed using circular dichroism and Fourier transform infrared spectroscopy analyses, and the thermal denaturation properties were determined. Our results showed that the properties of hoki cartilage-derived collagens are similar to those of collagens in mammalian cartilage, indicating that teleost cartilage could provide biological ingredients for the development of biomaterials to treat cartilage-related illnesses.
Collapse
|
4
|
Ivanova VP, Krivchenko AI. Current viewpoint on structure and on evolution of collagens. II. Fibril-associated collagens. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014040012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Brown RJ, Mallory C, McDougal OM, Oxford JT. Proteomic analysis of Col11a1-associated protein complexes. Proteomics 2011; 11:4660-76. [PMID: 22038862 PMCID: PMC3463621 DOI: 10.1002/pmic.201100058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/26/2011] [Accepted: 09/28/2011] [Indexed: 11/06/2022]
Abstract
Cartilage plays an essential role during skeletal development within the growth plate and in articular joint function. Interactions between the collagen fibrils and other extracellular matrix molecules maintain structural integrity of cartilage, orchestrate complex dynamic events during embryonic development, and help to regulate fibrillogenesis. To increase our understanding of these events, affinity chromatography and liquid chromatography/tandem mass spectrometry were used to identify proteins that interact with the collagen fibril surface via the amino terminal domain of collagen α1(XI) a protein domain that is displayed at the surface of heterotypic collagen fibrils of cartilage. Proteins extracted from fetal bovine cartilage using homogenization in high ionic strength buffer were selected based on affinity for the amino terminal noncollagenous domain of collagen α1(XI). MS was used to determine the amino acid sequence of tryptic fragments for protein identification. Extracellular matrix molecules and cellular proteins that were identified as interacting with the amino terminal domain of collagen α1(XI) directly or indirectly, included proteoglycans, collagens, and matricellular molecules, some of which also play a role in fibrillogenesis, while others are known to function in the maintenance of tissue integrity. Characterization of these molecular interactions will provide a more thorough understanding of how the extracellular matrix molecules of cartilage interact and what role collagen XI plays in the process of fibrillogenesis and maintenance of tissue integrity. Such information will aid tissue engineering and cartilage regeneration efforts to treat cartilage tissue damage and degeneration.
Collapse
Affiliation(s)
- Raquel J. Brown
- Department of Biological Sciences, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Christopher Mallory
- Department of Chemistry and Biochemistry, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| | - Julia Thom Oxford
- Department of Biological Sciences, Biomolecular Research Center and Musculoskeletal Research Institute, Boise State University, Boise, ID 83725-1515, USA
| |
Collapse
|
6
|
Trabecular bone deterioration in col9a1+/- mice associated with enlarged osteoclasts adhered to collagen IX-deficient bone. J Bone Miner Res 2008; 23:837-49. [PMID: 18251701 PMCID: PMC2677084 DOI: 10.1359/jbmr.080214] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Short collagen IX, the exclusive isoform expressed by osteoblasts, is synthesized through alternative transcription of the col9a1 gene. The function of short collagen IX in bone was characterized in col9a1-null mutant mice. MATERIALS AND METHODS Trabecular bone morphometry of lumbar bones and tibias was evaluated by muCT and nondecalcified histology. Osteoblastic and osteoclastic activities were evaluated by PCR- and microarray-based gene expression assays and TRACP-5b and C-terminal telopeptide (CTX) assays, as well as in vitro using bone marrow stromal cells and splenocytes. The effect of col9a1(+/-) mutation on osteoclast morphology was evaluated using RAW264.7-derived osteoclastic cells cultured on the mutant or wildtype calvarial bone substrates. RESULTS Col9a1 knockout mutation caused little effects on the skeletal development; however, young adult female col9a1(-/-) and col9a1(+/-) mice exhibited significant loss of trabecular bone. The trabecular bone architecture was progressively deteriorated in both male and female heterozygous col9a1(+/-) mice while aging. The aged mutant mice also exhibited signs of thoracic kyphosis and weight loss, resembling the clinical signs of osteoporosis. The col9a1(+/-) osteoblasts synthesized short col9a1 transcripts at decreased rates. Whereas bone formation activities in vitro and in vivo were not affected, the mutant osteoblast expressed the elevated ratio of RANKL/osteoprotegerin. Increased serum TRACP-5b and CTX levels were found in col9a1(+/-) mice, whose bone surface was associated with osteoclastic cells that were abnormally flattened and enlarged. The mutant and wildtype splenocytes underwent similar osteoclastogenesis in vitro; however, RAW264.7-derived osteoclastic cells, when cultured on the col9a1(+/-) calvaria, widely spread over the bone surface and formed large resorption pits. The surface of col9a1(+/-) calvaria was found to lack the typical nanotopography. CONCLUSIONS The mineralized bone matrix deficient of short collagen IX may become susceptible to osteoclastic bone resorption, possibly through a novel non-cell-autonomous mechanism. The data suggest the involvement of bone collagen IX in the pathogenesis of osteoporosis.
Collapse
|
7
|
Jäälinoja J, Ylöstalo J, Beckett W, Hulmes DJS, Ala-Kokko L. Trimerization of collagen IX alpha-chains does not require the presence of the COL1 and NC1 domains. Biochem J 2008; 409:545-54. [PMID: 17880280 DOI: 10.1042/bj20070984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagen IX is a heterotrimer of three alpha-chains, which consists of three COL domains (collagenous domains) (COL1-COL3) and four NC domains (non-collagenous domains) (NC1-NC4), numbered from the C-terminus. Although collagen IX chains have been shown to associate via their C-terminal NC1 domains and form a triple helix starting from the COL1 domain, it is not known whether chain association can occur at other sites and whether other collagenous and non-collagenous regions are involved. To address this question, we prepared five constructs, two long variants (beginning at the NC4 domain) and three short variants (beginning at the COL2 domain), all ending at the NC2 domain (or NC2 replaced by NC1), to study association and selection of collagen IX alpha-chains. Both long variants were able to associate with NC1 or NC2 at the C-terminus and form various disulfide-bonded trimers, but the specificity of chain selection was diminished compared with full-length chains. Trimers of the long variant ending at NC2 were shown to be triple helical by CD. Short variants were not able to assemble into disulfide-bonded trimers even in the presence of both conserved cysteine residues from the COL1-NC1 junction. Our results demonstrate that collagen IX alpha-chains can associate in the absence of COL1 and NC1 domains to form a triple helix, but the COL2-NC2 region alone is not sufficient for trimerization. The results suggest that folding of collagen IX is a co-operative process involving multiple COL and NC domains and that the COL1-NC1 region is important for chain specificity.
Collapse
Affiliation(s)
- Juha Jäälinoja
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, Oulu University, P.O. Box 5000, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
8
|
Danfelter M, Onnerfjord P, Heinegård D. Fragmentation of proteins in cartilage treated with interleukin-1: specific cleavage of type IX collagen by matrix metalloproteinase 13 releases the NC4 domain. J Biol Chem 2007; 282:36933-41. [PMID: 17951262 DOI: 10.1074/jbc.m702491200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen alpha1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen alpha1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen alpha1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.
