1
|
Chen Y, Tan L, Gao J, Lin C, Wu F, Li Y, Zhang J. Targeting glutaminase 1 (GLS1) by small molecules for anticancer therapeutics. Eur J Med Chem 2023; 252:115306. [PMID: 36996714 DOI: 10.1016/j.ejmech.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Glutaminase-1 (GLS1) is a critical enzyme involved in several cellular processes, and its overexpression has been linked to the development and progression of cancer. Based on existing research, GLS1 plays a crucial role in the metabolic activities of cancer cells, promoting rapid proliferation, cell survival, and immune evasion. Therefore, targeting GLS1 has been proposed as a promising cancer therapy strategy, with several GLS1 inhibitors currently under development. To date, several GLS1 inhibitors have been identified, which can be broadly classified into two types: active site and allosteric inhibitors. Despite their pre-clinical effectiveness, only a few number of these inhibitors have advanced to initial clinical trials. Hence, the present medical research emphasizes the need for developing small molecule inhibitors of GLS1 possessing significantly high potency and selectivity. In this manuscript, we aim to summarize the regulatory role of GLS1 in physiological and pathophysiological processes. We also provide a comprehensive overview of the development of GLS1 inhibitors, focusing on multiple aspects such as target selectivity, in vitro and in vivo potency and structure-activity relationships.
Collapse
Affiliation(s)
- Yangyang Chen
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lun Tan
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Gao
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yang Li
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
High-resolution structures of mitochondrial glutaminase C tetramers indicate conformational changes upon phosphate binding. J Biol Chem 2022; 298:101564. [PMID: 34999118 PMCID: PMC8800119 DOI: 10.1016/j.jbc.2022.101564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/01/2022] Open
Abstract
The mitochondrial enzyme glutaminase C (GAC) is upregulated in many cancer cells to catalyze the first step in glutamine metabolism, the hydrolysis of glutamine to glutamate. The dependence of cancer cells on this transformed metabolic pathway highlights GAC as a potentially important therapeutic target. GAC acquires maximal catalytic activity upon binding to anionic activators such as inorganic phosphate. To delineate the mechanism of GAC activation, we used the tryptophan substitution of tyrosine 466 in the catalytic site of the enzyme as a fluorescent reporter for glutamine binding in the presence and absence of phosphate. We show that in the absence of phosphate, glutamine binding to the Y466W GAC tetramer exhibits positive cooperativity. A high-resolution X-ray structure of tetrameric Y466W GAC bound to glutamine suggests that cooperativity in substrate binding is coupled to tyrosine 249, located at the edge of the catalytic site (i.e., the “lid”), adopting two distinct conformations. In one dimer within the GAC tetramer, the lids are open and glutamine binds weakly, whereas, in the adjoining dimer, the lids are closed over the substrates, resulting in higher affinity interactions. When crystallized in the presence of glutamine and phosphate, all four subunits of the Y466W GAC tetramer exhibited bound glutamine with closed lids. Glutamine can bind with high affinity to each subunit, which subsequently undergo simultaneous catalysis. These findings explain how the regulated transitioning of GAC between different conformational states ensures that maximal catalytic activity is reached in cancer cells only when an allosteric activator is available.
Collapse
|
3
|
Han T, Wang P, Wang Y, Xun W, Lei J, Wang T, Lu Z, Gan M, Zhang W, Yu B, Wang JB. FAIM regulates autophagy through glutaminolysis in lung adenocarcinoma. Autophagy 2021; 18:1416-1432. [PMID: 34720024 PMCID: PMC9225548 DOI: 10.1080/15548627.2021.1987672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Altered glutamine metabolism is an important aspect of cancer metabolic reprogramming. The GLS isoform GAC (glutaminase C), the rate-limiting enzyme in glutaminolysis, plays a vital role in cancer initiation and progression. Our previous studies demonstrated that phosphorylation of GAC was essential for its high enzymatic activity. However, the molecular mechanisms for GAC in maintaining its high enzymatic activity and protein stability still need to be further clarified. FAIM/FAIM1 (Fas apoptotic inhibitory molecule) is known as an important anti-apoptotic protein, but little is known about its function in tumorigenesis. Here, we found that knocking down FAIM induced macroautophagy/autophagy through suppressing the activation of the MTOR pathway in lung adenocarcinoma. Further studies demonstrated that FAIM could promote the tetramer formation of GAC through increasing PRKCE/PKCε-mediated phosphorylation. What's more, FAIM also stabilized GAC through sequestering GAC from degradation by protease ClpXP. These effects increased the production of α-ketoglutarate, leading to the activation of MTOR. Besides, FAIM also promoted the association of ULK1 and MTOR and this further suppressed autophagy induction. These findings discovered new functions of FAIM and elucidated an important molecular mechanism for GAC in maintaining its high enzymatic activity and protein stability.
Collapse
Affiliation(s)
- Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Pengcheng Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Yanan Wang
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Wenze Xun
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Tao Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Zhuo Lu
- School of Life Sciences, Nanchang University, Nanchang, P. R.China
| | - Mingxi Gan
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| | - Wei Zhang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, P.R.China
| | - Jian-Bin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, P. R.China
| |
Collapse
|
4
|
Yu W, Yang X, Zhang Q, Sun L, Yuan S, Xin Y. Targeting GLS1 to cancer therapy through glutamine metabolism. Clin Transl Oncol 2021; 23:2253-2268. [PMID: 34023970 DOI: 10.1007/s12094-021-02645-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Glutamine metabolism is one of the hallmarks of cancers which is described as an essential role in serving as a major energy and building blocks supply to cell proliferation in cancer cells. Many malignant tumor cells always display glutamine addiction. The "kidney-type" glutaminase (GLS1) is a metabolism enzyme which plays a significant part in glutaminolysis. Interestingly, GLS1 is often overexpressed in highly proliferative cancer cells to fulfill enhanced glutamine demand. So far, GLS1 has been proved to be a significant target during the carcinogenesis process, and emerging evidence reveals that its inhibitors could provide a benefit strategy for cancer therapy. Herein, we summarize the prognostic value of GLS1 in multiple cancer type and its related regulatory factors which are associated with antitumor activity. Moreover, this review article highlights the remarkable reform of discovery and development for GLS1 inhibitors. On the basis of case studies, our perspectives for targeting GLS1 and development of GLS1 antagonist are discussed in the final part.
