1
|
Wang J, Liu S, Xie Y, Xu C. Association analysis of gut microbiota-metabolites-neuroendocrine changes in male rats acute exposure to simulated altitude of 5500 m. Sci Rep 2023; 13:9225. [PMID: 37286697 DOI: 10.1038/s41598-023-35573-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Hyperactivation of hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-thyroid (HPT) axis were found in acute high altitude challenge, but the role of gut microbiota and metabolites is unknown. We utilized adult male Sprague-Dawley rats at a simulated altitude of 5500 m for 3 days in a hypobaric-hypoxic chamber. ELISA and metabolomic analyses of serum and 16S rRNA and metabolomic analyses of fecal samples were then performed. Compared with the normoxic group, serum corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), corticosterone (CORT), and thyroxine (tT4) were increased in the hypoxia group, whereas thyrotropin-releasing hormone (TRH) was decreased. Bacteroides, Lactobacillus, Parabacteroides, Butyricimonas, SMB53, Akkermansia, Phascolarctobacterium, and Aerococcus were enriched in hypoxia group, whereas [Prevotella], Prevotella, Kaistobacter, Salinibacterium, and Vogesella were enriched in normoxic group. Metabolomic analysis indicated that acute hypoxia significantly affected fecal and serum lipid metabolism. In addition, we found five fecal metabolites may mediate the cross-talk between TRH, tT4, and CORT with [Prevotella], Kaistobacter, Parabacteroides, and Aerococcus, and 6 serum metabolites may mediate the effect of TRH and tT4 on [Prevotella] and Kaistobacter by causal mediation analysis. In conclusion, this study provides new evidence that key metabolites mediate the cross-talk between gut microbiota with HPA and HPT axis under acute hypobaric hypoxia challenge.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yalei Xie
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
2
|
Jacobi J, García-Barros M, Rao S, Rotolo JA, Thompson C, Mizrachi A, Feldman R, Manova K, Bielawska A, Bielawska J, Fuks Z, Kolesnick R, Haimovitz-Friedman A. Targeting acid sphingomyelinase with anti-angiogenic chemotherapy. Cell Signal 2017; 29:52-61. [PMID: 27702691 PMCID: PMC5138150 DOI: 10.1016/j.cellsig.2016.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023]
Abstract
Despite great promise, combining anti-angiogenic and conventional anti-cancer drugs has produced limited therapeutic benefit in clinical trials, presumably because mechanisms of anti-angiogenic tissue response remain only partially understood. Here we define a new paradigm, in which anti-angiogenic drugs can be used to chemosensitize tumors by targeting the endothelial acid sphingomyelinase (ASMase) signal transduction pathway. We demonstrate that paclitaxel and etoposide, but not cisplatin, confer ASMase-mediated endothelial injury within minutes. This rapid reaction is required for human HCT-116 colon cancer xenograft complete response and growth delay. Whereas VEGF inhibits ASMase, anti-VEGFR2 antibodies de-repress ASMase, enhancing endothelial apoptosis and drug-induced tumor response in asmase+/+, but not in asmase-/-, hosts. Such chemosensitization occurs only if the anti-angiogenic drug is delivered 1-2h before chemotherapy, but at no other time prior to or post chemotherapy. Our studies suggest that precisely-timed administration of anti-angiogenic drugs in combination with ASMase-targeting anti-cancer drugs is likely to optimize anti-tumor effects of systemic chemotherapy. This strategy warrants evaluation in future clinical trials.
