1
|
Lee IM, Yang FL, Chen TL, Liao KS, Ren CT, Lin NT, Chang YP, Wu CY, Wu SH. Pseudaminic Acid on Exopolysaccharide of Acinetobacter baumannii Plays a Critical Role in Phage-Assisted Preparation of Glycoconjugate Vaccine with High Antigenicity. J Am Chem Soc 2018; 140:8639-8643. [PMID: 29965749 DOI: 10.1021/jacs.8b04078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pseudaminic acid (Pse) has been known for participating in crucial bacterial virulence and thus is an attractive target in the development of glycoconjugate vaccine. Particularly, this therapeutic alternative was suggested to be a potential solution against antibiotic resistant Acinetobacter baumannii that poses a serious global health threat. Also, Pse was found to be involved in the exopolysaccharide (EPS) of mild antibiotic resistant A. baumannii strain 54149 ( Ab-54149) of which specific glycosyl linkage can be depolymerized by phage ΦAB6 tailspike protein (ΦAB6TSP). In this study, we found that the antibodies induced by Ab-54149 EPS was capable of recognizing a range of EPS of other clinical A. baumannii strains, and deemed as a great potential material for vaccination. To efficiently acquire homogeneous EPS-derived oligosaccharide with significant immunogenic activity for the production of glycoconjugate, we used the ΦAB6TSP for the fragmentation of Ab-54149 EPS instead of chemical methods. Moreover, insight into the ligand binding characterization of ΦAB6TSP suggested the branched Pse on the Ab-54149 EPS served as a recognition site of ΦAB6TSP. The serum boosted by ΦAB6TSP-digested product and carrier protein CRM197 conjugate complex displayed specific sensitivity toward Ab-54149 EPS with bacterial killing activity. Strikingly, Pse is an ideal epitope with strong antigenicity, profiting the application of the probe for pathogen detection and glyco-based vaccine.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Te-Li Chen
- Graduate Institute of Life Science, National Defense Medical Center , Taipei 112 , Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Nien-Tsung Lin
- Department of Microbiology , Tzu Chi University , Hualien 970 , Taiwan
| | - Yu-Pei Chang
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica , Taipei 115 , Taiwan.,Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
2
|
Lee IM, Tu IF, Yang FL, Ko TP, Liao JH, Lin NT, Wu CY, Ren CT, Wang AHJ, Chang CM, Huang KF, Wu SH. Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein. Sci Rep 2017; 7:42711. [PMID: 28209973 PMCID: PMC5314372 DOI: 10.1038/srep42711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
With an increase in antibiotic-resistant strains, the nosocomial pathogen Acinetobacter baumannii has become a serious threat to global health. Glycoconjugate vaccines containing fragments of bacterial exopolysaccharide (EPS) are an emerging therapeutic to combat bacterial infection. Herein, we characterize the bacteriophage ΦAB6 tailspike protein (TSP), which specifically hydrolyzed the EPS of A. baumannii strain 54149 (Ab-54149). Ab-54149 EPS exhibited the same chemical structure as two antibiotic-resistant A. baumannii strains. The ΦAB6 TSP-digested products comprised oligosaccharides of two repeat units, typically with stoichiometric pseudaminic acid (Pse). The 1.48-1.89-Å resolution crystal structures of an N-terminally-truncated ΦAB6 TSP and its complexes with the semi-hydrolyzed products revealed a trimeric β-helix architecture that bears intersubunit carbohydrate-binding grooves, with some features unusual to the TSP family. The structures suggest that Pse in the substrate is an important recognition site for ΦAB6 TSP. A region in the carbohydrate-binding groove is identified as the determinant of product specificity. The structures also elucidated a retaining mechanism, for which the catalytic residues were verified by site-directed mutagenesis. Our findings provide a structural basis for engineering the enzyme to produce desired oligosaccharides, which is useful for the development of glycoconjugate vaccines against A. baumannii infection.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Core Facilities for Protein Structural Analysis (CFPSA), Academia Sinica, Taipei 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Nien-Tsung Lin
- Master program in Microbiology and Immunology, Tzu Chi University, Hualien 970, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Core Facilities for Protein Structural Analysis (CFPSA), Academia Sinica, Taipei 115, Taiwan
| | - Ching-Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Core Facilities for Protein Structural Analysis (CFPSA), Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
3
|
Regulation, evolution and consequences of cotranslational protein complex assembly. Curr Opin Struct Biol 2016; 42:90-97. [PMID: 27969102 DOI: 10.1016/j.sbi.2016.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Most proteins assemble into complexes, which are involved in almost all cellular processes. Thus it is crucial for cell viability that mechanisms for correct assembly exist. The timing of assembly plays a key role in determining the fate of the protein: if the protein is allowed to diffuse into the crowded cellular milieu, it runs the risk of forming non-specific interactions, potentially leading to aggregation or other deleterious outcomes. It is therefore expected that strong regulatory mechanisms should exist to ensure efficient assembly. In this review we discuss the cotranslational assembly of protein complexes and discuss how it occurs, ways in which it is regulated, potential disadvantages of cotranslational interactions between proteins and the implications for the inheritance of dominant-negative genetic disorders.
Collapse
|
4
|
Miletic S, Simpson DJ, Szymanski CM, Deyholos MK, Menassa R. A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella. FRONTIERS IN PLANT SCIENCE 2015; 6:1221. [PMID: 26779243 PMCID: PMC4705272 DOI: 10.3389/fpls.2015.01221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 05/07/2023]
Abstract
The receptor binding domain of the tailspike protein Gp9 from the P22 bacteriophage was recently shown to reduce Salmonella colonization in the chicken gut. In this study, we transiently expressed the receptor binding domain of the Gp9 tailspike protein in Nicotiana benthamiana, and targeted it to the endoplasmic reticulum (ER) or to the chloroplasts. Gp9 was also fused to either an elastin-like polypeptide (ELP) or hydrophobin I tag, which were previously described to improve accumulation levels of recombinant proteins. The highest levels of recombinant protein accumulation occurred when unfused Gp9 was targeted to the ER. Lower levels of chloroplast-targeted Gp9 were also detected. ELP-fused Gp9 was purified and demonstrated to bind to Salmonella enterica serovar Typhimurium in vitro. Upon oral administration of lyophilized leaves expressing Gp9-ELP to newly hatched chickens, we found that this tailspike protein has the potential to be used as a therapeutic to control Salmonella contamination in chickens.