Collapse
Affiliation(s)
- Wei Yu
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - XiangYu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Qian Zhang
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
| | - Li Sun
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China
| | - ShengTao Yuan
- China Pharmaceutical University, Nanjing, 21000, Jiangsu, China.
| | - YongJie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
5
|
Ferreira IM, Quesñay JEN, Bastos AC, Rodrigues CT, Vollmar M, Krojer T, Strain-Damerell C, Burgess-Brown NA, von Delft F, Yue WW, Dias SM, Ambrosio AL. Structure and activation mechanism of the human liver-type glutaminase GLS2. Biochimie 2021; 185:96-104. [PMID: 33746066 PMCID: PMC8130709 DOI: 10.1016/j.biochi.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called “lid loop” is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS “activation” loop, formerly known as the “gating” loop) renders a highly active protein in stable tetrameric form. We conclude that the “activation” loop, a known target for GLS inhibition, may also be a drug target for GLS2. A positive cooperative mechanism of activation is demonstrated for the liver-type glutaminase. The novel crystal structure for the glutaminase domain of human GLS2 is presented. Site-directed mutagenesis suggest the activation loop as a hotspot for inhibitor design.
Collapse
Affiliation(s)
- Igor M Ferreira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Zip Code, 13083-970, Brazil
| | - José Edwin N Quesñay
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Zip Code, 13083-970, Brazil; Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Zip Code, 13563-120, Brazil
| | - Alliny Cs Bastos
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Zip Code, 13083-970, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Camila T Rodrigues
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Zip Code, 13563-120, Brazil
| | - Melanie Vollmar
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Tobias Krojer
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Claire Strain-Damerell
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK; Diamond Light Source Ltd., The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Nicola A Burgess-Brown
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK; Diamond Light Source Ltd., The Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK; Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK.
| | - Sandra Mg Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Zip Code, 13083-970, Brazil.
| | - Andre Lb Ambrosio
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Sao Paulo, Zip Code, 13083-970, Brazil; Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Zip Code, 13563-120, Brazil.
| |
Collapse
|
6
|
Li Y, Ramachandran S, Nguyen TTT, Stalnecker CA, Cerione RA, Erickson JW. The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. J Biol Chem 2020; 295:1328-1337. [PMID: 31871054 DOI: 10.1074/jbc.ra119.010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/12/2019] [Indexed: 11/06/2022] Open
Abstract
The glutaminase C (GAC) isoform of mitochondrial glutaminase is overexpressed in many cancer cells and therefore represents a potential therapeutic target. Understanding the regulation of GAC activity has been guided by the development of spectroscopic approaches that measure glutaminase activity in real time. Previously, we engineered a GAC protein (GAC(F327W)) in which a tryptophan residue is substituted for phenylalanine in an activation loop to explore the role of this loop in enzyme activity. We showed that the fluorescence emission of Trp-327 is enhanced in response to activator binding, but quenched by inhibitors of the BPTES class that bind to the GAC tetramer and contact the activation loop, thereby constraining it in an inactive conformation. In the present work, we took advantage of a tryptophan substitution at position 471, proximal to the GAC catalytic site, to examine the conformational coupling between the activation loop and the substrate-binding cleft, separated by ∼16 Å. Comparison of glutamine binding in the presence or absence of the BPTES analog CB-839 revealed a reciprocal relationship between the constraints imposed on the activation loop position and the affinity of GAC for substrate. Binding of the inhibitor weakened the affinity of GAC for glutamine, whereas activating anions such as Pi increased this affinity. These results indicate that the conformations of the activation loop and the substrate-binding cleft in GAC are allosterically coupled and that this coupling determines substrate affinity and enzymatic activity and explains the activities of CB-839, which is currently in clinical trials.
Collapse
Affiliation(s)
- Yunxing Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Thuy-Tien T Nguyen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Clint A Stalnecker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 .,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
7
|
The activation loop and substrate-binding cleft of glutaminase C are allosterically coupled. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49889-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Abstract
INTRODUCTION The kidney-type glutaminase (GLS) controlling the first step of glutamine metabolism is overexpressed in many cancer cells. Targeting inhibition of GLS shows obvious inhibitory effects on cancer cell proliferation. Therefore, extensive research and development of GLS inhibitors have been carried out in industrial and academic institutions over the past decade to address this unmet medical need. AREAS COVERED This review covers researches and patent literatures in the field of discovery and development of small molecule inhibitors of GLS for cancer therapy over the past 16 years. EXPERT OPINION The detailed ligand-receptor interaction information from their complex structure not only guides the rational drug design, but also facilitates in silico structure-based virtual ligand screening of novel GLS inhibitors. Multi-drug combination administration is of great significance both in terms of safety and efficacy.
Collapse
Affiliation(s)
- CanRong Wu
- a Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - LiXia Chen
- b Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| | - Sanshan Jin
- c Maternal and Child Health Hospital of Hubei Province , Wuhan , China
| | - Hua Li
- a Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China.,b Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
9
|
Zimmermann SC, Duvall B, Tsukamoto T. Recent Progress in the Discovery of Allosteric Inhibitors of Kidney-Type Glutaminase. J Med Chem 2018; 62:46-59. [PMID: 29969024 DOI: 10.1021/acs.jmedchem.8b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Kidney-type glutaminase (GLS), the first enzyme in the glutaminolysis pathway, catalyzes the hydrolysis of glutamine to glutamate. GLS was found to be upregulated in many glutamine-dependent cancer cells. Therefore, selective inhibition of GLS has gained substantial interest as a therapeutic approach targeting cancer metabolism. Bis-2-[5-(phenylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide (BPTES), despite its poor physicochemical properties, has served as a key molecular template in subsequent efforts to identify more potent and drug-like allosteric GLS inhibitors. This review article provides an overview of the progress made to date in the development of GLS inhibitors and highlights the remarkable transformation of the unfavorable lead into "druglike" compounds guided by systematic SAR studies.