Collapse
Affiliation(s)
| | | | - Shyam Rao
- Department of Radiation Oncology, USA
| | | | | | | | | | - Katia Manova
- Molecular Cytology Core Facility, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacek Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zvi Fuks
- Department of Radiation Oncology, USA
| | | | | |
Collapse
|
3
|
Schledermann W, Wulfsen I, Schwarz JR, Bauer CK. Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol 2001; 532:143-63. [PMID: 11283231 PMCID: PMC2278513 DOI: 10.1111/j.1469-7793.2001.0143g.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mechanism of thyrotropin-releasing hormone (TRH)-induced ether-a-go-go-related gene (erg) K+ current modulation was investigated with the perforated-patch whole-cell technique in clonal somatomammotroph GH3/B6 cells. These cells express a small endogenous erg current known to be reduced by TRH. GH3/B6 cells were injected with cDNA coding for rat erg1, erg2, erg3 and HERG K+ channels. The corresponding erg currents were isolated with the help of the specific erg channel blockers E-4031 and dofetilide and their biophysical properties were determined. TRH (1 M) was able to significantly reduce the different erg currents. The voltage dependence of activation was shifted by 15 mV (erg1), 10 mV (erg2) and 6 mV (erg3) to more positive potentials without strongly affecting erg inactivation. TRH reduced the maximal available erg current amplitude by 12% (erg1), 13% (erg2) and 39% (erg3) and accelerated the time course of erg1 and erg2 channel deactivation, whereas erg3 deactivation kinetics were not significantly altered. The effects of TRH on HERG currents did not differ from those on its rat homologue erg1. In addition, coinjection of rat MiRP1 with HERG cDNA did not influence the TRH-induced modulation of HERG channels. Rat erg1 currents recorded in the cell-attached configuration were reduced by application of TRH to the extra-patch membrane in the majority of the experiments, confirming the involvement of a diffusible second messenger. Application of the phorbol ester phorbol 12-myristate 13-acetate (PMA; 1 M) shifted the voltage dependence of erg1 activation in the depolarizing direction, but it did not reduce the maximal current amplitude. The voltage shift could not be explained by a selective effect on protein kinase C (PKC) since the PKC inhibitor bisindolylmaleimide I did not block the effects of TRH and PMA on erg1. In addition, cholecystokinin, known to activate the phosphoinositol pathway similarly to TRH, did not significantly affect the erg1 current. Various agents interfering with different known TRH-elicited cellular responses were not able to completely mimic or inhibit the TRH effects on erg1. Tested substances included modulators of the cAMP-protein kinase A pathway, arachidonic acid, inhibitors of tyrosine kinase and mitogen-activated protein kinase, sodium nitroprusside and cytochalasin D. The results demonstrate that all three members of the erg channel subfamily are modulated by TRH in GH3/B6 cells. In agreement with previous studies on the TRH-induced modulation of the endogenous erg current in prolactin-secreting anterior pituitary cells, the TRH effects on overexpressed erg1 channels are not mediated by any of the tested signalling pathways.
Collapse
Affiliation(s)
- W Schledermann
- Abteilung für Angewandte Physiologie, Institut für Physiologie, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
4
|
Chmura SJ, Nodzenski E, Crane MA, Virudachalam S, Hallahan DE, Weichselbaum RR, Quintans J. Cross-talk between ceramide and PKC activity in the control of apoptosis in WEHI-231. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 406:39-55. [PMID: 8910670 DOI: 10.1007/978-1-4899-0274-0_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
WEHI-231, a murine B-cell lymphoma, readily undergoes programmed cell death following surface immunoglobulin (Ig) cross-linking [1]. Ceramide has been shown to induce apoptosis in WEHI-231 following its exposure to anti-lg antibodies, dexamethasone, and irradiation [2]. Recently, Haimovitz-Friedman et al. have demonstrated in endothelial cells that PMA not only prevented ceramide mediated apoptosis, but inhibited the generation of ceramide following irradiation [3]. In this paper we use highly specific PKC inhibitors to explore the connection between PKC activity, ceramide signaling and apoptosis. Both chelerythrine chloride and calphostin C triggered rapid apoptosis in WEHI-231 and acted in synergy with exogenous ceramide to induce apoptosis. Detailed studies of chelerythrine's mechanism of action revealed that 30 minutes following addition of 10 microM chelerythrine, sphingomyelin and phosphatidylcholine (PC) mass decreased confirming our previous findings of neutral, but not acidic, sphingomyelinase activation following treatment with PKC inhibitors [4]. The novel observation that inhibition of PKC isoforms present in WEHI-231 leads to a rapid rise in cellular ceramide as a results of sphingomyelin hydrolysis further suggests an antagonistic relationship between PKC activity and ceramide in the signaling events preceding apoptosis.