Collapse
Affiliation(s)
- Sean Miletic
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
| | - David J. Simpson
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
| | - Christine M. Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
| | | | - Rima Menassa
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Biology, University of Western Ontario, LondonON, Canada
- *Correspondence: Rima Menassa,
| |
Collapse
|
5
|
Takata T, Haase-Pettingell C, King J. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly. BACTERIOPHAGE 2012; 2:36-49. [PMID: 22666655 PMCID: PMC3357383 DOI: 10.4161/bact.19775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elongated trimeric adhesins are a distinct class of proteins employed by phages and viruses to recognize and bind to their host cells, and by bacteria to bind to their target cells and tissues. The tailspikes of E. coli phage K1F and Bacillus phage Ø29 exhibit auto-chaperone activity in their trimeric C-terminal domains. The P22 tailspike is structurally homologous to those adhesins. Though there are no disulfide bonds or reactive cysteines in the native P22 tailspikes, a set of C-terminal cysteines are very reactive in partially folded intermediates, implying an unusual local conformation in the domain. This is likely to be involved in the auto-chaperone function. We examined the unusual reactivity of C-terminal tailspike cysteines during folding and assembly as a potential reporter of auto-chaperone function. Reaction with IAA blocked productive refolding in vitro, but not off-pathway aggregation. Two-dimensional PAGE revealed that the predominant intermediate exhibiting reactive cysteine side chains was a partially folded monomer. Treatment with reducing reagent promoted native trimer formation from these species, consistent with transient disulfide bonds in the auto-chaperone domain. Limited enzymatic digestion and mass spectrometry of folding and assembly intermediates indicated that the C-terminal domain was compact in the protrimer species. These results indicate that the C-terminal domain of the P22 tailspike folds itself and associates prior to formation of the protrimer intermediate, and not after, as previously proposed. The C-terminal cysteines and triple β-helix domains apparently provide the staging for the correct auto-chaperone domain formation, needed for alignment of P22 tailspike native trimer.
Collapse
Affiliation(s)
- Takumi Takata
- Department of Biology; Massachusetts Institute of Technology; Cambridge, MA USA
| | | | | |
Collapse
|
6
|
Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem 2010; 285:36768-75. [PMID: 20817910 DOI: 10.1074/jbc.m110.169003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tailspikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins.
Collapse
Affiliation(s)
- Dorothee Andres
- Department of Biochemistry and Biology, Laboratory of Physical Biochemistry, University of Potsdam, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Ellis JJ, Huard FPE, Deane CM, Srivastava S, Wood GR. Directionality in protein fold prediction. BMC Bioinformatics 2010; 11:172. [PMID: 20374616 PMCID: PMC2871273 DOI: 10.1186/1471-2105-11-172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ever since the ground-breaking work of Anfinsen et al. in which a denatured protein was found to refold to its native state, it has been frequently stated by the protein fold prediction community that all the information required for protein folding lies in the amino acid sequence. Recent in vitro experiments and in silico computational studies, however, have shown that cotranslation may affect the folding pathway of some proteins, especially those of ancient folds. In this paper aspects of cotranslational folding have been incorporated into a protein structure prediction algorithm by adapting the Rosetta program to fold proteins as the nascent chain elongates. This makes it possible to conduct a pairwise comparison of folding accuracy, by comparing folds created sequentially from each end of the protein. RESULTS A single main result emerged: in 94% of proteins analyzed, following the sense of translation, from N-terminus to C-terminus, produced better predictions than following the reverse sense of translation, from the C-terminus to N-terminus. Two secondary results emerged. First, this superiority of N-terminus to C-terminus folding was more marked for proteins showing stronger evidence of cotranslation and second, an algorithm following the sense of translation produced predictions comparable to, and occasionally better than, Rosetta. CONCLUSIONS There is a directionality effect in protein fold prediction. At present, prediction methods appear to be too noisy to take advantage of this effect; as techniques refine, it may be possible to draw benefit from a sequential approach to protein fold prediction.
Collapse
Affiliation(s)
- Jonathan J Ellis
- Department of Statistics, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | |
Collapse
|
8
|
Spatara M, Roberts C, Robinson A. Kinetic folding studies of the P22 tailspike beta-helix domain reveal multiple unfolded states. Biophys Chem 2009; 141:214-21. [DOI: 10.1016/j.bpc.2009.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/03/2009] [Accepted: 02/05/2009] [Indexed: 10/21/2022]
|
9
|
The C-terminus of the P22 tailspike protein acts as an independent oligomerization domain for monomeric proteins. Biochem J 2009; 419:595-602. [PMID: 19196242 DOI: 10.1042/bj20081449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TSP (P22 tailspike protein) is a well-established model system for studying the folding and assembly of oligomeric proteins, and previous studies have documented both in vivo and in vitro folding intermediates using this protein. Especially important is the C-terminus of TSP, which plays a critical role in the assembly and maturation of the protrimer intermediate to its final trimeric form. In the present study, we show that by grafting the C-terminus of TSP on to the monomeric MBP (maltose-binding protein), the resulting chimaera (MBP-537) is a trimeric protein. Moreover, Western blot studies (using an anti-TSP antibody) indicate that the TSP C-terminus in the MBP-537 chimaera has the same conformation as the native TSP. The oligomerization of the MBP-537 chimaera appears to involve hydrophobic interactions and a refolding sequence, both of which are analogous to the native TSP. These results underscore the importance of the TSP C-terminus in the assembly of the mature trimer and demonstrate its potential utility as a model to study the folding and assembly of the TSP C-terminus in isolation.