Collapse
|
10
|
Li Y, Erickson JW, Stalnecker CA, Katt WP, Huang Q, Cerione RA, Ramachandran S. Mechanistic Basis of Glutaminase Activation: A KEY ENZYME THAT PROMOTES GLUTAMINE METABOLISM IN CANCER CELLS. J Biol Chem 2016; 291:20900-20910. [PMID: 27542409 DOI: 10.1074/jbc.m116.720268] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
Glutamine-derived carbon becomes available for anabolic biosynthesis in cancer cells via the hydrolysis of glutamine to glutamate, as catalyzed by GAC, a splice variant of kidney-type glutaminase (GLS). Thus, there is significant interest in understanding the regulation of GAC activity, with the suggestion being that higher order oligomerization is required for its activation. We used x-ray crystallography, together with site-directed mutagenesis, to determine the minimal enzymatic unit capable of robust catalytic activity. Mutagenesis of the helical interface between the two pairs of dimers comprising a GAC tetramer yielded a non-active, GAC dimer whose x-ray structure displays a stationary loop ("activation loop") essential for coupling the binding of allosteric activators like inorganic phosphate to catalytic activity. Further mutagenesis that removed constraints on the activation loop yielded a constitutively active dimer, providing clues regarding how the activation loop communicates with the active site, as well as with a peptide segment that serves as a "lid" to close off the active site following substrate binding. Our studies show that the formation of large GAC oligomers is not a pre-requisite for full enzymatic activity. They also offer a mechanism by which the binding of activators like inorganic phosphate enables the activation loop to communicate with the active site to ensure maximal rates of catalysis, and promotes the opening of the lid to achieve optimal product release. Moreover, these findings provide new insights into how other regulatory events might induce GAC activation within cancer cells.
Collapse
Affiliation(s)
- Yunxing Li
- From the Departments of Chemistry and Chemical Biology and
| | - Jon W Erickson
- From the Departments of Chemistry and Chemical Biology and
| | | | | | - Qingqiu Huang
- Cornell Lab for Accelerator-based Science, Cornell University, Ithaca, New York 14853
| | - Richard A Cerione
- From the Departments of Chemistry and Chemical Biology and Molecular Medicine,
| | | |
Collapse
|
11
|
Role of cysteine residues in the redox-regulated oligomerization and nucleotide binding to EhRabX3. Mol Biochem Parasitol 2016; 208:84-90. [PMID: 27485554 DOI: 10.1016/j.molbiopara.2016.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
The enteric protozoan parasite, Entamoeba histolytica, an etiological agent of amebiasis, is involved in the adhesion and destruction of human tissues. Worldwide, the parasite causes about 50 million cases of amebiasis and 100,000 deaths annually. EhRabX3, a unique amoebic Rab GTPase with tandem G-domains, possesses an unusually large number of cysteine residues in its N-terminal domain. Crystal structure of EhRabX3 revealed an intra-molecular disulfide bond between C39 and C163 which is critical for maintaining the 3-dimensional architecture and biochemical function of this protein. The remaining six cysteine residues were found to be surface exposed and predicted to be involved in inter-molecular disulfide bonds. In the current study, using biophysical and mutational approaches, we have investigated the role of the cysteine residues in the assembly of EhRabX3 oligomer. The self-association of EhRabX3 is found to be redox sensitive, in vitro. Furthermore, the oligomeric conformation of EhRabX3 failed to bind and exchange the guanine nucleotide, indicating structural re-organization of the active site. Altogether, our results provide valuable insights into the redox-dependent oligomerization of EhRabX3 and its implication on nucleotide binding.
Collapse
|
12
|
Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, Sansone L, Villanova L, Runci A, Pucci B, Morgante E, Fini M, Mai A, Russo MA, Tafani M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2016; 11:253-70. [PMID: 25700560 PMCID: PMC4502726 DOI: 10.1080/15548627.2015.1009778] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.
Collapse
Key Words
- ACTB, actin, β
- ATG, autophagy-related
- BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3
- BPTES, bis-2-(5-phenylacetamido-1, 3, 4-thiadiazol-2-yl)ethyl sulfide
- COX4I1, cytochrome c oxidase subunit IV isoform 1
- CPS1, carbamoyl-phosphate synthase 1, mitochondrial
- GABARAP, GABA(A) receptor-associated protein
- GABARAPL2, GABA(A) receptor-associated protein-like 2
- GLS, glutaminase
- GLUD1, glutamate dehydrogenase 1
- GLUL, glutamate-ammonia ligase
- MAP1LC3B, microtubule-associated protein 1 light chain 3 β
- MFN2, mitofusin 2
- OPA1, optic atrophy 1 (autosomal dominant)
- PARK2, parkin RBR E3 ubiquitin protein ligase
- PEG, polyethylene glycol
- PINK1, PTEN induced putative kinase 1
- SIRT5, sirtuin 5
- SQSTM1, sequestosome 1
- TCA, tricarboxylic acid cycle
- TEM, transmission electron microscopy
- ammonia
- autophagy
- glutaminase
- glutamine
- hexachlorophene, 2, 2′-methylenebis(3, 4, 6-trichlorophenol)
- mitochondrial dynamics
- mitophagy
- molecular rehabilitation
- sirtuin 5
- succinylation
Collapse
Affiliation(s)
- Lucia Polletta
- a Department of Experimental Medicine ; University of Rome ; Sapienza ; Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Mammalian glutaminases catalyze the stoichiometric conversion of L-glutamine to L-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.
Collapse
|
14
|
Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc Natl Acad Sci U S A 2014; 112:394-9. [PMID: 25548170 DOI: 10.1073/pnas.1414056112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mitochondrial enzyme glutaminase C (GAC) catalyzes the hydrolysis of glutamine to glutamate plus ammonia, a key step in the metabolism of glutamine by cancer cells. Recently, we discovered a class of allosteric inhibitors of GAC that inhibit cancer cell growth without affecting their normal cellular counterparts, with the lead compound being the bromo-benzophenanthridinone 968. Here, we take advantage of mouse embryonic fibroblasts transformed by oncogenic Dbl, which hyperactivates Rho GTPases, together with (13)C-labeled glutamine and stable-isotope tracing methods, to establish that 968 selectively blocks the enhancement in glutaminolysis necessary for satisfying the glutamine addiction of cancer cells. We then determine how 968 inhibits the catalytic activity of GAC. First, we developed a FRET assay to examine the effects of 968 on the ability of GAC to undergo the dimer-to-tetramer transition necessary for enzyme activation. We next demonstrate how the fluorescence of a reporter group attached to GAC provides a direct read-out of the binding of 968 and related compounds to the enzyme. By combining these fluorescence assays with newly developed GAC mutants trapped in either the monomeric or dimeric state, we show that 968 has the highest affinity for monomeric GAC and that the dose-dependent binding of 968 to GAC monomers directly matches its dose-dependent inhibition of enzyme activity and cellular transformation. Together, these findings highlight the requirement of tetramer formation as the mechanism of GAC activation and shed new light on how a distinct class of allosteric GAC inhibitors impacts the metabolic program of transformed cells.