Collapse
Affiliation(s)
- Mikael Danfelter
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
9
|
Pihlajamaa T, Lankinen H, Ylöstalo J, Valmu L, Jäälinoja J, Zaucke F, Spitznagel L, Gösling S, Puustinen A, Mörgelin M, Peränen J, Maurer P, Ala-Kokko L, Kilpelaïnen I. Characterization of recombinant amino-terminal NC4 domain of human collagen IX: interaction with glycosaminoglycans and cartilage oligomeric matrix protein. J Biol Chem 2004; 279:24265-73. [PMID: 15047691 DOI: 10.1074/jbc.m402865200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal NC4 domain of collagen IX is a globular structure projecting away from the surface of the cartilage collagen fibril. Several interactions have been suggested for this domain, reflecting its location and its characteristic high isoelectric point. In an attempt to characterize the NC4 domain in more detail, we set up a prokaryotic expression system to produce the domain. The purified 27.5-kDa product was analyzed for its glycosaminoglycan-binding potential by surface plasmon resonance and solid-state assays. The results show that the NC4 domain of collagen IX specifically binds heparin with a K(d) of 0.6 microm, and the full-length recombinant collagen IX has an even stronger interaction with heparin, with an apparent K(d) of 3.6 nm. The heparin-binding site of the NC4 domain was located in the extreme N terminus, containing a heparin-binding consensus sequence, whereas electron microscopy suggested the presence of at least three additional heparin-binding sites on full-length collagen IX. The NC4 domain was also shown to bind cartilage oligomeric matrix protein. This interaction and the association of cartilage oligomeric matrix protein with other regions of collagen IX were found to be heparin-competitive. Circular dichroism analyses of the NC4 domain indicated the presence of stabilizing disulfide bonds and a thermal denaturation point of about 80 degrees C. The pattern of disulfide bond formation within the NC4 domain was identified by tryptic peptide mass mapping of the NC4 in native and reduced states. A similar pattern was demonstrated for the NC4 domain of full-length recombinant collagen IX.
Collapse
Affiliation(s)
- Tero Pihlajamaa
- NMR Laboratory, Institute of Biotechnology, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu JJ, Eyre DR. Intervertebral disc collagen. Usage of the short form of the alpha1(IX) chain in bovine nucleus pulposus. J Biol Chem 2003; 278:24521-5. [PMID: 12719416 DOI: 10.1074/jbc.m302431200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleus pulposus, the central zone of the intervertebral disc, is gel-like and has a similar collagen phenotype to that of hyaline cartilage. Amino-terminal protein sequence analysis of the alpha1(IX)COL3 domain purified from bovine nucleus pulposus gave a different sequence to that of the long alpha1(IX) transcript expressed in hyaline cartilage and matched the predicted sequence of short alpha1(IX). The findings indicate that the matrix of bovine nucleus pulposus contains only the short form of alpha1(IX) that lacks the NC4 domain. The sequence encoded by exon 7, predicted from human COL9A1, is absent from both short and long forms of alpha1(IX) from bovine nucleus pulposus and articular cartilage. A structural analysis of the cross-linking sites occupied in type IX collagen from nucleus pulposus showed that usage of the short alpha1(IX) transcript in disc tissue had no apparent effect on cross-linking behavior. As in cartilage, type IX collagen of nucleus pulposus was heavily cross-linked to type II collagen and to other molecules of type IX collagen with a similar site occupancy.
Collapse
Affiliation(s)
- Jiann-Jiu Wu
- Orthopedic Research Laboratories, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
11
|
Mwale F, Tchetina E, Wu CW, Poole AR. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 2002; 17:275-83. [PMID: 11811558 DOI: 10.1359/jbmr.2002.17.2.275] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recent development of new specific immunoassays has provided an opportunity to study the assembly and resorption of type II and IX collagens of the extracellular matrix in relationship to endochondral calcification in situ. Here, we describe how in the bovine fetal physis prehypertrophic chondrocytes deposit an extensive extracellular matrix that, initially, is rich in both type II and type IX collagens and proteoglycan (PG; principally, aggrecan). The majority of the alpha1(IX)-chains lack the NC4 domain consistent with our previous studies with cultured chondrocytes. During assembly, the molar ratio of type II/COL2 domain of the alpha1(IX)-chain varied from 8:1 to 25:1. An increase in the content of Ca2+ and inorganic phosphate (Pi) was initiated in the prehypertrophic zone when the NC4 domain was removed selectively from the alpha1(IX)-chain. This was followed by the progressive loss of the alpha1(IX) COL2 domain and type II collagen. In the hypertrophic zone, the Ca2+/Pi molar ratio ranged from 1.56 to a maximum of 1.74, closely corresponding to that of mature hydroxyapatite (1.67). The prehypertrophic zone had an average ratio Ca2+/Pi ranging from 0.25 to 1, suggesting a phase transformation. At hypertrophy, when mineral content was maximal, type II collagen was reduced maximally in content coincident with a peak of cleavage of this molecule by collagenase when matrix metalloproteinase 13 (MMP-13) expression was maximal. In contrast, PG (principally aggrecan) was retained when hydroxyapatite was formed consistent with the view that this PG does not inhibit and might promote calcification in vivo. Taken together with earlier studies, these findings show that matrix remodeling after assembly is linked closely to initial changes in Ca2+ and Pi to subsequent cellular hypertrophy and mineralization. These changes involve a progressive and selective removal of types II and IX collagens with the retention of the PG aggrecan.
Collapse
Affiliation(s)
- Fackson Mwale
- Jewish General Hospital, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
12
|
Fertala A, Sieron AL, Adachi E, Jimenez SA. Collagen II containing a Cys substitution for Arg-alpha1-519: abnormal interactions of the mutated molecules with collagen IX. Biochemistry 2001; 40:14422-8. [PMID: 11724554 DOI: 10.1021/bi0109109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single amino acid substitutions in collagen II cause heterogeneous cartilage disorders including some chondrodysplasias and certain forms of heritable osteoarthritis. In this study, we examined molecular interactions between normal collagen II and collagen IX, and the effect of a Cys substitution for Arg-alpha1-519 in collagen II on these interactions. Binding assays showed that the association equilibrium constant of collagen IX-collagen II interaction is 15 x 10(6) M(-1). Specificity of the interaction was analyzed by the binding of collagen IX to recombinant collagen II variants lacking fragments of 234 amino acids corresponding to particular D-periods. The results indicated that the C-terminal half of collagen II, which includes the D3 and D4 periods, has a high affinity for collagen IX, and that the nontriple helical telopeptides of collagen II are not essential for the specific binding of collagen IX. Computer analysis of the surface of the mutated collagen II and binding assays showed that a Cys substitution for Arg-alpha1-519 changes electrostatic properties around the mutation site, increases the affinity of mutant collagen II for collagen IX, and possibly alters the specificity of the interaction. Thus, the results indicate that interactions between collagen II and collagen IX are site specific and that single amino acid substitutions in collagen II may change the molecular interactions with collagen IX that could destabilize the cartilaginous matrix.