Collapse
Affiliation(s)
- S J Chmura
- Department of Pathology, University of Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Bauer CK, Davison I, Kubasov I, Schwarz JR, Mason WT. Different G proteins are involved in the biphasic response of clonal rat pituitary cells to thyrotropin-releasing hormone. Pflugers Arch 1994; 428:17-25. [PMID: 7971157 DOI: 10.1007/bf00374747] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In rat anterior pituitary tumour cells (GH3/B6) thyrotropin-releasing hormone (TRH) elicits a biphasic response. First, a release of intracellularly stored Ca2+ induces a hyperpolarization of the cell. Second, a depolarization thought to be induced by a reduction of the inward-rectifying K+ current (KIR) causes an increase in action potential frequency and a plateau-like increase in [Ca2+]i. It has been proposed that the two phases are induced by the actions of inositol 1,4,5-trisphosphate (InsP3) and protein kinase C (PKC), respectively, but we demonstrate here that PKC is not responsible for the second phase increase in [Ca2+]i and suggest that the pathways diverge at the level of receptor and G protein coupling. Both phases of the TRH response were insensitive to pertussis toxin, but cholera toxin (CTX) selectively affected the second phase. After CTX pretreatment cells had a high spontaneous spiking frequency and smaller KIR amplitude. In these cells TRH failed to increase the action potential frequency after the first phase hyperpolarization, elicited only a transient peak increase in [Ca2+]i with no plateau phase and could only slightly reduce KIR. These effects of CTX are not mediated by its ability to increase cAMP via activation of GS, as increased cAMP levels neither inhibit KIR nor prevent its reduction by TRH. In addition, inhibition of protein kinase A activation did not block the second phase increase in [Ca2+]i induced by TRH, suggesting that the CTX-sensitive G protein mediating the second phase of the TRH response is not GS.
Collapse
Affiliation(s)
- C K Bauer
- Physiologisches Institut, UKE, Hamburg, Germany
| | | | | | | | | |
Collapse
|
6
|
Hatch G, Vance D. Stimulation of sphingomyelin biosynthesis by brefeldin A and sphingomyelin breakdown by okadaic acid treatment of rat hepatocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42297-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Mahdiyoun S, Deshmukh GD, Abe A, Radin NS, Shayman JA. Decreased formation of inositol trisphosphate in Madin-Darby canine kidney cells under conditions of beta-glucosidase inhibition. Arch Biochem Biophys 1992; 292:506-11. [PMID: 1731615 DOI: 10.1016/0003-9861(92)90023-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent work has demonstrated the enhancement of hormone-stimulated inositol trisphosphate formation in renal epithelial cells under conditions of glucosylceramide depletion. The role of glucosylceramide metabolism was explored further by exposing Madin-Darby canine kidney (MDCK) cells to the beta-glucosidase inhibitor conduritol B epoxide, which produced time-dependent and concentration-dependent increases in glucosylceramide levels and decreased bradykinin-stimulated inositol trisphosphate formation from isolated MDCK cell membranes. These data provide further support for an association between glucosylceramide levels and hormone-stimulated inositol trisphosphate formation.