Collapse
|
15
|
Effect of lysine to alanine mutations on the phosphate activation and BPTES inhibition of glutaminase. Neurochem Int 2014; 88:10-4. [PMID: 25510640 DOI: 10.1016/j.neuint.2014.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022]
Abstract
The GLS1 gene encodes a mitochondrial glutaminase that is highly expressed in brain, kidney, small intestine and many transformed cells. Recent studies have identified multiple lysine residues in glutaminase that are sites of N-acetylation. Interestingly, these sites are located within either a loop segment that regulates access of glutamine to the active site or the dimer:dimer interface that participates in the phosphate-dependent oligomerization and activation of the enzyme. These two segments also contain the binding sites for bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide (BPTES), a highly specific and potent uncompetitive inhibitor of this glutaminase. BPTES is also the lead compound for development of novel cancer chemotherapeutic agents. To provide a preliminary assessment of the potential effects of N-acetylation, the corresponding lysine to alanine mutations were constructed in the hGACΔ1 plasmid. The wild type and mutated proteins were purified by Ni(+)-affinity chromatography and their phosphate activation and BPTES inhibition profiles were analyzed. Two of the alanine substitutions in the loop segment (K311A and K328A) and the one in the dimer:dimer interface (K396A) form enzymes that require greater concentrations of phosphate to produce half-maximal activation and exhibit greater sensitivity to BPTES inhibition. By contrast, the K320A mutation results in a glutaminase that exhibits near maximal activity in the absence of phosphate and is not inhibited by BPTES. Thus, lysine N-acetylation may contribute to the acute regulation of glutaminase activity in various tissues and alter the efficacy of BPTES-type inhibitors.
Collapse
|
16
|
Botman D, Tigchelaar W, Van Noorden CJF. Determination of phosphate-activated glutaminase activity and its kinetics in mouse tissues using metabolic mapping (quantitative enzyme histochemistry). J Histochem Cytochem 2014; 62:813-26. [PMID: 25163927 PMCID: PMC4230542 DOI: 10.1369/0022155414551177] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphate-activated glutaminase (PAG) converts glutamine to glutamate as part of the glutaminolysis pathway in mitochondria. Two genes, GLS1 and GLS2, which encode for kidney-type PAG and liver-type PAG, respectively, differ in their tissue-specific activities and kinetics. Tissue-specific PAG activity and its kinetics were determined by metabolic mapping using a tetrazolium salt and glutamate dehydrogenase as an auxiliary enzyme in the presence of various glutamine concentrations. In kidney and brain, PAG showed Michaelis-Menten kinetics with a Km of 0.6 mM glutamine and a Vmax of 1.1 µmol/mL/min when using 5 mM glutamine. PAG activity was high in the kidney cortex and inner medulla but low in the outer medulla, papillary tip, glomeruli and the lis of Henle. In brain tissue sections, PAG was active in the grey matter and inactive in myelin-rich regions. Liver PAG showed allosteric regulation with a Km of 11.6 mM glutamine and a Vmax of 0.5 µmol/mL/min when using 20 mM glutamine. The specificity of the method was shown after incubation of brain tissue sections with the PAG inhibitor 6-diazo-5-oxo-L-norleucine. PAG activity was decreased to 22% in the presence of 2 mM 6-diazo-5-oxo-L-norleucine. At low glutamine concentrations, PAG activity was higher in periportal regions, indicating a lower Km for periportal PAG. When compared with liver, kidney and brain, other tissues showed 3-fold to 6-fold less PAG activity. In conclusion, PAG is mainly active in mouse kidney, brain and liver, and shows different kinetics depending on which type of PAG is expressed.
Collapse
Affiliation(s)
- Dennis Botman
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| | - Wikky Tigchelaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| | - Cornelis J F Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (DB, WT, CJFVN)
| |
Collapse
|
17
|
Møller M, Nielsen SS, Ramachandran S, Li Y, Tria G, Streicher W, Petoukhov MV, Cerione RA, Gillilan RE, Vestergaard B. Small angle X-ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity. PLoS One 2013; 8:e74783. [PMID: 24098668 PMCID: PMC3787022 DOI: 10.1371/journal.pone.0074783] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022] Open
Abstract
Glutaminase C is a key metabolic enzyme, which is unregulated in many cancer systems and believed to play a central role in the Warburg effect, whereby cancer cells undergo changes to an altered metabolic profile. A long-standing hypothesis links enzymatic activity to the protein oligomeric state, hence the study of the solution behavior in general and the oligomer state in particular of glutaminase C is important for the understanding of the mechanism of protein activation and inhibition. In this report, this is extensively investigated in correlation to enzyme concentration or phosphate level, using a high-throughput microfluidic-mixing chip for the SAXS data collection, and we confirm that the oligomeric state correlates with activity. The in-depth solution behavior analysis further reveals the structural behavior of flexible regions of the protein in the dimeric, tetrameric and octameric state and investigates the C-terminal influence on the enzyme solution behavior. Our data enable SAXS-based rigid body modeling of the full-length tetramer states, thereby presenting the first ever experimentally derived structural model of mitochondrial glutaminase C including the N- and C-termini of the enzyme.
Collapse
Affiliation(s)
- Magda Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Søren S. Nielsen
- Department of Structural Biophysics, University of Copenhagen, Copenhagen, Denmark
- Cornell High Energy Synchrotron Source (CHESS) and Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, New York, United States of America
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Yuxing Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
- Center for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Werner Streicher
- Protein Function and Interactions, Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Maxim V. Petoukhov
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Medicine, Cornell University, Ithaca, New York, United States of America
| | - Richard E. Gillilan
- Cornell High Energy Synchrotron Source (CHESS) and Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, New York, United States of America
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Ferreira APS, Cassago A, Gonçalves KDA, Dias MM, Adamoski D, Ascenção CFR, Honorato RV, de Oliveira JF, Ferreira IM, Fornezari C, Bettini J, Oliveira PSL, Paes Leme AF, Portugal RV, Ambrosio ALB, Dias SMG. Active glutaminase C self-assembles into a supratetrameric oligomer that can be disrupted by an allosteric inhibitor. J Biol Chem 2013; 288:28009-20. [PMID: 23935106 DOI: 10.1074/jbc.m113.501346] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop (321)LRFNKL(326) is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys(311) in humans, Lys(316) in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.
Collapse
|
19
|
Bmcc1s interacts with the phosphate-activated glutaminase in the brain. Biochimie 2012; 95:799-807. [PMID: 23246912 DOI: 10.1016/j.biochi.2012.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022]
Abstract
Bmcc1s, a brain-enriched short isoform of the BCH-domain containing molecule Bmcc1, has recently been shown to interact with the microtubule-associated protein MAP6 and to regulate cell morphology. Here we identified kidney-type glutaminase (KGA), the mitochondrial enzyme responsible for the conversion of glutamine to glutamate in neurons, as a novel partner of Bmcc1s. Co-immunoprecipitation experiments confirmed that Bmcc1s and KGA form a physiological complex in the brain, whereas binding and modeling studies showed that they interact with each other. Overexpression of Bmcc1s in mouse primary cortical neurons impaired proper mitochondrial targeting of KGA leading to its accumulation within the cytoplasm. Thus, Bmcc1s may control the trafficking of KGA to the mitochondria.