Collapse
Affiliation(s)
- A Fertala
- Department of Pathology and Molecular Medicine, School of Medicine, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA.
| | | | | | | |
Collapse
|
13
|
Mwale F, Billinghurst C, Wu W, Alini M, Webber C, Reiner A, Ionescu M, Poole J, Poole AR. Selective assembly and remodelling of collagens II and IX associated with expression of the chondrocyte hypertrophic phenotype. Dev Dyn 2000; 218:648-62. [PMID: 10906783 DOI: 10.1002/1097-0177(200008)218:4<648::aid-dvdy1022>3.0.co;2-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The assembly and resorption of the extracellular matrix in the physis of the growth plate are poorly understood. By examining isolated fetal growth plate chondrocytes in culture and using immunochemical methods we show that type II collagen, proteoglycan aggrecan, and type IX collagen are assembled into a matrix that is initially enriched in type II collagen over proteoglycan and type IX collagen. When compared to the content of the COL2 domain in the alpha(1)(IX) chain it is evident that the majority ( 90%) of type IX molecules lack the NC4 domain unlike in articular cartilage. During matrix assembly the molar ratio of type II/COL2 of alpha(1)(IX) varied from 25:1 to 2.5:1. Following expression of the hypertrophic phenotype (initiation of type X collagen synthesis) there are parallel changes in both collagen and proteoglycan contents (inversely related to collagenase cleavage of type II collagen). The NC4 domain is then selectively, rapidly and irreversibly removed as mineralization is initiated, leaving the alpha(1)(IX) chain COL2 domain. Subsequently as mineralization progresses type II and type IX collagen (COL2 domain), but not the proteoglycan aggrecan, are resorbed coincident with a markedly increased cleavage of type II collagen by collagenase as mineral is deposited in the matrix. This study, therefore reveals a carefully orchestrated series of events in matrix assembly and resorption that prepares the extracellular matrix for mineralization.
Collapse
Affiliation(s)
- F Mwale
- Joint Diseases Laboratory, Shriners Hospitals for Children and Division of Surgical Research, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T. Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem 2000; 275:8695-702. [PMID: 10722711 DOI: 10.1074/jbc.275.12.8695] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbfa1 is a transcription factor that belongs to the runt domain gene family. Cbfa1-deficient mice showed a complete lack of bone formation due to the maturational arrest of osteoblasts, demonstrating that Cbfa1 is an essential factor for osteoblast differentiation. Further, chondrocyte maturation was severely disturbed in Cbfa1-deficient mice. In this study, we examined the possibility that Cbfa1 is also involved in the regulation of chondrocyte differentiation. mRNAs for both Cbfa1 isotypes, type I Cbfa1 (Pebp2alphaA/Cbfa1) and type II Cbfa1 (Osf2/Cbfa1 or til-1), which are different in N-terminal domain, were expressed in terminal hypertrophic chondrocytes as well as osteoblasts. In addition, mRNA for type I Cbfa1 was expressed in other hypertrophic chondrocytes and prehypertrophic chondropcytes. In a chondrogenic cell line, ATDC5, the expression of type I Cbfa1 was elevated prior to differentiation to the hypertrophic phenotype, which is characterized by type X collagen expression. Treatment with antisense oligonucleotides for type I Cbfa1 severely reduced type X collagen expression in ATDC5 cells. Retrovirally forced expression of either type I or type II Cbfa1 in chick immature chondrocytes induced type X collagen and MMP13 expression, alkaline phosphatase activity, and extensive cartilage-matrix mineralization. These results indicate that Cbfa1 is an important regulatory factor in chondrocyte maturation.
Collapse
Affiliation(s)
- H Enomoto
- Department of Molecular Medicine, Osaka University Medical School, 2-2 Yamada-oka Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ting K, Ramachandran H, Chung KS, Shah-Hosseini N, Olsen BR, Nishimura I. A short isoform of Col9a1 supports alveolar bone repair. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1993-9. [PMID: 10595929 PMCID: PMC1866927 DOI: 10.1016/s0002-9440(10)65518-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bone wound created in intramembranous alveolar bone heals without the formation of cartilage precursor tissue. However, the expression of cartilage collagen mRNAs has been suggested. In this report, we examined the expression and the potential role of type IX collagen in bone restoration and remodeling. The sequence specific polymerase chain reaction demonstrated the exclusive expression of short transcriptional isoform of alpha1(IX) collagen (Col9a1) in alveolar bone wound healing, while the long isoform of Col9a1 transcript was absent. Type IX collagen was immunolocalized in the preliminary matrix organized in granulation tissue before trabecular bone formation in tooth extraction socket. In Col9a1-null mutant mice, there were considerable variations in alveolar bone wound healing with the absence of or abnormally organized trabecular bone. Occasionally, unusual apposition of cortical-bone-like layers in bone marrow space was observed. The Col9a1-null mice indicated no growth retardation, and their facial and long bones maintained the normal size and shape. However, the primary spongiosa region of adult Col9a1 mutant mice showed an abnormal trabecular bone structure associated with abnormal immunostaining with the hypertrophic cartilage specific type X collagen antibody. These data suggest that type IX collagen short transcriptional variant is involved in the restoration and remodeling processes of trabecular bone.
Collapse
Affiliation(s)
- Kang Ting
- UCLA School of Dentistry, Los Angeles, California; the Departments of Restorative Dentistry†
| | | | - Kun Sung Chung
- Harvard School of Dental Medicine, Boston, Massachusetts; the Department of Cell Biology,§
| | | | - Bjorn R. Olsen
- Harvard Medical School, Boston, Massachusetts; and the Jane and Jerry Weintraub Center for Reconstructive Biotechnology,¶
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, California
| |
Collapse
|
16
|
Paassilta P, Pihlajamaa T, Annunen S, Brewton RG, Wood BM, Johnson CC, Liu J, Gong Y, Warman ML, Prockop DJ, Mayne R, Ala-Kokko L. Complete sequence of the 23-kilobase human COL9A3 gene. Detection of Gly-X-Y triplet deletions that represent neutral variants. J Biol Chem 1999; 274:22469-75. [PMID: 10428822 DOI: 10.1074/jbc.274.32.22469] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the complete sequence of the human COL9A3 gene that encodes the alpha3 chain of heterotrimeric type IX collagen, a member of the fibril-associated collagens with interrupted triple helices family of collagenous proteins. Nucleotide sequencing defined over 23,000 base pairs (bp) of the gene and about 3000 bp of the 5'-flanking sequences. The gene contains 32 exons. The domain and exon organization of the gene is almost identical to a related gene, the human COL9A2 gene. However, exon 2 of the COL9A3 gene codes for one -Gly-X-Y- triplet less than exon 2 of the COL9A2 gene. The difference is compensated by an insertion of 9 bp coding for an additional triplet in exon 4 of the COL9A3 gene. As a result, the number of -Gly-X-Y- repeats in the third collagenous domain remains the same in both genes and ensures the formation of an in-register triple helix. In the course of screening this gene for mutations, heterozygosity for separate 9-bp deletions within the COL1 domain were identified in two kindreds. In both instances, the deletions did not co-segregate with any disease phenotype, suggesting that they were neutral variants. In contrast, similar deletions in triple helical domain of type I collagen are lethal. To study whether alpha3(IX) chains with the deletion will participate in the formation of correctly folded heterotrimeric type IX collagen, we expressed mutant alpha3 chains together with normal alpha1 and alpha2 chains in insect cells. We show here that despite the deletion, mutant alpha3 chains were secreted as heterotrimeric, triple helical molecules consisting of three alpha chains in a 1:1:1 ratio. The results suggest that the next noncollagenous domain (NC2) is capable of correcting the alignment of the alpha chains, and this ensures the formation of an in-register triple helix.