Collapse
Affiliation(s)
- S Mahdiyoun
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109-0676
| | | | | | | | | |
Collapse
|
8
|
Utal A, Jamil H, Vance D. Diacylglycerol signals the translocation of CTP:choline-phosphate cytidylyltransferase in HeLa cells treated with 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54396-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
George TP, Cook HW, Byers DM, Palmer FB, Spence MW. Inhibition of phosphatidylcholine and phosphatidylethanolamine biosynthesis by cytochalasin B in cultured glioma cells: potential regulation of biosynthesis by Ca(2+)-dependent mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1084:185-93. [PMID: 1854804 DOI: 10.1016/0005-2760(91)90219-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The major route of phosphatidylcholine (PtdCho) biosynthesis in mammalian cells is the sequence: choline (Cho)----phosphocholine (PCho)----cytidinediphosphate choline (CDP-Cho)----PtdCho. Recently, we have found that intermediates of this pathway are not freely diffusible in cultured rat glioma (C6) cells but are channeled towards PtdCho biosynthesis (George et al. (1989). Biochim. Biophys. Acta. 1004, 283-291). Channeling of intermediates in other mammalian systems is thought to be mediated through adsorption of enzymes to membranes and cytoskeletal elements to form multienzyme complexes. In this study, agents which perturb the structure and function of cytoskeletal elements were tested for effects on phospholipid metabolism in glioma cells. The filament-disrupting agent cytochalasin B (CB), but not other cytochalasins or the microtubule depolymerizer colchicine inhibited PtdCho and phosphatidylethanolamine (PtdEtn) biosynthesis as judged by dose-dependent reduction of labeling from [3H]Cho and [14C]ethanolamine (Etn). 32Pi pulse-labeling indicated that CB selectively decreased PtdCho and PtdEtn biosynthesis without affecting synthesis of other phospholipids. Synthesis of water-soluble intermediates of PtdCho metabolism was unaffected but the conversion of phosphoethanolamine to CDP-ethanolamine was reduced by CB. Effects of CB on phospholipid biosynthesis were not due to inhibition of glucose uptake as shown by experiments with 2-deoxyglucose, glucose-starved cells and other cytochalasins. Experiments with Ca(2+)-EGTA buffers and digitonin-permeabilized cells, and the Ca(2+)-channel blocker verapamil suggest that effects of CB on PtdCho and PtdEtn biosynthesis are due to alteration of intracellular Ca2+. Taken together, these results suggest that CB acts at sites distinct from glucose transport and cellular microfilaments to specifically inhibit PtdCho and PtdEtn biosynthesis by mechanisms dependent on intracellular Ca2+.
Collapse
Affiliation(s)
- T P George
- Department of Pediatrics, Dalhousie University, Halifax, Canada
| | | | | | | | | |
Collapse
|
10
|
Sphingomyelin synthesis is involved in adherence during macrophage differentiation of HL-60 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98988-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Koval M, Pagano RE. Intracellular transport and metabolism of sphingomyelin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1082:113-25. [PMID: 2007175 DOI: 10.1016/0005-2760(91)90184-j] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SM is unique among the phospholipids because it is restricted to the lumenal aspect of organelles involved in the secretory and endocytic pathways. Given the intracellular sites of SM biosynthesis and hydrolysis, and the interconnections between these sites by vesicle-mediated transport pathways, the basic mechanism for maintaining the intracellular distribution of SM seems clear. It remains to be determined how SM metabolism and transport are coordinated to maintain the SM content of each organelle. For example, the size of the SM pool at the cell surface is maintained by regulation of at least five processes: transport of newly synthesized SM from the Golgi apparatus, plasma membrane lipid recycling, local SM synthesis, local SM hydrolysis, and SM transport from the cell surface to lysosomes. Although SM cannot undergo spontaneous transbilayer movement, SM metabolism generates both DAG, Cer and (indirectly) SPhB which can rapidly 'flip-flop', and thus gain access to the cytoplasmic leaflet of a membrane. It is of particular interest that these lipid species may be involved in the regulation of PK-C, suggesting that SM metabolism could play a role in signal transduction. However, physiological effects of endogenous Cer and SPhB remain elusive, even though the pharmacological effect of SPhB on PK-C is well established. Aside from the direct generation of second messengers, stimulation of SM hydrolysis has also been shown to induce cholesterol movement from the cell surface to intracellular membranes. It is not known whether this reflects the possibility that cholesterol may act as a second messenger. Alternatively, this phenomenon suggests that SM metabolism may cause rapid changes in the physical properties of the cell surface. For example, erythrocytes extensively treated with exogenously-added SMase will undergo endovesiculation It is tempting to speculate that any involvement of SM in the regulation of intracellular processes requires a combination of both the generation of biochemical second messengers and the alteration of membrane biophysical properties that can result from SM metabolism.