Collapse
|
20
|
Production of l-theanine using glutaminase encapsulated in carbon-coated mesoporous silica with high pH stability. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Katt WP, Ramachandran S, Erickson JW, Cerione RA. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol Cancer Ther 2012; 11:1269-78. [PMID: 22496480 DOI: 10.1158/1535-7163.mct-11-0942] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One hallmark of cancer cells is their adaptation to rely upon an altered metabolic scheme that includes changes in the glycolytic pathway, known as the Warburg effect, and elevated glutamine metabolism. Glutaminase, a mitochondrial enzyme, plays a key role in the metabolism of glutamine in cancer cells, and its inhibition could significantly impact malignant transformation. The small molecule 968, a dibenzophenanthridine, was recently shown to inhibit recombinantly expressed glutaminase C, to block the proliferation and anchorage-independent colony formation of human cancer cells in culture, and to inhibit tumor formation in mouse xenograft models. Here, we examine the structure-activity relationship that leads to 968-based inhibition of glutaminase and cancer cell proliferation, focusing upon a "hot-spot" ring previously identified as critical to 968 activity. We find that the hot-spot ring must be substituted with a large, nonplanar functionality (e.g., a t-butyl group) to bestow activity to the series, leading us to a model whereby the molecule binds glutaminase at a previously undescribed allosteric site. We conduct docking studies to locate potential 968-binding sites and proceed to test a specific set of docking solutions via site-directed mutagenesis. We verify the results from our initial assay of 968 and its analogues by cellular studies using MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
22
|
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A 2012; 109:1092-7. [PMID: 22228304 DOI: 10.1073/pnas.1112495109] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.
Collapse
|
23
|
Hartwick EW, Curthoys NP. BPTES inhibition of hGA(124-551), a truncated form of human kidney-type glutaminase. J Enzyme Inhib Med Chem 2011; 27:861-7. [PMID: 21999665 DOI: 10.3109/14756366.2011.622272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initial transcript of the GLS1 gene undergoes alternative splicing to produce two glutaminase variants (KGA and GAC) that contain unique C-terminal sequences. A truncated form of human glutaminase (hGA(124-551)) that lacks either C-terminal sequence was expressed in E.Coli and purified. This construct exhibits a hyperbolic glutamine saturation profile (K(m) of 1.6 mM). BPTES, bis-2[5-phenylacetamido-1,2,4-thiadiazol-2-yl]ethylsulfide, functions as a potent uncompetitive inhibitor of this construct (K(i) of 0.2 µM). The hGA(124-551) is inactive in the absence of phosphate, but exhibits a hyperbolic phosphate-dependent activation profile that is also inhibited by BPTES. Gel filtration studies indicate that hGA(124-551) forms a dimer in the absence or presence of 100 mM phosphate, whereas addition of BPTES causes the formation of an inactive tetramer. The combined data indicate that BPTES inhibits human glutaminase by a novel mechanism and that BPTES is a potential lead compound for development of an effective cancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Erik W Hartwick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
24
|
Robinson M, Mcbryant S, Tsukamoto T, Rojas C, Ferraris D, Hamilton S, Hansen J, Curthoys N. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J 2007; 406:407-14. [PMID: 17581113 PMCID: PMC2049044 DOI: 10.1042/bj20070039] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The release of GA (mitochondrial glutaminase) from neurons following acute ischaemia or during chronic neurodegenerative diseases may contribute to the propagation of glutamate excitotoxicity. Thus an inhibitor that selectively inactivates the released GA may limit the accumulation of excess glutamate and minimize the loss of neurological function that accompanies brain injury. The present study examines the mechanism of inactivation of rat KGA (kidney GA isoform) by the small-molecule inhibitor BPTES [bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide]. BPTES is a potent inhibitor of KGA, but not of the liver GA isoform, glutamate dehydrogenase or gamma-glutamyl transpeptidase. Kinetic studies indicate that, with respect to glutamine, BPTES has a K(i) of approx. 3 microM. Moreover, these studies suggest that BPTES inhibits the allosteric activation caused by phosphate binding and promotes the formation of an inactive complex. Gel-filtration chromatography and sedimentation-velocity analysis were used to examine the effect of BPTES on the phosphate-dependent oligomerization of KGA. This established that BPTES prevents the formation of large phosphate-induced oligomers and instead promotes the formation of a single oligomeric species with distinct physical properties. Sedimentation-equilibrium studies determined that the oligomer produced by BPTES is a stable tetramer. Taken together, the present work indicates that BPTES is a unique and potent inhibitor of rat KGA and elucidates a novel mechanism of inactivation.
Collapse
Affiliation(s)
- Mary M. Robinson
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Steven J. Mcbryant
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | | | - Camilo Rojas
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Dana V. Ferraris
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Sean K. Hamilton
- †MGI Pharma Inc., 6611 Tributary Street, Baltimore, MD 21224, U.S.A
| | - Jeffrey C. Hansen
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
| | - Norman P. Curthoys
- *Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Carroll JD, Pastuszak I, Edavana VK, Pan YT, Elbein AD. A novel trehalase from Mycobacterium smegmatis − purification, properties, requirements. FEBS J 2007; 274:1701-14. [PMID: 17319935 DOI: 10.1111/j.1742-4658.2007.05715.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose. In this study, we report on the purification and characterization of the trehalase from M. smegmatis, and its comparison to the trehalase from M. tuberculosis. Although these two enzymes have over 85% identity throughout their amino acid sequences, and both show an absolute requirement for inorganic phosphate for activity, the enzyme from M. smegmatis also requires Mg(2+) for activity, whereas the M. tuberculosis trehalase does not require Mg(2+). The requirement for phosphate is unusual among glycosyl hydrolases, but we could find no evidence for a phosphorolytic cleavage, or for any phosphorylated intermediates in the reaction. However, as inorganic phosphate appears to bind to, and also to greatly increase the heat stability of, the trehalase, the function of the phosphate may involve stabilizing the protein conformation and/or initiating protein aggregation. Sodium arsenate was able to substitute to some extent for the sodium phosphate requirement, whereas inorganic pyrophosphate and polyphosphates were inhibitory. The purified trehalase showed a single 71 kDa band on SDS gels, but active enzyme eluted in the void volume of a Sephracryl S-300 column, suggesting a molecular mass of about 1500 kDa or a multimer of 20 or more subunits. The trehalase is highly specific for alpha,alpha-trehalose and did not hydrolyze alpha,beta-trelalose or beta,beta-trehalose, trehalose dimycolate, or any other alpha-glucoside or beta-glucoside. Attempts to obtain a trehalase-negative mutant of M. smegmatis have been unsuccessful, although deletions of other trehalose metabolic enzymes have yielded viable mutants. This suggests that trehalase is an essential enzyme for these organisms. The enzyme has a pH optimum of 7.1, and is active in various buffers, as long as inorganic phosphate and Mg(2+) are present. Glucose was the only product produced by the trehalase in the presence of either phosphate or arsenate.