Collapse
Affiliation(s)
- P Paassilta
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Kajaanintie 52A, FIN-90220 Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pihlajamaa T, Perälä M, Vuoristo MM, Nokelainen M, Bodo M, Schulthess T, Vuorio E, Timpl R, Engel J, Ala-Kokko L. Characterization of recombinant human type IX collagen. Association of alpha chains into homotrimeric and heterotrimeric molecules. J Biol Chem 1999; 274:22464-8. [PMID: 10428821 DOI: 10.1074/jbc.274.32.22464] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As type IX collagen is a minor cartilage component, it is difficult to purify sufficient amounts of it from tissues or cultured cells to study its structure and function. Also, the conventional pepsin digestion used for fibrillar collagens cannot be utilized for purifying type IX collagen, because it contains several interruptions in its collagenous triple helix. A baculovirus expression system was used here to produce recombinant human type IX collagen by coinfecting insect cells with three viruses containing full-length cDNAs for the alpha1(IX), alpha2(IX), and alpha3(IX) collagen chains together with a double promoter virus for the alpha and beta subunits of human prolyl 4-hydroxylase. Correctly folded recombinant type IX collagen was secreted, consisting of the three alpha chains in a 1:1:1 ratio and showing the expected biphasic thermal melting profile. When the individual alpha chains were expressed, disulfide-bonded homotrimers and homodimers of the alpha chains were observed. When the cells were coinfected with the viruses for all three alpha chains, heterotrimers of alpha1(IX), alpha2(IX), and alpha3(IX) were detected in cell culture medium, and the other possible combinations were less prominent. When any two of the alpha chains were co-expressed, in addition to the homodimers and homotrimers, only alpha1(IX) and alpha3(IX) chains were disulfide-bonded. The results thus suggest that the most favored molecular species is an alpha1(IX)alpha2(IX)alpha3(IX) heterotrimer, but the chains are also able to form disulfide-bonded heterotrimers of alpha1(IX) and alpha3(IX) chains and (alpha1(IX))(3), (alpha2(IX))(3), and (alpha3(IX))(3) homotrimers.
Collapse
Affiliation(s)
- T Pihlajamaa
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry, University of Oulu, Kajaanintie 52A, FIN-90220 Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
MacNeil RL, Berry JE, Strayhorn CL, Shigeyama Y, Somerman MJ. Expression of type I and XII collagen during development of the periodontal ligament in the mouse. Arch Oral Biol 1998; 43:779-87. [PMID: 9796779 DOI: 10.1016/s0003-9969(98)00054-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The purpose (of this study) was to determine the temporal and spatial pattern of type XII collagen expression during murine tooth/root development. Using in situ hybridization techniques, expression of type XII collagen was compared with that of type I collagen, the most abundant collagen in periodontal tissues. Mouse first mandibular molars were examined at the following developmental periods: pre-root formation, early root formation, initial alignment of the periodontal ligament (PDL) fibres, and PDL maturation as the tooth erupted and attained occlusal function. Transcripts for type I collagen were identified in bone cells and odontoblasts at all times but not in the dental follicle before root formation. As root formation progressed, type I collagen expression became apparent within cells of the dental follicle and forming PDL. During early stages of tooth development, signal for type XII collagen was not observed in any cells/tissues. Type XII collagen expression was first detected in the dental follicle/PDL region during tooth eruption and increased in the PDL as the molar tooth erupted into the mouth and achieved occlusal contact. These findings suggest that type XII expression is timed with the alignment and organization of PDL fibres and is limited in tooth development to cells within the periodontal ligament.
Collapse
Affiliation(s)
- R L MacNeil
- Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | | | |
Collapse
|
19
|
Jahangiri L, Devlin H, Ting K, Nishimura I. Current perspectives in residual ridge remodeling and its clinical implications: a review. J Prosthet Dent 1998; 80:224-37. [PMID: 9710828 DOI: 10.1016/s0022-3913(98)70116-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE This article reviews the current understanding of the biology of tooth extraction wound healing and residual ridge remodeling. METHODS The review of the biology of tooth extraction wound healing involves a discussion of the different cells populating the tooth extraction wound, the matrix formation, and the control of the repair process in the short-term. Defects in socket matrix formation or cellular activity will lead to stalled healing. The review of residual ridge remodeling describes the long-term result of tooth extraction and formation of residual ridges, in which the quantity of bone tissue continuously decreases. This may suggest that any potential regulatory factors of residual ridge resorption should have an adverse effect either on the increased catabolic activity by osteoclasts or on the decreased anabolic activity by osteoblasts. Both short-term tooth extraction healing and long-term residual ridge remodeling processes are interdependent. Furthermore, any potential genetic and environmental regulatory factors can affect the quality and quantity of bone by altering the gene expression events taking place in bone cells. RESULTS The intent of this article was to review the current progresses of biologic research on residual ridge remodeling and to relate the changes at molecular, cellular, and tissue levels. The understanding of residual ridge remodeling may provide a sound scientific basis for improved restorative and therapeutic treatments of the edentulous population.
Collapse
Affiliation(s)
- L Jahangiri
- Harvard School of Dental Medicine, Boston, Mass., USA
| | | | | | | |
Collapse
|
20
|
Walter H, Kawashima A, Nebelung W, Neumann W, Roessner A. Immunohistochemical analysis of several proteolytic enzymes as parameters of cartilage degradation. Pathol Res Pract 1998; 194:73-81. [PMID: 9584319 DOI: 10.1016/s0344-0338(98)80073-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis is the most common joint disease in humans. It is characterized by a gradual loss of extracellular matrix components of articular cartilage such as collagen and proteoglycan. Presently, however, emphasis is placed on enzymes exerting a strong influence on cartilage degradation. These enzymes include matrix metalloproteinases (MMP), their specific inhibitors (TIMP) and the plasminogen activator/inhibitor system. We applied monoclonal antibodies against MMP-1, -2, -3, -9 and their inhibitors TIMP-1/-2, as well as against urokinase-plasminogen activator u-PA and its inhibitor PAI to investigate their influence on articular cartilage degradation in patients with varusgonarthritis. We examined the cartilage of the lateral and medial compartments of 20 tibia plateaus, which can present with slight and severe cartilage degradations at the same time. In doing so, we tried to show whether or not immunohistological detection of enzymes could serve as a parameter for chondral degradation. The strongest immunoreaction for all enzymes was noted in the superficial layer of articular cartilage both medially and laterally. Between medial and lateral compartments, however, there were striking differences in the immunoreaction intensity of chondrocytes for MMP-1 and -3 as well as for TIMP-1 and u-PA. We noted that in cartilage with more advanced degradation, the immunoreaction for these enzymes was significantly higher in medial than in lateral compartments (p < 0.05). At the immunohistological level, a direct correlation between the grade of cartilage degradation and immunoreaction intensity was found. Our results corroborate the assumption that the expression of certain matrix-degradating enzymes serves as a parameter for the grade of cartilage degradation.