Collapse
|
10
|
Reich L, Becker M, Seckler R, Weikl TR. Invivo folding efficiencies for mutants of the P22 tailspike beta-helix protein correlate with predicted stability changes. Biophys Chem 2009; 141:186-92. [PMID: 19254821 DOI: 10.1016/j.bpc.2009.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 01/04/2023]
Abstract
Parallel beta-helices are among the simplest repetitive structural elements in proteins. The folding behavior of beta-helix proteins has been studied intensively, also to gain insight on the formation of amyloid fibrils, which share the parallel beta-helix as a central structural motif. An important system for investigating beta-helix folding is the tailspike protein from the Salmonella bacteriophage P22. The central domain of this protein is a right-handed parallel beta-helix with 13 windings. Extensive mutational analyses of the P22 tailspike protein have revealed two main phenotypes: temperature-sensitive-folding (tsf) mutations that reduce the folding efficiency at elevated temperatures, and global suppressor (su) mutations that increase the tailspike folding efficiency. A central question is whether these phenotypes can be understood from changes in the protein stability induced by the mutations. Experimental determination of the protein stability is complicated by the nearly irreversible trimerization of the folded tailspike protein. Here, we present calculations of stability changes with the program FoldX, focusing on a recently published extensive data set of 145 singe-residue alanine mutants. We find that the calculated stability changes are correlated with the experimentally measured invivo folding efficiencies. In addition, we determine the free-energy landscape of the P22 tailspike protein in a nucleation-propagation model to explore the folding mechanism of this protein, and obtain a processive folding route on which the protein nucleates in the N-terminal region of the helix.
Collapse
Affiliation(s)
- Lothar Reich
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Science Park Golm, 14424 Potsdam, Germany
| | | | | | | |
Collapse
|
11
|
Mishra R, Bhat R, Seckler R. Chemical chaperone-mediated protein folding: stabilization of P22 tailspike folding intermediates by glycerol. Biol Chem 2007; 388:797-804. [PMID: 17655498 DOI: 10.1515/bc.2007.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolyol co-solvents such as glycerol increase the thermal stability of proteins. This has been explained by preferential hydration favoring the more compact native over the denatured state. Although polyols are also expected to favor aggregation by the same mechanism, they have been found to increase the folding yields of some large, aggregation-prone proteins. We have used the homotrimeric phage P22 tailspike protein to investigate the origin of this effect. The folding of this protein is temperature-sensitive and limited by the stability of monomeric folding intermediates. At non-permissive temperature (≥35°C), tailspike refolding yields were increased significantly in the presence of 1–4 mglycerol. At low temperature, tailspike refolding is prevented when folding intermediates are destabilized by the addition of urea. Glycerol could offset the urea effect, suggesting that the polyol acts by stabilizing crucial folding intermediates and not by increasing solvent viscosity. The stabilization effect of glycerol on tailspike folding intermediates was confirmed in experiments using a temperature-sensitive folding mutant protein, by fluorescence measurements of subunit folding kinetics, and by temperature up-shift experiments. Our results suggest that the chemical chaperone effect of polyols observed in the folding of large proteins is due to preferential hydration favoring structure formation in folding intermediates.
Collapse
Affiliation(s)
- Rajesh Mishra
- Department of Biochemistry and Biology, Potsdam University, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
12
|
Perham M, Wittung-Stafshede P. Folding and assembly of co-chaperonin heptamer probed by forster resonance energy transfer. Arch Biochem Biophys 2007; 464:306-13. [PMID: 17521602 DOI: 10.1016/j.abb.2007.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
The ring-shaped heptameric co-chaperonin protein 10 (cpn10) is one of few oligomeric beta-sheet proteins that unfold and disassemble reversibly in vitro. Here, we labeled human mitochondrial cpn10 with donor and acceptor dyes to obtain FRET signals. Cpn10 mixed in a 1:1:5 ratio of donor:acceptor:unlabeled monomers form heptamers that are active in an in vitro functional assay. Monomer-monomer affinity, as well as thermal and chemical stability, of the labeled cpn10 is similar to the unlabeled protein, demonstrating that the labels do not perturb the system. Using changes in FRET, we then probed for the first time cpn10 heptamer-monomer assembly/disassembly kinetics. Heptamer dissociation is very slow (1/k(diss) approximately 3h; 20 degrees C, pH 7) corresponding to an activation energy of approximately 50kJ/mol. Ring-ring mixing experiments reveal that cpn10 heptamer dissociation is rate limiting; subsequent associations events are faster. Kinetic inertness explains how cpn10 cycles on and off cpn60 as an intact heptamer in vivo.