Collapse
Affiliation(s)
- J David Carroll
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
26
|
Kenny J, Bao Y, Hamm B, Taylor L, Toth A, Wagers B, Curthoys NP. Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr Purif 2003; 31:140-8. [PMID: 12963351 DOI: 10.1016/s1046-5928(03)00161-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The human gene that encodes the kidney-type glutaminase (KGA) spans 84-kb, contains 19 exons, and encodes two alternatively spliced mRNAs. Various segments of the rat KGA cDNA were PCR amplified and cloned into a bacterial expression vector to determine whether the N- and C- terminal ends of the glutaminase protein were essential for activity. A recombinant glutaminase, lacking the coding sequence contained in exon 1, was found to be fully active. In contrast, proteins that lacked sequences from exons 1 and 2 and exons 1-3 were inactive. An additional construct that corresponded to the sequence encoded by exons 2-14 also retained full activity. Both of the fully active, truncated proteins were purified to apparent homogeneity using an incorporated N-terminal His(6)-tag and Ni(2+)-affinity chromatography. The K(M) values for glutamine of the native and recombinant forms of glutaminase were nearly identical. However, the two truncated forms of the glutaminase exhibit the characteristic phosphate activation profile only when dialyzed into a buffer lacking phosphate. Dialysis versus 10mM Tris-phosphate was sufficient to form an active tetramer. Thus, the deleted N-terminal sequence may contribute to the phosphate-dependent oligomerization and activation of the native glutaminase.
Collapse
Affiliation(s)
- John Kenny
- Department of Biochemistry and Molecular Biology, Colorado State University, Ft. Collins, CO 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Aledo JC, Rosado A, Olalla L, Campos JA, Márquez J. Overexpression, purification, and characterization of glutaminase-interacting protein, a PDZ-domain protein from human brain. Protein Expr Purif 2001; 23:411-8. [PMID: 11722177 DOI: 10.1006/prep.2001.1522] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A human brain cDNA clone coding for a novel PDZ-domain protein of 124 amino acids has been previously isolated in our laboratory. The protein was termed GIP (glutaminase-interacting protein) because it interacts with the C-terminal region of the human brain glutaminase L. Here we report the heterologous expression of GIP as a histidine-tagged fusion protein in Escherichia coli cells. The induction conditions (temperature and isopropyl beta-d-thiogalactopyranoside concentrations) were optimized in such a way that GIP accounted for about 20% of the total E. coli protein. A simple and rapid procedure for purification was developed, which yielded 17 mg of purified GIP per liter of bacterial cell culture. The apparent molecular mass of the protein by SDS-PAGE was 16 kDa, whereas in native form it was determined to be 28 kDa, which suggests dimer formation. The nature and integrity of the recombinant protein were verified by mass spectrometry analysis. The functionality of the GIP protein was tested with an in vitro activity assay: after being pulled down with glutathione S-transferase-glutaminase, GIP was revealed by Western blot using anti-GIP antibodies. Furthermore, the glutaminase activity in crude rat liver extracts was inhibited by the presence of recombinant purified GIP protein.
Collapse
Affiliation(s)
- J C Aledo
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, 29071, Spain
| | | | | | | | | |
Collapse
|
28
|
Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E. Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol 2000; 279:C648-57. [PMID: 10942715 DOI: 10.1152/ajpcell.2000.279.3.c648] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two pools of phosphate-activated glutaminase (PAG) were separated from pig and rat renal mitochondria. The partition of enzyme activity corresponded with that of the immunoreactivity and also with the postembedding immunogold labeling of PAG, which was associated partly with the inner membrane and partly with the matrix. The outer membrane was not labeled. PAG in intact mitochondria showed enzymatic characteristics that were similar to that of the membrane fraction and also mimicked that of the polymerized form of purified pig renal PAG. PAG in the soluble fraction showed properties similar to that of the monomeric form of purified enzyme. It is indicated that the pool of PAG localized inside the inner mitochondrial membrane is dormant due to the presence of high concentrations of the inhibitor glutamate. Thus the enzymatically active PAG is assumed to be localized on the outer face of the inner mitochondrial membrane. The activity of this pool of PAG appears to be regulated by compounds in the cytosol, of which glutamate may be most important.
Collapse
Affiliation(s)
- B Roberg
- Neurochemical Laboratory, Domus Medica, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
29
|
Campos JA, Aledo JC, del Castillo-Olivares A, del Valle AE, Núñez de Castro I, Márquez J. Involvement of essential cysteine and histidine residues in the activity of isolated glutaminase from tumour cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:275-83. [PMID: 9920404 DOI: 10.1016/s0167-4838(98)00240-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pH dependence of the phosphate-activated glutaminase isolated from Ehrlich tumour cells suggests a functional role for two prototropic groups with apparent pKa of 9.3 and 7.7 at the active site of the protein; these pKa values are compatible with cysteine and histidine residues, respectively. This possibility was investigated by chemical modification studies of the purified enzyme. N-Ethylmaleimide fully inactivated the purified glutaminase; the reaction order was very close to 1.0, suggesting that N-ethylmaleimide modifies glutaminase at a single essential site. Spectrophotometric studies of the isolated protein treated with diethyl pyrocarbonate indicate that two histidine residues are modified. Since glutaminase is loosely associated to the inner mitochondrial membrane, modification experiments were also carried out using mitochondrial membrane fractions. N-Ethylmaleimide and diethyl pyrocarbonate gave similar results in mitochondria membrane-bound enzyme to those obtained with purified enzyme. Glutamate, which behaves as a competitive inhibitor of the enzyme, partially protected the inactivation caused by N-ethylmaleimide in membrane-bound experiments. The results suggest the existence of a critical histidine residue(s) in the tumour glutaminase, and strongly support the notion that a cysteine residue, which is located at (or near) the active site, is involved in the catalytic mechanism as well.