Collapse
Affiliation(s)
- H Walter
- Department of Pathology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Douglas SP, Jenkins JM, Kadler KE. Collagen IX: evidence for a structural association between NC4 domains in cartilage and a novel cleavage site in the alpha 1(IX) chain. Matrix Biol 1998; 16:497-505. [PMID: 9550266 DOI: 10.1016/s0945-053x(98)90020-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Collagen IX, a structural component of the extracellular matrix of connective tissues, is synthesized as long and short forms which contain or lack, respectively, a 27 kDa non-collagenous (NC) 4 domain at the N-terminus of the alpha 1(IX) chain of the molecule. The long form occurs in cartilage and developing cornea, but not in vitreous, suggesting a specialized function for the NC4 domain, perhaps by interacting with other macromolecules. To test this hypothesis, embryonic chick cartilage was treated with DTSSP, dissociated with bacterial collagenase, and the NC4-containing DTSSP-cross-linked protein complexes examined and purified. Analysis of cartilage extracts using an anti-NC4 antibody, and of purified NC4-containing complexes, identified a predominant NC4 dimer. A naturally-occurring N-terminal fragment of the alpha 1(IX) chain, whose size is equivalent to the NC4-COL3-NC3 domains of the chain, was identified. Association of collagen IX molecules via NC4 domains and the existence of a cleavage site close to the NC3 domain of the molecule are likely to be of primary importance in the growth and remodeling processes of cartilage, in health and disease.
Collapse
Affiliation(s)
- S P Douglas
- Wellcome Trust Center for Cell-Matrix Research, School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
22
|
Bengtsson E, Neame PJ, Heinegård D, Sommarin Y. The primary structure of a basic leucine-rich repeat protein, PRELP, found in connective tissues. J Biol Chem 1995; 270:25639-44. [PMID: 7592739 DOI: 10.1074/jbc.270.43.25639] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have determined the primary structure of a connective tissue matrix protein from the nucleotide sequence of a clone isolated from a human articular chondrocyte cDNA library. The major part of the amino acid sequence has also been determined by direct protein sequencing. The translated primary sequence corresponds to 382 amino acid residues, including a 20-residue signal peptide. The molecular mass of the mature protein is 41,646 Da. The main part of the protein consists of 10 leucine-rich repeats ranging in length from 20 to 26 residues, with asparagine at position 10 (B-type). The N-terminal part is unusual in that it is basic and rich in arginine and proline. There are four potential N-linked glycosylation sites present. In three of these sites, post-translational modifications are likely to be present since Asn was not found by direct protein sequencing. The amino- and carboxyl-terminal parts contain four and two cysteine residues, respectively, probably forming disulfide bonds by analogy with the other members of this family. The protein shows highest identity (36%) to fibromodulin and 33% to bovine lumican, two other leucine-rich repeat connective tissue proteins. Northern blot analysis showed the presence of an approximately 3.8-kilobase mRNA in different types of bovine cartilage and cultured osteoblasts, whereas RNAs isolated from bovine kidney, skin, spleen, thymus, and trabecular bone and rat calvaria were negative. Human articular chondrocyte and rat chondrosarcoma cell RNAs contained an additional mRNA of approximately 1.6 and 1.8 kilobases, respectively.
Collapse
Affiliation(s)
- E Bengtsson
- Department of Cellular and Molecular Biology, Lund University, Sweden
| | | | | | | |
Collapse
|
23
|
Chapter 12 Carbohydrate Moiety of Vertebrate Collagens. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0167-7306(08)60606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
Fitch JM, Gordon MK, Gibney EP, Linsenmayer TF. Analysis of transcriptional isoforms of collagen types IX, II, and I in the developing avian cornea by competitive polymerase chain reaction. Dev Dyn 1995; 202:42-53. [PMID: 7703520 DOI: 10.1002/aja.1002020105] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The genes for the alpha 1(IX), alpha 1(II), and alpha 2(I) collagen chains can give rise to different isoforms of mRNA, generated by alternative promotor usage [for alpha 1(IX) and alpha 2(I)] or alternative splicing [for alpha 1(II)]. In this study, we employed competitive reverse transcriptase PCR to quantitate the amounts of transcriptional isoforms for these genes in the embryonic avian cornea from its inception (about 3 1/2 days of development) to 11 days. In order to compare values at different time points, the results were normalized to those obtained for the "housekeeping" enzyme, glycerol-3-phosphate dehydrogenase (G3PDH). These values were compared to those obtained from other tissues (anterior optic cup and cartilage) that synthesize different combinations of the collagen isoforms. We found that, in the cornea, transcripts from the upstream promotor of alpha 1(IX) collagen (termed "long IX") were predominant at stage 18-20 (about 3 1/2 days), but then fell rapidly, and remained at a low level. By 5 days (just before stromal swelling) the major mRNA isoform of alpha 1(IX) was from the downstream promoter (termed "short IX"). The relative amount of transcript for the short form of type IX collagen rose to a peak at about 6 days of development, and then declined. Throughout this period, the predominant transcriptional isoform of the collagen type II gene was IIA (i.e., containing the alternatively spliced exon 2). This indicates that the molecules of type II collagen that are assembled into heterotypic fibrils with type I collagen possess, at least transiently, an amino-terminal globular domain similar to that found in collagen types I, III, and V. For type I, the "bone/tendon" mRNA isoform of the alpha 2(I) collagen gene was predominant; transcripts from the downstream promotor were at basal levels. In other tissues expressing collagen types IX and II, long IX was expressed predominantly with the IIA form in the anterior optic cup at stage 22/23; in 14 1/2 day cartilage, long IX was expressed predominantly along with the IIB form of alpha 1(II). The downstream transcript of the alpha 2(I) gene (Icart) was found at high levels only in cartilage.
Collapse
Affiliation(s)
- J M Fitch
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | |
Collapse
|
25
|
Abstract
Collagens are the major proteinaceous constituents of cartilage. Three collagen types participate in the formation of striated fibrils of cartilage, collagens II, IX, and XI. Collagen II and XI belong to the subgroup of fibrillar collagens and are structurally closely related, differing mainly in their N-propeptides. Collagen IX has a very different structure but is nevertheless an essential constituent of the striated fibrils. Two other collagen types are also found in cartilage but form distinct structures. Collagen VI, found mainly in the periphery of the chondrocytes, forms beaded filaments. These filaments are probably formed by interaction of collagen VI with hyaluronan. Collagen X is expressed by hypertrophic chondrocytes. It has been shown to form in vitro hexagonal lattices and in vivo to be associated either with striated fibrils or with mats which may correspond to the lattices. The functional role of the collagen diversity in cartilage is discussed.
Collapse
Affiliation(s)
- P Bruckner
- Institut de Biologie et Chimie des Protéines, Lyon, France
| | | |
Collapse
|
26
|
Moradi-Améli M, Deléage G, Geourjon C, van der Rest M. Common topology within a non-collagenous domain of several different collagen types. Matrix Biol 1994; 14:233-9. [PMID: 7921540 DOI: 10.1016/0945-053x(94)90187-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The secondary structure of a conserved non-collagenous module in alpha 1(V), alpha 1(XI), alpha 1(IX), alpha 1(XII), alpha 1(XIV) and alpha 1(XVI) collagen chains and in proline- and arginine-rich protein was analyzed using different algorithms. The results predict that a common anti-parallel beta-sheet structure composed of nine consensus beta-strands is present in these non-collagenous modules. A model for the packing of these beta-sheets is proposed which suggests that the predicted beta-sheet structure may be involved in molecular recognition functions.