Collapse
Affiliation(s)
- Michael Perham
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77251, United States
| | | |
Collapse
|
13
|
Luke K, Perham M, Wittung-Stafshede P. Kinetic Folding and Assembly Mechanisms Differ for Two Homologous Heptamers. J Mol Biol 2006; 363:729-42. [PMID: 16979655 DOI: 10.1016/j.jmb.2006.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/15/2006] [Accepted: 08/20/2006] [Indexed: 11/22/2022]
Abstract
Here we investigate the time-resolved folding and assembly mechanism of the heptameric co-chaperonin protein 10 (cpn10) in vitro. The structure of cpn10 is conserved throughout nature: seven beta-barrel subunits are non-covalently assembled through beta-strand pairings in an overall doughnut-like shape. Kinetic folding/assembly experiments of chemically denatured cpn10 from Homo sapiens (hmcpn10) and Aquifex aeolicus (Aacpn10) were monitored by far-UV circular dichroism and fluorescence. We find the processes to be complex, involving several kinetic steps, and to differ between the mesophilic and hyper-thermophilic proteins. The hmcpn10 molecules partition into two parallel pathways, one involving polypeptide folding before protein-protein assembly and another in which inter-protein interactions take place prior to folding. In contrast, the Aacpn10 molecules follow a single sequential path that includes initial monomer misfolding, relaxation to productive intermediates and, subsequently, final folding and heptamer assembly. An A. aeolicus variant lacking the unique C-terminal extension of Aacpn10 displays the same kinetic mechanism as Aacpn10, signifying that the tail is not responsible for the rapid misfolding step. This study demonstrates that molecular details can overrule similarity of native-state topology in defining apparent protein-biophysical properties.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | | | |
Collapse
|
14
|
Weigele PR, Haase-Pettingell C, Campbell PG, Gossard DC, King J. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin. J Mol Biol 2005; 354:1103-17. [PMID: 16289113 DOI: 10.1016/j.jmb.2005.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/04/2005] [Accepted: 10/05/2005] [Indexed: 11/18/2022]
Abstract
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.
Collapse
Affiliation(s)
- Peter R Weigele
- Department of Biology Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Gage MJ, Zak JL, Robinson AS. Three amino acids that are critical to formation and stability of the P22 tailspike trimer. Protein Sci 2005; 14:2333-43. [PMID: 16081648 PMCID: PMC1995594 DOI: 10.1110/ps.051394605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.
Collapse
Affiliation(s)
- Matthew J Gage
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
16
|
Jain M, Evans MS, King J, Clark PL. Monoclonal Antibody Epitope Mapping Describes Tailspike β-Helix Folding and Aggregation Intermediates. J Biol Chem 2005; 280:23032-40. [PMID: 15833745 DOI: 10.1074/jbc.m501963200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is growing interest in understanding how the cellular environment affects protein folding mechanisms, but most spectroscopic methods for monitoring folding in vitro are unsuitable for experiments in vivo or in other complex mixtures. Monoclonal antibody binding represents a sensitive structural probe that can be detected against the background of other cellular components. A panel of antibodies has been raised against Salmonella typhimurium phage P22 tailspike. In this report, nine alpha-tailspike antibody binding epitopes were characterized by measuring the binding of these monoclonal antibodies to tailspike variants bearing surface point mutations. These results reveal that the antibody epitopes are distributed throughout the tailspike structure, with several clustered in the central parallel beta-helix domain. The ability of each antibody to distinguish between tailspike conformational states was assessed by measuring antibody binding to tailspike in vitro refolding intermediates. Interestingly, the binding of all but one of the nine antibodies is sensitive to the tailspike conformational state. Whereas several antibodies bind preferentially to the tailspike native structure, the structural features that comprise the binding epitopes form with different rates. In addition, two antibodies preferentially recognize early refolding intermediates. Combined with the epitope mapping, these results indicate portions of the beta-helix form early during refolding, perhaps serving as a scaffold for the formation of additional structure. Finally, three of the antibodies show enhanced binding to non-native, potentially aggregation-prone tailspike conformations. The refolding results indicate these non-native conformations form early during the refolding reaction, long before the appearance of native tailspike.
Collapse
Affiliation(s)
- Madhulika Jain
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556 , USA
| | | | | | | |
Collapse
|
17
|
Lefebvre BG, Gage MJ, Robinson AS. Maximizing recovery of native protein from aggregates by optimizing pressure treatment. Biotechnol Prog 2004; 20:623-9. [PMID: 15059011 DOI: 10.1021/bp034221v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recovering native protein from aggregates is a common obstacle in the production of recombinant proteins. Recent reports have shown that hydrostatic pressure is an attractive alternative to traditional denature-and-dilute techniques, both in terms of yield and process simplicity. To determine the effect of process variables, we subjected tailspike aggregates to a variety of pressure-treatment conditions. Maximum native tailspike yields were obtained with only short pressure incubations (<5 min) at 240 MPa. However, some tailspike aggregates were resistant to pressure, despite multiple cycles of pressure. Extending the postpressure incubation time to 4 days improved the yield of native protein from aggregates from 19.4 +/- 0.9 to 47.4 +/- 19.6 microg/mL (approximately 78% yield of native trimer from nonaggregate material). The nearly exclusive conversion of monomer to trimer over the time scale of days, when combined with previous kinetic data, allows for the identification of three postpressure kinetic phases: a rapid phase consisting of structured dimer conversion to trimer (30 min), an intermediate phase consisting of monomer conversion to aggregate (100 min), and a slow phase consisting of conversion of monomer to trimer (days). Optimizing the production of structured dimer can yield the highest level of folded protein. Typical refolding additives, such as glycerol, or low-temperature incubation did not improve yields.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
18
|
Danek BL, Robinson AS. Nonnative interactions between cysteines direct productive assembly of P22 tailspike protein. Biophys J 2004; 85:3237-47. [PMID: 14581223 PMCID: PMC1303599 DOI: 10.1016/s0006-3495(03)74741-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonnative disulfide bond formation can play a critical role in the assembly of disulfide bonded proteins. During the folding and assembly of the P22 tailspike protein, nonnative disulfide bonds form both in vivo and in vitro. However, the mechanism and identity of cysteine disulfide pairs remains elusive, particularly for P22 tailspike, which contains no disulfide bonds in its native, functional form. Understanding the interactions between cysteine residues is important for developing a mechanistic model for the role of nonnative cysteines in P22 tailspike assembly. Prior in vivo studies have suggested that cysteines 496, 613, and 635 are the most likely site for sulfhydryl reactivity. Here we demonstrate that these three cysteines are critical for efficient assembly of tailspike trimers, and that interactions between cysteine pairs lead to productive assembly of native tailspike.