Collapse
Affiliation(s)
- J A Campos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Newcomb R, Sun X, Taylor L, Curthoys N, Giffard RG. Increased production of extracellular glutamate by the mitochondrial glutaminase following neuronal death. J Biol Chem 1997; 272:11276-82. [PMID: 9111031 DOI: 10.1074/jbc.272.17.11276] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elevated extracellular concentrations of the excitatory transmitter glutamate are an important cause of neuronal death in a variety of disorders of the nervous system. The concentrations and rates of clearance and production of extracellular glutamate were measured in the medium of primary cultures from mouse neocortex containing neurons, astrocytes, or both cell types. Measurements were performed in the presence and absence of 2 mM glutamine with or without neuronal injury caused by 5-h exposure to hypoxia or 500 microM N-methyl-D-aspartate or a freeze-thaw cycle. High rates of glutamate generation (0.5-0.8 microM/min in the 0.4-ml culture well) occurred if neurons were both damaged and exposed to glutamine. Intact neurons or glia exposed to glutamine generated only small amounts of glutamate (0.03 microM/min). Glutamate generation by damaged neurons was dependent on the presence of glutamine, activated by phosphate, and inhibited by 6-diazo-5-oxo-L-norleucine and p-chloromercuriphenylsulfonic acid (pCMPS), strongly implicating the mitochondrial glutaminase. Following 5-h exposure to 500 microM N-methyl-D-aspartate, the glutaminase was localized to fragments of damaged neurons and was accessible to inhibition by the membrane-impermeant pCMPS. The glutaminase activity from damaged neurons is sufficient to account for the neurotoxic concentrations of glutamate in hypoxic mixed neuronal-glial cultures exposed to 2 mM glutamine. Finally, pCMPS is neuroprotective and also prevents the increased rate of generation of glutamate observed in neuronal cultures after prolonged exposure to glutamine. The cumulative data indicate the following: 1) excitotoxic neuronal death activates the hydrolysis of extracellular glutamine by the mitochondrial glutaminase, and 2) the glutaminase in damaged neurons is sufficient to cause neuronal death in in vitro models of neuronal injury.
Collapse
Affiliation(s)
- R Newcomb
- Neurex Corporation, Menlo Park, California 94025, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Changes in the protein content, maximal activity, and Km of phosphate-dependent glutaminase were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes) from just-weaned, mature (3 months), and aged rats (15 months). Also, [U-14C] glutamine transport and decarboxylation and the production of glutamate and aspartate from 2 and 20 mM glutamine were measured in incubated mesenteric lymph node lymphocytes. The ageing process induced a reduction in the protein content of the thymus and spleen, as well as the phosphate-dependent glutaminase activity in the thymus and isolated lymphocytes. The Km of phosphate-dependent glutaminase, however, was not affected by the process. Ageing reduced [U-14C] glutamine decarboxylation and increased glutamate and aspartate production in incubated lymphocytes. The results indicate that the ageing process does modify several aspects of glutamine metabolism in lymphocytes: reduces maximal glutaminase activity and [U-14C] glutamine decarboxylation and increases the Km for [U-14C] glutamine uptake and the production of glutamate and aspartate.
Collapse
Affiliation(s)
- A F Almeida
- Department of Physiology and Biophysics, University of São Paulo, Butantan, Brazil
| | | | | |
Collapse
|
32
|
Kugler P. Enzymes involved in glutamatergic and GABAergic neurotransmission. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 147:285-336. [PMID: 7901176 DOI: 10.1016/s0074-7696(08)60771-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- P Kugler
- Department of Anatomy, University of Würzburg, Germany
| |
Collapse
|
33
|
Tannen RL. Renal Ammonia Production and Excretion. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Isolation, characterization, and in vitro expression of a cDNA that encodes the kidney isoenzyme of the mitochondrial glutaminase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55132-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Perera SY, Chen TC, Curthoys NP. Biosynthesis and processing of renal mitochondrial glutaminase in cultured proximal tubular epithelial cells and in isolated mitochondria. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38229-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Sherman AD, Hamrah M, Mott J. Effects of neuroleptics on glutaminase from rat synaptosomes. Neurochem Res 1988; 13:535-8. [PMID: 2900481 DOI: 10.1007/bf00973293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphate-activated glutaminase was isolated from synaptosomes from three areas of rat brain. Glutamine utilization phosphate activation and inhibition by glutamate or ammonia were assessed in the absence or presence of haloperidol, chlorpromazine, or clozapine. All three drugs (at 1 micromolar concentration) elevated the Km for glutamine using preparations from the amygdala, hippocampus, or striatum. They interfered with phosphate activation only in the amygdala preparation. No drug affected end-product inhibition. The data suggest that neuroleptics may depress the release of glutamic acid from synaptosomes by interfering with the activation of glutaminase by phosphate.
Collapse
Affiliation(s)
- A D Sherman
- Department of Psychiatry, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
37
|
Smith EM, Watford M. Rat hepatic glutaminase: purification and immunochemical characterization. Arch Biochem Biophys 1988; 260:740-51. [PMID: 3277537 DOI: 10.1016/0003-9861(88)90504-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method for the purification of phosphate-activated glutaminase from the liver of streptozotocin-diabetic rats is described. The procedure involves solubilization of glutaminase activity from isolated mitochondria by sonication, followed by ammonium sulfate precipitation, polyethylene glycol precipitation, and sequential chromatography on DEAE, hydroxylapatite, and zinc-chelated resins. The enzyme was purified 600-fold to a specific activity of 31-57 U/mg protein. The purified enzyme has an apparent subunit molecular mass of 58,000-Da and is greater than 80% pure by scanning densitometry of sodium dodecyl sulfate-polyacrylamide gels. The purified enzyme has an apparent Km for glutamine of 17 mM and a pH optimum between 7.8 and 8.2. The physical and kinetic properties of this enzyme are similar to those of the enzyme from normal rat liver. Polyclonal antibodies raised against the enzyme specifically inhibit hepatic glutaminase activity and react primarily with a 58,000-Da peptide in liver fractions on immunoblots. These antibodies were used in equivalence point titrations and immunoblots to provide evidence for increased concentration of glutaminase protein in the liver of diabetic rats with no change in specific activity of the enzyme. In addition, the antibodies cross-react, at low affinity, with kidney-type glutaminases. On immunoblots, the antibodies did not react with fetal liver, mammary gland, or lung. Antibodies to rat hepatic glutaminase should prove useful as tools to study the long-term regulation of the enzyme.