Collapse
Affiliation(s)
- M Moradi-Améli
- Institut de Biologie et de Chimie des Protéines, UPR412-CNRS, Lyon, France
| | | | | | | |
Collapse
|
27
|
Perälä M, Elima K, Metsäranta M, Rosati R, de Crombrugghe B, Vuorio E. The exon structure of the mouse alpha 2(IX) collagen gene shows unexpected divergence from the chick gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Rokos I, Muragaki Y, Warman M, Olsen BR. Assembly and sequencing of a cDNA covering the entire mouse alpha 1(IX) collagen chain. Matrix Biol 1994; 14:1-8. [PMID: 8061915 DOI: 10.1016/0945-053x(94)90024-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Type IX collagen, a member of the FACIT family of collagenous proteins, contains heterotrimeric molecules of distinct alpha 1(IX), alpha 2(IX) and alpha 3(IX) chains. In this paper we describe the assembly and nucleotide sequence of a cDNA encoding the entire mouse alpha 1(IX) collagen chain. The nucleotide sequence provides for the first time the complete primary structure of the mouse chain. Knowledge of the complete structure of mouse alpha 1(IX) collagen will be useful for investigations of type IX collagen expression during normal mouse development and for the generation of transgenic mice with specific defects in this collagen.
Collapse
Affiliation(s)
- I Rokos
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- N Fukai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
30
|
Ting K, Petropulos LA, Iwatsuki M, Nishimura I. Altered cartilage phenotype expressed during intramembranous bone formation. J Bone Miner Res 1993; 8:1377-87. [PMID: 8266829 DOI: 10.1002/jbmr.5650081112] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sequential phenotypic expression occurring during intramembranous bone formation was investigated using the tooth extraction socket created in rat alveolar bone in vivo. The differential expression of bone extracellular matrix genes, such as collagen I and osteocalcin, was confirmed by RNA transfer blot analysis and in situ hybridization during the active healing period of the bony socket. To clarify the possible involvement of the chondrogenic phenotype during the process of intramembranous bone formation, the expression of cartilage collagen II and IX was further examined in this model. It was found that both alpha 1(II) and alpha 1(IX) mRNAs were present, but the alpha 1(IX) mRNA was a transcript from the downstream start site/promoter, which is a different site in the alpha 1(IX) gene from that used in hyaline cartilage. In situ hybridization indicated that the alpha 1(IX) message was expressed by cells associated with bone matrix in the early formation stage. This finding led to the investigation of type IX collagen expression by osteogenic cells isolated from newborn rat calvariae, in which only the truncated form of alpha 1(IX) mRNA was indicated by RNA transfer analysis. The expression of collagen II and a truncated form of collagen IX may represent an early phenotypic feature of osteoblast differentiation.
Collapse
Affiliation(s)
- K Ting
- Department of Prosthetic Dentistry, Harvard School of Dental Medicine, Boston, Massachusetts
| | | | | | | |
Collapse
|
31
|
Boyd CD, Pierce RA, Schwarzbauer JE, Doege K, Sandell LJ. Alternate exon usage is a commonly used mechanism for increasing coding diversity within genes coding for extracellular matrix proteins. MATRIX (STUTTGART, GERMANY) 1993; 13:457-69. [PMID: 8309425 DOI: 10.1016/s0934-8832(11)80112-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Extracellular matrix proteins are a diverse family of secreted proteins and glycoproteins that are responsible for a variety of critical functions in different tissues. A large number of multiexon genes encode these proteins of the extracellular matrix. Over the last few years, it has become evident that the processing of the pre-mRNA from several of these genes involves alternative splicing. This review summarizes the known examples of alternative splicing in genes coding for the extracellular matrix and attempts to relate the increase in coding diversity generated by alternate exon usage to the function(s) of individual extracellular matrix proteins.
Collapse
Affiliation(s)
- C D Boyd
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick 08903
| | | | | | | | | |
Collapse
|
32
|
Liu CY, Olsen BR, Kao WW. Developmental patterns of two alpha 1(IX) collagen mRNA isoforms in mouse. Dev Dyn 1993; 198:150-7. [PMID: 8305707 DOI: 10.1002/aja.1001980208] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Northern blot hybridization, reverse-transcription polymerase chain reaction (RT-PCR), and RNase protection assays were used to examine the expression of two alpha 1(IX) collagen mRNA species (long and short form) in developing mouse tissues. Furthermore, in situ hybridization was used to identify cells expressing the Col9a1 gene during eye development. The results indicate that during embryonic development eye and heart preferentially express the short form; lung and cartilage express the long form; whereas liver expresses a very low level of long form alpha 1(IX) mRNA which can only be detected by RT-PCR. In situ hybridization demonstrated that at 10.5 day postcoitum (d.p.c.), the alpha 1(IX) collagen mRNAs were first expressed in optic cup (neural ectoderm) but not in lens vesicle (surface ectoderm). By 13.5 d.p.c., the cells that express the alpha 1(IX) mRNA progressively were concentrated toward the anterior part of the neural retina. By 16.5-18.5 d.p.c., the hybridization signals were found exclusively in the inner non-pigmented layer of the presumptive ciliary epithelium. As ciliary epithelial cells become well differentiated 3 weeks after birth, cells expressing the Col9a1 gene were limited to the junction between mature ciliary folds and the neural retina. No hybridization signal could be detected in ocular tissues of mouse older than 6 weeks. It is of interest to note that a hybridization signal was not detected in cornea at the various developmental stages examined, suggesting that mouse cornea does not significantly express alpha 1(IX) mRNA during embryonic development. This differs from that of chick cornea development. In summary, the expression of the Col9a1 gene shows a temporospatial pattern throughout mouse eye development.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Liu
- Department of Ophthalmology, University of Cincinnati, Ohio 45267-0527
| | | | | |
Collapse
|
33
|
Warman M, Kimura T, Muragaki Y, Castagnola P, Tamei H, Iwata K, Olsen BR. Monoclonal antibodies against two epitopes in the human alpha 1 (IX) collagen chain. MATRIX (STUTTGART, GERMANY) 1993; 13:149-56. [PMID: 7684111 DOI: 10.1016/s0934-8832(11)80073-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Type IX collagen is a component of cartilage and vitreous humor. Its structure and matrix localization suggest it may serve to mediate interactions between fibrillar collagen, proteoglycan and other matrix components. Consequently, abnormalities in type IX collagen may result in chondrodysplasia. In this paper we describe the preparation and use of two monoclonal antibodies which recognize peptide sequences within the human cartilage alpha 1 (IX) collagen chain. Antibody 23-5D1 is highly sensitive and highly specific. It permits the immunoblot detection of type IX collagen extracted from milligram amounts of normal and chondrodysplastic cartilage; it also identifies the "short" form of the alpha 1 (IX) chain in human vitreous humor. Antibody 37-10H7 is highly specific, but of low sensitivity. It was used to make the new observation that an N-linked oligosaccharide is present in the amino-terminal globular domain of the alpha 1 (IX) chain. We anticipate that these antibodies may be valuable tools in the study of human and other mammalian chondrodysplasias.