Collapse
Affiliation(s)
- Brenda L Danek
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
19
|
Lefebvre BG, Comolli NK, Gage MJ, Robinson AS. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike. Protein Sci 2004; 13:1538-46. [PMID: 15133163 PMCID: PMC2279998 DOI: 10.1110/ps.03579304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
20
|
Gage MJ, Robinson AS. C-terminal hydrophobic interactions play a critical role in oligomeric assembly of the P22 tailspike trimer. Protein Sci 2003; 12:2732-47. [PMID: 14627734 PMCID: PMC2366982 DOI: 10.1110/ps.03150303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Revised: 09/08/2003] [Accepted: 09/08/2003] [Indexed: 10/26/2022]
Abstract
The tailspike protein from the bacteriophage P22 is a well characterized model system for folding and assembly of multimeric proteins. Folding intermediates from both the in vivo and in vitro pathways have been identified, and both the initial folding steps and the protrimer-to-trimer transition have been well studied. In contrast, there has been little experimental evidence to describe the assembly of the protrimer. Previous results indicated that the C terminus plays a critical role in the overall stability of the P22 tailspike protein. Here, we present evidence that the C terminus is also the critical assembly point for trimer assembly. Three truncations of the full-length tailspike protein, TSPDeltaN, TSPDeltaC, and TSPDeltaNC, were generated and tested for their ability to form mixed trimer species. TSPDeltaN forms mixed trimers with full-length P22 tailspike, but TSPDeltaC and TSPDeltaNC are incapable of forming similar mixed trimer species. In addition, mutations in the hydrophobic core of the C terminus were unable to form trimer in vivo. Finally, the hydrophobic-binding dye ANS inhibits the formation of trimer by inhibiting progression through the folding pathway. Taken together, these results suggest that hydrophobic interactions between C-terminal regions of P22 tailspike monomers play a critical role in the assembly of the P22 tailspike trimer.
Collapse
Affiliation(s)
- Matthew J Gage
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
21
|
Doyle SM, Anderson E, Zhu D, Braswell EH, Teschke CM. Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL. J Mol Biol 2003; 332:937-51. [PMID: 12972263 DOI: 10.1016/s0022-2836(03)00955-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.
Collapse
Affiliation(s)
- Shannon M Doyle
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | | | | | | | |
Collapse
|
22
|
Lefebvre BG, Robinson AS. Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates. Biotechnol Bioeng 2003; 82:595-604. [PMID: 12652483 DOI: 10.1002/bit.10607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein folding and aggregation are in direct competition in living systems, yet measuring the two pathways simultaneously has rarely been accomplished. In order to identify the mechanism of high-pressure dissociation of aggregates, we compared the simultaneous on- and off-pathway behavior following dilution of freshly denatured P22 tailspike protein. Tailspike assembly at 100 microg/mL was monitored at four temperatures using a combination of size-exclusion chromatography and native polyacrylamide gel electrophoresis (PAGE) and folding and aggregation rates and yields were determined. As temperature increased, the yield of native trimeric tailspike decreased from 26.1 +/- 1.3 microg/mL at 20 degrees C to 0 microg/mL at 37 degrees C. Pressure treatment dissociated 60% of the trapped aggregates created at 37 degrees C and yielded 19.8 +/- 1.1 microg/mL of native trimer following depressurization and incubation at 20 degrees C. The rate of refolding of "freshly denatured" tailspike was compared to that following pressure treatment. The trimer formation rate increased by a factor of roughly five, and the aggregate rate decreased by a factor of three, following pressure treatment. Circular dichroism and high-pressure intrinsic tryptophan fluorescence measurements support the model that a structured intermediate is formed in a rapid manner under high pressure from a pressure-sensitive aggregate population.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, 259 Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
23
|
Guise AD, Chaudhuri JB. Initial protein concentration and residual denaturant concentration strongly affect the batch refolding of hen egg white lysozyme. BIOTECHNOL BIOPROC E 2001. [DOI: 10.1007/bf02932322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Clark PL, King J. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. J Biol Chem 2001; 276:25411-20. [PMID: 11319217 DOI: 10.1074/jbc.m008490200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conformations of newly synthesized polypeptide chains as they emerge from the large ribosomal subunit, or how these conformations compare with those populated immediately after dilution of polypeptide chains out of denaturant in vitro. Both in vivo and in vitro, partially folded intermediates of the tailspike protein from Salmonella typhimurium phage P22 can be trapped in the cold. A subset of monoclonal antibodies raised against tailspike recognize partially folded intermediates, whereas other antibodies recognize only later intermediates and/or the native state. We have used a pair of monoclonal antibodies to probe the conformational features of full-length, newly synthesized tailspike chains recovered on ribosomes from phage-infected cells. The antibody that recognizes early intermediates in vitro also recognizes the ribosome-bound intermediates. Surprisingly, the antibody that did not recognize early in vitro intermediates did recognize ribosome-bound tailspike chains translated in vivo. Thus, the newly synthesized, ribosome-bound tailspike chains display structured epitopes not detected upon dilution of tailspike chains from denaturant. As opposed to the random ensemble first populated when polypeptide chains are diluted out of denaturant, folding in vivo from the ribosome may begin with polypeptide conformations already directed toward the productive folding and assembly pathway.