Collapse
Affiliation(s)
- M Koval
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210-3301
| | | |
Collapse
|
12
|
Abstract
This comprehensive review was necessitated by recent observations suggesting that sphingomyelin and derivatives may serve second messenger functions. It has attempted to remain true to the theme of cellular signalling. Hence, it has focussed on the lipids involved primarily with respect to their metabolism and properties in mammalian systems. The enzymology involved has been emphasized. An attempt was made to define directions in which signals may be flowing. However, the evidence presented to date is insufficient to conclusively designate the mechanisms of stimulated lipid metabolism. Hence, the proposed pathways must be viewed as preliminary. Further, the biologic functions of these lipids is for the most part uncertain. Thus, it is difficult to presently integrate this sphingomyelin pathway into the greater realm of cell biology. Nevertheless, the present evidence appears to suggest that a sphingomyelin pathway is likely to possess important bioregulatory functions. Hopefully, interest in this novel pathway will grow and allow a more complete understanding of the roles of these sphingolipids in physiology and pathology.
Collapse
Affiliation(s)
- R N Kolesnick
- Program of Molecular Pharmacology and Therapeutics, Memorial Sloan-Kettering Cancer Center, Cornell University Medical Center, New York, NY 10021
| |
Collapse
|
13
|
Holleran WM. Lipid modulators of epidermal proliferation and differentiation. ADVANCES IN LIPID RESEARCH 1991; 24:119-39. [PMID: 1763711 DOI: 10.1016/b978-0-12-024924-4.50009-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The importance of lipids within the skin as components of the permeability barrier has been appreciated for quite some time. However, the more recent work reviewed here suggests numerous alternative bioactive functions for lipid molecules within the skin and other tissues. The precise roles of lipids in epidermal proliferation and differentiation have only begun to be studied and are far from being defined.
Collapse
Affiliation(s)
- W M Holleran
- Department of Dermatology, University of California School of Medicine, San Francisco 94143
| |
Collapse
|
14
|
Khan WA, Dobrowsky R, el Touny S, Hannun YA. Protein kinase C and platelet inhibition by D-erythro-sphingosine: comparison with N,N-dimethylsphingosine and commercial preparation. Biochem Biophys Res Commun 1990; 172:683-91. [PMID: 2241961 DOI: 10.1016/0006-291x(90)90728-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sphingosine has been shown to be a potent and specific inhibitor of protein kinase C in vitro and in cell systems including human platelets. Questions have been raised as to the validity of commercial sphingosine as a protein kinase C inhibitor and whether sphingosine or N,N-dimethylsphingosine is the active species. In the present study, we compared the effects of synthetic D-erythro-sphingosine, N,N-dimethylsphingosine and commercial sphingosine on purified protein kinase C in vitro and washed human platelets. These three compounds were found to be of high purity and well-defined structure based on [1H]NMR, FAB-mass Spectrometry, and TLC analysis. Both synthetic D-erythro-sphingosine and commercial sphingosine inhibited protein kinase C in vitro using vesicle as well as mixed micellar assays. N,N-dimethylsphingosine also significantly inhibited purified protein kinase C in vitro. Both preparations of sphingosine inhibited phosphorylation for 40 kD protein, a known substrate of protein kinase C in platelets. Similarly both sphingosine preparations inhibited aggregation and secretion of human platelets induced by 8 nM gamma-thrombin. These results indicate that sphingosine from commercial source, synthetic sphingosine and N,N-dimethylsphingosine are equipotent in inhibiting protein kinase C. These studies also validate the utility of sphingosine as a phamarcologic inhibitor of protein kinase C in vitro and in cell systems.
Collapse
Affiliation(s)
- W A Khan
- Department of Medicine, Duke University Medical Center, Durham, N. C. 27710
| | | | | | | |
Collapse
|
15
|
Dressler K, Kolesnick R. Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77204-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|