Collapse
Affiliation(s)
- M Warman
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
34
|
Wälchli C, Trueb J, Kessler B, Winterhalter KH, Trueb B. Complete primary structure of chicken collagen XIV. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:483-90. [PMID: 8444186 DOI: 10.1111/j.1432-1033.1993.tb17685.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have isolated and characterized several overlapping cDNA clones for chicken collagen XIV which span a total of 6.5 kpb. These clones contain an open reading frame of 5571 bp encoding the entire collagen XIV polypeptide. The predicted polypeptide has an estimated molecular mass of 205 kDa in its glycosylated form. It is composed of 1857 amino acids which are arranged in 16 individual subdomains, including a signal peptide of 28 residues. The large amino-terminal globular domain of collagen XIV (NC3) comprises 11 of these 16 subdomains. Two of them are related to the A modules of von Willebrand factor, eight show some relationship to the type III-repeats of fibronectin and one is similar to the NC4 domain of collagen IX. The carboxy-terminal triple-helical domain is composed of two collagenous segments (COL1 and COL2), which make up less than 14% of the entire molecular mass, and of two short non-collagenous domains (NC1 and NC2). A detailed analysis of our cDNA clones indicates that collagen XIV exists in two alternatively spliced forms which differ by 31 amino acids in their NC1 domain. The variant form of the polypeptide contains 1888 amino acids with a total molecular mass of 208 kDa. Our results demonstrate that collagen XIV displays a complex multidomain structure resembling that proposed for collagen XII.
Collapse
Affiliation(s)
- C Wälchli
- Laboratorium für Biochemie I, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Rest MVD, Garrone R, Herbage D. Collagen: A Family of Proteins with many Facets. EXTRACELLULAR MATRIX 1993. [DOI: 10.1016/s1569-2558(08)60198-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Koch M, Bernasconi C, Chiquet M. A major oligomeric fibroblast proteoglycan identified as a novel large form of type-XII collagen. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:847-56. [PMID: 1323460 DOI: 10.1111/j.1432-1033.1992.tb17116.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cultured chick embryo skin fibroblasts release a major component with a native molecular mass of about 1 MDa, which resolves into three polypeptide bands of about 300, 350 and 600 kDa upon reduction. We report here the purification of this oligomeric protein and show, by means of polyclonal and monoclonal antibodies, that its three polypeptide constituents are closely related. The 600-kDa polypeptide is likely to be a dimer of two smaller subunits which are cross-linked by non-reducible bonds. By electron microscopy, isolated oligomeric molecules exhibit a novel cruciform structure with a large central globular domain. One arm has the shape of a thin rod about 70 nm in length. The three other arms are thicker, longer (90 nm) and flexible, and carry a prominent double globule at their distal ends. Collagenase treatment of the oligomeric fibroblast protein yields two resistant fragments of about 270 kDa and 320 kDa. The intact 350-kDa and 600-kDa (but not the 300-kDa) polypeptides are chondroitinase sensitive and labeled by metabolic incorporation of [35S]sulfate; collagenase treatment does not remove any [35S] sulfate. Hence, the intact fibroblast protein has glycosaminoglycan chains attached to its non-collagenous domain. Three amino acid sequences obtained from chymotryptic fragments of the fibroblast protein correspond to sequences predicted for chick type-XII collagen from its full-length cDNA [Yamagata, M., Yamada, K. M., Yamada, S. S., Shinomura, T., Tanaka, H., Nishida, Y., Obara, M. & Kimata, K. (1991) J. Cell Biol. 115, 209-221]. However, the novel fibroblast protein described here differs significantly from previously isolated forms of type-XII collagen: its subunits are larger by one third, and it is a proteoglycan.
Collapse
Affiliation(s)
- M Koch
- Department of Biophysical Chemistry, Biocenter of the University, Basel, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
Collagens are typical mosaic proteins containing a number of shuffled domains. These domains have been classified by sequence similarity in order to characterize their structural and functional relationships to other proteins. This analysis provides an overview of homologies of collagen domains. It also reveals two new relationships: (i) a module common to type V, IX, XI, and XII collagens was found to be homologous to the heparin binding domain of thrombospondin; (ii) the modular architecture of a human type VII collagen fragment was identified. Its N-terminal globular domain contains fibronectin type III repeats located adjacent to a Von Willebrand factor type A module. The proposed structural similarities point to analogous subfunctions of the respective domains in otherwise distinct proteins.
Collapse
Affiliation(s)
- P Bork
- EMBL, Heidelberg, Germany
| |
Collapse
|
38
|
Arai M, Yada T, Suzuki S, Kimata K. Isolation and characterization of type IX collagen-proteoglycan from the Swarm rat chondrosarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1117:60-70. [PMID: 1627594 DOI: 10.1016/0304-4165(92)90163-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type IX collagen was partially purified from the Swarm rat chondrosarcoma by a series of a conventional salting-out procedures. The preparation was further separated by anion exchange chromatography into an unbound and a bound fraction in an A230 ratio of about 5:1. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the bound fraction appeared as a broad band, whose molecular mass ranged from 250 to 270 kDa. Digestion with chondroitinase ABC reduced the apparent molecular mass of the bound fraction to about 250 kDa, a value comparable to the molecular mass of the unbound fraction. Tryptic peptide maps of the protein moieties of unbound and bound forms showed that their molecular structures were basically identical. A monoclonal antibody specific for LMW, one of the pepsin-resistant fragments of the rat sarcoma type IX, reacted with both the unbound and bound fractions. Together the results indicate that the unbound and bound fractions represent a type IX collagen devoid of the chondroitin sulfate chain and its proteoglycan form with covalently bound chondroitin sulfate, respectively. The extent of glycosaminoglycan attachment to type IX collagen molecules in rat chondrosarcoma (about 16%) is quite different from the extents described in chick embryo cartilage (about 80%), chick vitreous humour (100%) and bovine cartilage (less than 5%). Further studies on the neoplastic tissue will offer additional information regarding the biological basis and biological consequences of the glycosaminoglycan attachment to type IX collagen molecules.
Collapse
Affiliation(s)
- M Arai
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan
| | | | | | | |
Collapse
|
39
|
Karimbux NY, Rosenblum ND, Nishimura I. Site-specific expression of collagen I and XII mRNAs in the rat periodontal ligament at two developmental stages. J Dent Res 1992; 71:1355-62. [PMID: 1629450 DOI: 10.1177/00220345920710070201] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mammals, the periodontal ligament (PDL) is a highly specialized tissue which facilitates tooth eruption and lends mechanical support to the tooth once in occlusion. The PDL extracellular matrix fibers play a major role in such functions. During its development, the spatial arrangement of the PDL extracellular matrix undergoes rapid changes. So that it could be determined whether the structural alteration in the PDL is associated with changes in the expression of collagenous proteins with different functional properties, the transcriptional patterns of collagens I and XII were examined. The maxillary dento-alveolar segments, each containing three molars, from 25-day-old and 40-day-old Sprague-Dawley rats were selected as being representative of developing and matured tissues, respectively. Rat alpha 2(I) collagen cDNA and rat alpha 1(XII) collagen cDNA were used as molecular probes for identification of the corresponding mRNAs by RNA transfer blot analysis, RNase protection assay, and in situ hybridization. The results showed that alpha 2(I) collagen mRNA was expressed in both developing and matured tissues. However, the level of expression decreased with maturity. In contrast, the expression of alpha 1(XII) collagen was increased in the matured tissue as compared with the developing tissue. In situ hybridization in these tissues indicated that the expression of alpha 1(XII) collagen mRNA was limited to the mature stage of PDL development. It is suggested that collagen fibril arrangement during PDL development may be related to the expression of collagen XII.