Collapse
Affiliation(s)
- P L Clark
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
25
|
Haase-Pettingell C, Betts S, Raso SW, Stuart L, Robinson A, King J. Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike. Protein Sci 2001; 10:397-410. [PMID: 11266625 PMCID: PMC2373931 DOI: 10.1110/ps.34701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The predominantly beta-sheet phage P22 tailspike adhesin contains eight reduced cysteines per 666 residue chain, which are buried and unreactive in the native trimer. In the pathway to the native trimer, both in vivo and in vitro transient interchain disulfide bonds are formed and reduced. This occurs in the protrimer, an intermediate in the formation of the interdigitated beta-sheets of the trimeric tailspike. Each of the eight cysteines was replaced with serine by site-specific mutagenesis of the cloned P22 tailspike gene and the mutant genes expressed in Escherichia coli. Although the yields of native-like Cys>Ser proteins varied, sufficient soluble trimeric forms of each of the eight mutants accumulated to permit purification. All eight single Cys>Ser mature proteins maintained the high thermostability of the wild type, as well as the wild-type biological activity in forming infectious virions. Thus, these cysteine thiols are not required for the stability or activity of the native state. When their in vivo folding and assembly kinetics were examined, six of the mutant substitutions--C267S, C287S, C458S, C613S, and C635S--were significantly impaired at higher temperatures. Four--C290S, C496, C613S, and C635--showed significantly impaired kinetics even at lower temperatures. The in vivo folding of the C613S/C635S double mutant was severely defective independent of temperature. Since the trimeric states of the single Cys>Ser substituted chains were as stable and active as wild type, the impairment of tailspike maturation presumably reflects problems in the in vivo folding or assembly pathways. The formation or reduction of the transient interchain disulfide bonds in the protrimer may be the locus of these kinetic functions.
Collapse
Affiliation(s)
- C Haase-Pettingell
- Department of Biology, Masschusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
26
|
Schuler B, F�rst F, Osterroth F, Steinbacher S, Huber R, Seckler R. Plasticity and steric strain in a parallel ?-helix: Rational mutations in the P22 tailspike protein. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000401)39:1<89::aid-prot10>3.0.co;2-q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Betts S, King J. There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. Structure 1999; 7:R131-9. [PMID: 10404587 DOI: 10.1016/s0969-2126(99)80078-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo and in vitro folding, assembly and misfolding of an elongated protein, the thermostable tailspike adhesin of phage P22, reveals important aspects of the sequence control of chain folding as well as its failure mode, inclusion body formation.
Collapse
Affiliation(s)
- S Betts
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
28
|
Abstract
Misfolding and misassembly of proteins are major problems in the biotechnology industry, in biochemical research, and in human disease. Here we describe a novel approach for reversing aggregation and increasing refolding by application of hydrostatic pressure. Using P22 tailspike protein as a model system, intermediates along the aggregation pathway were identified and quantitated by size-exclusion high-performance liquid chromatography (HPLC). Tailspike aggregates were subjected to hydrostatic pressures of 2.4 kbar (35,000 psi). This treatment dissociated the tailspike aggregates and resulted in increased formation of native trimers once pressure was released. Tailspike trimers refolded at these pressures were fully active for formation of infectious viral particles. This technique can facilitate conversion of aggregates to native proteins without addition of chaotropic agents, changes in buffer, or large-scale dilution of reagents required for traditional refolding methods. Our results also indicate that one or more intermediates at the junction between the folding and aggregation pathways is pressure sensitive. This finding supports the hypothesis that specific determinants of recognition exist for protein aggregation, and that these determinants are similar to those involved in folding to the native state. An increased understanding of this specificity should lead to improved refolding methods.
Collapse
Affiliation(s)
- D Foguel
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
29
|
del Castillo-Olivares A, Yantiri F, Chueh PJ, Wang S, Sweeting M, Sedlak D, Morré DM, Burgess J, Morré DJ. A drug-responsive and protease-resistant peripheral NADH oxidase complex from the surface of HeLa S cells. Arch Biochem Biophys 1998; 358:125-40. [PMID: 9750173 DOI: 10.1006/abbi.1998.0823] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our laboratory described a ca. 34-kDa protein of the HeLa S cell surface that bound an antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl) urea (LY181984) with high affinity and that exhibited NADH oxidase and protein disulfide-thiol interchange activities also inhibited by LY181984. The quinone site inhibitor 8-methyl-N-vanillyl-6-noneamide (capsaicin) also blocked these same enzymatic activities. Using capsaicin inhibition as the criterion, the drug-responsive oxidase was released from the surface of HeLa S cells and purified. The activity of the released capsaicin-inhibited oxidase was resistant to heating at 50 degrees C and to protease digestion. After heating and proteinase K digestion, the activity was isolated in >90% yield by FPLC as an apparent 50- to 60-kDa multimer. Final purification by preparative SDS-PAGE yielded a capsaicin-inhibited NADH oxidase activity of a specific activity indicative of >500-fold purification relative to the plasma membrane. The final activity correlated with a ca. 34-kDa band on SDS-PAGE. Matrix-assisted laser desorption mass spectroscopy as well as reelectrophoresis of the 34-kDa band indicated that the ca. 34-kDa material was a stable mixture of 22-, 17-, and 9.5-kDa components which occasionally migrated as a ca. 52-kDa complex. The purified complex tended to multimerize and formed insoluble 10- to 20-nm-diameter amyloid rods. The components of the purified 34-kDa complex were blocked to N-terminal amino acid sequencing and were resistant to further protease digestion. After multimerization into amyloid rods, the protein remained resistant to proteases even under denaturing conditions and to cyanogen bromide either with or without prior alkylation.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miller S, Schuler B, Seckler R. Phage P22 tailspike protein: removal of head-binding domain unmasks effects of folding mutations on native-state thermal stability. Protein Sci 1998; 7:2223-32. [PMID: 9792111 PMCID: PMC2143837 DOI: 10.1002/pro.5560071021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.