Collapse
Affiliation(s)
- E M Smith
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
38
|
Shapiro RA, Haser WG, Curthoys NP. The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Arch Biochem Biophys 1985; 243:1-7. [PMID: 2998280 DOI: 10.1016/0003-9861(85)90767-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.
Collapse
|
39
|
|
40
|
Strzelecki T, Schoolwerth AC. The significance of the attachment of rat kidney glutaminase to the inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 801:334-41. [PMID: 6487648 DOI: 10.1016/0304-4165(84)90136-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inner mitochondrial membrane of rat kidney mitochondria was altered by 0.03% Triton X-100 treatment in such a way as to render it permeable to NAD and CoA molecules without release of phosphate-dependent glutaminase. A break of linearity in the Arrhenius plot of the enzyme activity was characteristic for a conformational change of a membrane-bound enzyme. The activity of phosphate-dependent glutaminase immobilized in the inner mitochondrial membrane, as studied in 0.03% Triton X-100-treated mitochondria, and solubilized, as in the supernatant of sonicated mitochondria, was hyperbolic with respect to glutamine concentration. Under optimal conditions (pH 8.6 and 100 mM phosphate) the Vmax and Km were 216 +/- 12 nmol/mg per min and 2.7 +/- 0.4 mM, respectively, for Triton X-100-treated mitochondria, and 121 +/- 8 nmol/mg per min and 15.9 +/- 1.8 mM for sonicated mitochondria. Under near physiological conditions (pH 7.8 and 20 mM phosphate), distinct differences in phosphate-dependent glutaminase kinetics were observed. The Vmax as 29.8 +/- 0.4 and 2.6 /- 0.3 nmol/mg per min and the apparent Km 1.55 +/- 0.06 and 24.5 +/- 6.6 mM for Triton X-100 and sonicated mitochondria, respectively. The sigmoidal activation by phosphate at pH 7.8 was significantly shifted to the left in Triton X-100-treated as compared to sonicated mitochondria. As opposed to the data obtained in sonicated mitochondria, the kinetics of phosphate-dependent glutaminase in 0.03% Triton X-100-treated mitochondria agreed quite well with those obtained in intact, rotenone-inhibited and metabolically active mitochondria. These results suggest that an attachment of phosphate-dependent glutaminase to the inner membrane of kidney mitochondria has a profound effect on its kinetics, particularly under near physiological conditions.
Collapse
|
41
|
Abstract
The metabolic pathways involved in renal ammonia production have been considered and potential sites of regulatory control have been delineated. New information that acute acidosis stimulates renal ammonia production and that chronic respiratory acidosis does not result in an adaptive increase in the renal capacity to produce ammonia has been emphasized. The effect of potassium on renal ammonia production and the physiologic and pathophysiologic implication of this relationship have been detailed. Finally, the mechanism of urinary ammonium excretion and the impact of altered ammoniagenesis on urinary acidification, and the interpretation of clinical acidification tests have been discussed.
Collapse
|
42
|
Abstract
A fluorimetric assay for the estimation of phosphate-activated glutaminase is presented. The liberated glutamate is separated from glutamine using a Dowex centrifugation technique allowing multiple samples to be rapidly analyzed. Glutamate is estimated fluorimetrically by reaction with o-phthaldialdehyde. Parameters for the assay were worker out based upon characterization of human frontal cortex glutaminase. High phosphate-activated glutaminase was found in cultured human skin fibroblasts and amniotic fluid cells and rat frontal cortex and striatum. Human caudate nucleus and frontal cortex activity was variable, but related in an exponential manner. Human and rat liver activity was markedly lower than brain activity.
Collapse
|
43
|
Gella FJ, Pascual MA. Assay of glutaminase activity by colorimetric determination of glutamate. Anal Biochem 1982; 127:322-5. [PMID: 7165104 DOI: 10.1016/0003-2697(82)90180-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Clark VM, Shapiro RA, Curthoys NP. Comparison of the hydrolysis and the covalent binding of 6-diazo-5-oxo-L-[6-14C]norleucine by rat renal phosphate-dependent glutaminase. Arch Biochem Biophys 1982; 213:232-9. [PMID: 6120680 DOI: 10.1016/0003-9861(82)90457-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Abstract
Phosphate-activated glutaminase (EC 3.5.1.2) in synaptosomal preparations is inhibited 40-60% by the sulphydryl group reagent N-ethylmaleimide (NEM), forming the basis for distinction between NEM-sensitive and NEM-insensitive glutaminases. The NEM effect cannot be explained by differential effects on distinct glutaminases because other glutaminases have not been detected, and the synaptosomal glutaminase activity can be fully accounted for by the activity of phosphate-activated glutaminase. By fractionation of mitochondria isolated from synaptosomal preparations, which are preincubated with and without NEM, both NEM-sensitive and NEM-insensitive glutaminases are found to be localized to the inner mitochondrial membrane. Variations in pH (7.0-7.6) and the phosphate concentration (5-10 mM) affect chiefly NEM-sensitive glutaminase, demonstrating that this glutaminase may be subject to regulation by compounds in the cytosol having restricted permeability to the inner mitochondrial membrane. Since p-hydroxymercuribenzoate, which is known to be impermeable to the inner mitochondrial membrane, inhibits glutaminase similarly to NEM, phosphate-activated glutaminase is assumed to be compartmentalized within the inner mitochondrial membrane. Thus, NEM-sensitive glutaminase is localized to the outer face and NEM-insensitive glutaminase to the inner region of this membrane and probably also to the matrix region.
Collapse
|
46
|
Chiu JF, Boeker EA. Cow brain glutaminase: partial purification and mechanism of action. Arch Biochem Biophys 1979; 196:493-500. [PMID: 39511 DOI: 10.1016/0003-9861(79)90301-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Clark VM, Curthoys NP. Cause of subunit heterogeneity in purified rat renal phosphate-dependent glutaminase. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. Evidence for interaction at the glutamine binding site. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)30149-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Kovacević Z, Breberina M, Pavlović M, Bajin K. Molecular form and kinetic properties of phosphate-dependent glutaminase in the mitochondria isolated from the kidneys of normal and acidotic rats. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 567:216-24. [PMID: 454625 DOI: 10.1016/0005-2744(79)90188-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Traut T, Jones M. Interconversion of different molecular weight forms of the orotate phosphoribosyltransferase.orotidine-5'-phosphate decarboxylase enzyme complex from mouse Ehrlich ascites cells. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)34180-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|