Collapse
Affiliation(s)
- N Y Karimbux
- Department of Prosthetic Dentistry, Harvard School of Dental Medicine, Boston, Massachusetts 02115-5888
| | | | | |
Collapse
|
40
|
Yoshioka H, Zhang H, Ramirez F, Mattei MG, Moradi-Ameli M, van der Rest M, Gordon MK. Synteny between the loci for a novel FACIT-like collagen locus (D6S228E) and alpha 1 (IX) collagen (COL9A1) on 6q12-q14 in humans. Genomics 1992; 13:884-6. [PMID: 1639419 DOI: 10.1016/0888-7543(92)90176-s] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 1.8-kb cDNA encoding portion of a novel collagenous chain was isolated from a human rhabdomyosarcoma cell line by cross-hybridization using a chicken type V collagen probe. Sequence analysis suggests that this chain belongs to the recently discovered group of collagens, termed the FACIT class of macromolecules. This cDNA was used to locate the corresponding gene (D6S228E) to chromosome 6, notably at position 6q12-q14. Interestingly, within this region of human chromosome 6 residues the alpha 1 (IX) collagen gene (COL9A1), a member of the FACIT group.
Collapse
Affiliation(s)
- H Yoshioka
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Swiderski RE, Solursh M. Localization of type II collagen, long form alpha 1(IX) collagen, and short form alpha 1(IX) collagen transcripts in the developing chick notochord and axial skeleton. Dev Dyn 1992; 194:118-27. [PMID: 1421522 DOI: 10.1002/aja.1001940205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we compare, by in situ hybridization, the spatial and temporal expression patterns of transcripts of avian type II collagen and the long and short forms of the (alpha 1) chain of type IX collagen during the development of the notochord and axial skeleton. We observed type II collagen and short form type IX collagen transcripts in the developing (stage 25-28) nonchondrogenic notochord. Conversely, long form type IX transcripts were not detectable in the notochord or perinotochordal sheath. Interestingly, all three transcripts colocalized in the developing chondrogenic vertebrae of the axial skeleton as well as in the chondrocranium and Meckel's cartilage. The expression of the short form of type IX collagen in these regions was more restricted than that of the long form. This report provides additional support for a complex regulatory pathway of cartilage marker gene expression in chondrogenic vs. nonchondrogenic tissues during avian embryogenesis.
Collapse
Affiliation(s)
- R E Swiderski
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
42
|
Bishop P, McLeod D, Ayad S. Extraction and characterisation of the intact form of bovine vitreous type IX collagen. Biochem Biophys Res Commun 1992; 185:392-7. [PMID: 1599476 DOI: 10.1016/s0006-291x(05)80998-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide the first biochemical characterisation of intact type IX collagen extracted from bovine vitreous. It possesses a shortened alpha 1(IX) chain (M(r) 64K) compared to its cartilage counterpart (M(r) 84K). All the vitreous type IX collagen is in a proteoglycan form, its glycosaminoglycan constituent being a chondroitin/dermatan sulphate component of M(r) 15-60K attached to the alpha 2(IX) chain. This contrasts with previous findings in chick vitreous where a very long glycosaminoglycan chain of M(r) approximately 350K was demonstrated.
Collapse
Affiliation(s)
- P Bishop
- Department of Biochemistry & Molecular Biology, University of Manchester, U.K
| | | | | |
Collapse
|
43
|
Occurrence of collagen and proteoglycan forms of type IX collagen in chick embryo cartilage. Production and characterization of a collagen form-specific antibody. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50436-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
|
45
|
Brewton RG, Ouspenskaia MV, van der Rest M, Mayne R. Cloning of the chicken alpha 3(IX) collagen chain completes the primary structure of type IX collagen. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:443-9. [PMID: 1572350 DOI: 10.1111/j.1432-1033.1992.tb16798.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type IX collagen is composed of three genetically distinct polypeptides that contain several collagenous and non-collagenous domains. The alpha 2(IX) chain also contains a covalently bound glycosaminoglycan side chain. Type IX collagen is located on the surface of collagen fibrils of both hyaline cartilage and vitreous humor, such that one of the collagenous domains (COL3) projects from the surface of the fibril in a periodic manner. We have cloned and sequenced a full-length cDNA for the chicken alpha 3(IX) collagen chain from a cartilage cDNA library. Together with the sequence of the alpha 1(IX) and alpha 2(IX) chains, this completes the primary structure of type IX collagen for one species. These sequences will be useful to better understand the mechanism of triple-helix formation in type IX collagen and the nature of type II and type IX collagen interactions in fibril formation.
Collapse
Affiliation(s)
- R G Brewton
- Department of Cell Biology, University of Alabama, Birmingham
| | | | | | | |
Collapse
|
46
|
Tikka L, Elomaa O, Pihlajaniemi T, Tryggvason K. Human alpha 1 (XIII) collagen gene. Multiple forms of the gene transcripts are generated through complex alternative splicing of several short exons. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47430-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Kulyk WM, Coelho CN, Kosher RA. Type IX collagen gene expression during limb cartilage differentiation. MATRIX (STUTTGART, GERMANY) 1991; 11:282-8. [PMID: 1921854 DOI: 10.1016/s0934-8832(11)80236-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in the steady-state levels of mRNAs for the alpha 1(IX) and alpha 2(IX) polypeptide chains of cartilage-characteristic type IX collagen were examined during the course of chick limb chondrogenesis in vitro and in vivo. Cytoplasmic type IX collagen mRNAs begin to accumulate at the onset of overt chondrogenesis in high density micromass culture coincident with the crucial condensation phase of the process, in which prechondrogenic mesenchymal cells become closely juxtaposed prior to depositing a cartilage matrix. The initiation of type IX collagen mRNA accumulation at condensation coincides with the initiation of accumulation of cartilage proteoglycan core protein mRNA and with a striking increase in type II collagen mRNA accumulation. Following condensation in vitro, there is a concomitant progressive increase in cytoplasmic type IX collagen, core protein, and type II collagen mRNA levels which parallels the progressive accumulation of cartilage matrix. Type IX collagen mRNAs also begin to accumulate at the initiation of overt chondrogenesis in vivo in the chondrogenic central core of the developing limb bud. In contrast, little, or no type IX collagen mRNAs are detectable in the nonchondrogenic peripheral regions of the developing limb bud.
Collapse
Affiliation(s)
- W M Kulyk
- Department of Anatomy, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
48
|
Abstract
The collagens form a large family of proteins. Collagen fibrils, composed of staggered arrays of fibrillar collagen molecules (types I, II, III, V and XI), provide a supporting scaffold for extracellular matrices of connective tissues. The non-fibrillar collagens are less abundant than the fibrillar collagens, but it is becoming clear that they have important functions in the matrix. Recently, a group with unique structural characteristics has been defined and named the FACIT (Fibril-Associated Collagens with Interrupted Triple-helices) group. There is evidence that these collagens may serve as molecular bridges that are important for the organization and stability of extracellular matrices.
Collapse
Affiliation(s)
- L M Shaw
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
49
|
Structural and functional comparison of type IX collagen-proteoglycan from chicken cartilage and vitreous humor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67713-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
50
|
Neame PJ, Young CN, Treep JT. Isolation and primary structure of PARP, a 24-kDa proline- and arginine-rich protein from bovine cartilage closely related to the NH2-terminal domain in collagen alpha 1 (XI). J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30518-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|