Collapse
Affiliation(s)
- S Miller
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
31
|
Seckler R. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. J Struct Biol 1998; 122:216-22. [PMID: 9724623 DOI: 10.1006/jsbi.1998.3974] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Salmonella bacteriophage P22 recognizes its host cell receptor, lipopolysaccharide, by means of six tailspikes, thermostable homotrimers of 72-kDa polypeptides. Biophysical results on the binding reaction, together with high-resolution structural information from X-ray crystallography, have shed light on the interactions determining the viral host range. Folding and assembly of the tailspike protein in vitro have been analyzed in detail, and the data have been compared with observations on the in vivo assembly pathway. Repetitive structural elements in the tailspike protein, like a side-by-side trimer of parallel beta-helices, a parallel alpha-helical bundle, a triangular prism made up from antiparallel beta-sheets, and a short segment of a triple beta-helix can be considered building blocks for larger structural proteins, and thus, the results on P22 tailspike may have implications for fibrous protein structure and folding.
Collapse
Affiliation(s)
- R Seckler
- Institut für Biophysik und Physikalische Biochemie, Regensburg, D-93040, Germany
| |
Collapse
|
32
|
Miller S, Schuler B, Seckler R. A reversibly unfolding fragment of P22 tailspike protein with native structure: the isolated beta-helix domain. Biochemistry 1998; 37:9160-8. [PMID: 9636063 DOI: 10.1021/bi980190e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The homotrimeric tailspike endorhamnosidase of phage P22 has been used to compare in vivo and in vitro folding pathways and the influence of single amino acid substitutions thereon. Its main structural motif, which contains the known folding mutation sites, consists of three large right-handed parallel beta-helices. A thermodynamic analysis of the stability of tailspike is prevented by the irreversibility of unfolding at high temperatures or high concentrations of denaturant, probably due to interdigitation of the domains neighboring the beta-helix. We therefore expressed and isolated a tailspike fragment comprising only its central beta-helix domain (residues 109-544). As shown by equilibrium ultracentrifugation, the isolated beta-helix is a monomer at concentrations below 1 microM and trimerizes reversibly at higher protein concentrations. Both the similarity of fluorescence and CD spectra, compared to the complete protein, and the specific binding and hydrolysis of substrate suggest a nativelike structure. Moreover, urea denaturation transitions of the beta-helix domain are freely reversible, providing the basis for a future quantitative analysis of the effects of the folding mutations on the thermodynamic stability of the domain and of structural features responsible for folding and stability of the parallel beta-helix motif in general.
Collapse
Affiliation(s)
- S Miller
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
33
|
Jensen PK, Lee CS, King JA. Temperature Effects on Refolding and Aggregation of a Large Multimeric Protein Using Capillary Zone Electrophoresis. Anal Chem 1998. [DOI: 10.1021/ac970884d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pamela K. Jensen
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Cheng S. Lee
- Department of Chemistry and Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
34
|
Robinson AS, King J. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein. NATURE STRUCTURAL BIOLOGY 1997; 4:450-5. [PMID: 9187652 DOI: 10.1038/nsb0697-450] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The trimeric parallel beta-coil P22 tailspike contains eight cysteines per chain, but lacks disulphide bonds in the native state, in both the crystalline and solution forms. However, cysteines in a folding intermediate are reactive with thiol blocking reagents, which prevent further productive folding both in vivo and in vitro. The in vivo refolding yield was independent of the availability of metal ions, but was sensitive to redox potential. Isolation by nondenaturing gel electrophoresis of the protrimer intermediate, a trimeric folding intermediate that precedes the fully folded trimer in the in vivo and in vitro pathways, revealed the presence of interchain disulphide bonds. Incubation of the isolated protrimer with reducing agents generated the native trimer. The formation of beta-sheets with interdigitated strands from different subunits in the native trimer may require the transient disulphide bonds for proper alignment. To our knowledge this is the first report of a disulphide bond present in a folding intermediate of a non-disulphide bonded protein.
Collapse
Affiliation(s)
- A S Robinson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
35
|
|
36
|
Fan Z, Jensen PK, Lee CS, King J. Monitoring the refolding pathway for a large multimeric protein using capillary zone electrophoresis. J Chromatogr A 1997. [DOI: 10.1016/s0021-9673(97)00046-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Haase-Pettingell C, King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol 1997; 267:88-102. [PMID: 9096209 DOI: 10.1006/jmbi.1996.0841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature sensitive mutations fall into two general classes: tl mutations, which render the mature protein thermolabile, and tsf (temperature sensitive folding) mutations, which destabilize an intermediate in the folding pathway without altering the functions of the folded state. The molecular defects caused by tsf mutations have been intensively studied for the elongated tailspike endorhamnosidase of Salmonella phage P22. The tailspike, responsible for host cell recognition and attachment, contains a 13 strand parallel beta coil domain. A set of tsf mutants located in the beta coil domain have been shown to cause folding defects in the in vivo folding pathway for the tailspike. We report here additional data on 17 other temperature sensitive mutants which are in the beta coil domain. Using mutant proteins formed at low temperature, the essential functions of assembling on the phage head, and binding to the O-antigen lipopolysaccharide (LPS) receptor of Salmonella were examined at high temperatures. All of the mutant proteins once folded at permissive temperature, were functional at restrictive temperatures. When synthesized at restrictive temperature the mutant chains formed an early folding intermediate, but failed to reach the mature conformation, accumulating instead in the aggregated inclusion body state. Thus this set of mutants all have the temperature sensitive folding phenotype. The prevalence of tsf mutants in the parallel beta coil domain presumably reflects properties of its folding intermediates. The key property may be the tendency of the intermediate to associate off pathway to the kinetically trapped inclusion body state.
Collapse
|
38
|
Speed MA, Morshead T, Wang DI, King J. Conformation of P22 tailspike folding and aggregation intermediates probed by monoclonal antibodies. Protein Sci 1997; 6:99-108. [PMID: 9007981 PMCID: PMC2143526 DOI: 10.1002/pro.5560060111] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.
Collapse
Affiliation(s)
- M A Speed
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
39
|
Guise AD, West SM, Chaudhuri JB. Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol Biotechnol 1996; 6:53-64. [PMID: 8887361 DOI: 10.1007/bf02762323] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic proteins expressed in Escherichia coli often accumulate within the cell as insoluble protein aggregates or inclusion bodies. The recovery of structure and activity from inclusion bodies is a complex process, there are no general rules for efficient renaturation. Research into understanding how proteins fold in vivo is giving rise to potentially new refolding methods, for example, using molecular chaperones. In this article we review what is understood about the main three classes of chaperone: the Stress 60, Stress 70, and Stress 90 proteins. We also give an overview of current process strategies for renaturing inclusion bodies, and report the use of novel developments that have enhanced refolding yields.
Collapse
Affiliation(s)
- A D Guise
- School of Chemical Engineering, University of Bath, UK
| | | | | |
Collapse
|
40
|
Speed MA, Wang DI, King J. Multimeric intermediates in the pathway to the aggregated inclusion body state for P22 tailspike polypeptide chains. Protein Sci 1995; 4:900-8. [PMID: 7663345 PMCID: PMC2143126 DOI: 10.1002/pro.5560040509] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The failure of newly synthesized polypeptide chains to reach the native conformation due to their accumulation as inclusion bodies is a serious problem in biotechnology. The critical intermediate at the junction between the productive folding and the inclusion body pathway has been previously identified for the P22 tailspike endorhamnosidase. We have been able to trap subsequent intermediates in the in vitro pathway to the aggregated inclusion body state. Nondenaturing gel electrophoresis identified a sequential series of multimeric intermediates in the aggregation pathway. These represent discrete species formed from noncovalent association of partially folded intermediates rather than aggregation of native-like trimeric species. Monomer, dimer, trimer, tetramer, pentamer, and hexamer states of the partially folded species were populated in the initial stages of the aggregation reaction. This methodology of isolating early multimers along the aggregation pathway was applicable to other proteins, such as the P22 coat protein and carbonic anhydrase II.
Collapse
Affiliation(s)
- M A Speed
- Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
41
|
Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46878-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
42
|
Sather SK, King J. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47242-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
In vitro and ribosome-bound folding intermediates of P22 tailspike protein detected with monoclonal antibodies. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40772-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
44
|
Villafane R, Fleming A, Haase-Pettingell C. Isolation of suppressors of temperature-sensitive folding mutations. J Bacteriol 1994; 176:137-42. [PMID: 8282689 PMCID: PMC205024 DOI: 10.1128/jb.176.1.137-142.1994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.
Collapse
Affiliation(s)
- R Villafane
- Department of Microbiology, University of Tennessee, Knoxville 37996
| | | | | |
Collapse
|
45
|
Abstract
Temperature-sensitive folding (tsf) and global-tsf-suppressor (su) point mutations affect the folding yields of the trimeric, thermostable phage P22 tailspike endorhamnosidase at elevated temperature, both in vivo and in vitro, but they have little effect on function and stability of the native folded protein. To delineate the mechanism by which these mutations modify the partitioning between productive folding and off-pathway aggregation, the kinetics of refolding after dilution from acid-urea solutions and the thermal stability of folding intermediates were analyzed. The study included five tsf mutations of varying severity, the two known su mutations, and four tsf/su double mutants. At low temperature (10 degrees C), subunit-folding rates, measured as an increase in fluorescence, were similar for wild-type and mutants. At 25 degrees C, however, tsf mutations reduced the rate of subunit folding. The su mutations increased this rate, when present in the tsf-mutant background, but had no effect in the wild-type background. Conversely, tsf mutations accelerated, and su mutations retarded the irreversible off-pathway reaction, as revealed by temperature down-shifts after varied times during refolding at high temperature (40 degrees C). The kinetic results are consistent with tsf mutations destabilizing and su mutations stabilizing an essential subunit folding intermediate. In accordance with this interpretation, tsf mutations decreased, and su mutations increased the temperature resistance of folding intermediates, as disclosed by temperature up-shifts during refolding at 25 degrees C. The stabilizing and destabilizing effects were most pronounced early during refolding. However, they were not limited to subunit-folding intermediates and were also observable during thermal unfolding of the native protein.
Collapse
Affiliation(s)
- M Danner
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
46
|
Mitraki A, Danner M, King J, Seckler R. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80695-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Brunschier R, Danner M, Seckler R. Interactions of phage P22 tailspike protein with GroE molecular chaperones during refolding in vitro. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53840-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
48
|
Abstract
High levels of expression of oligomeric proteins in heterologous systems are frequently associated with misfolding and accumulation of the polypeptides in inclusion bodies. This reflects aspects of the folding and assembly pathways of oligomeric proteins, which generally proceed from either folding intermediates or native-like metastable species that are not in their final conformation. Methods for optimizing the yield of correctly assembled oligomers are discussed.
Collapse
Affiliation(s)
- C M Teschke
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
49
|
Abstract
Though an increasing variety of chaperonins are emerging as important factors in directing polypeptide chain folding off the ribosome, the primary amino acid sequence remains the major determinant of final conformation. The ability to identify cytoplasmic folding intermediates in the formation of the tailspike endorhamnosidase of phage P22 has made it possible to isolate two classes of mutations influencing folding intermediates-temperature-sensitive folding mutations and global suppressors of tsf mutants. These and related amino acid substitutions in eukaryotic proteins are discussed in the context of inclusion body formation and problems in the recovery of correctly folded proteins.
Collapse
Affiliation(s)
- A Mitraki
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
50
|
Lee S, Koh H, Yu M. Molecular properties of global suppressors of temperature-sensitive folding mutations in P22 tailspike endorhamnosidase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54482-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|