1
|
Negoro H, Kotaka A, Matsumura K, Tsutsumi H, Hata Y. Enhancement of malate-production and increase in sensitivity to dimethyl succinate by mutation of the VID24 gene in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 121:665-671. [DOI: 10.1016/j.jbiosc.2015.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
|
2
|
Xie LX, Hsieh EJ, Watanabe S, Allan CM, Chen JY, Tran UC, Clarke CF. Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:348-60. [PMID: 21296186 PMCID: PMC3075350 DOI: 10.1016/j.bbalip.2011.01.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/17/2011] [Accepted: 01/28/2011] [Indexed: 12/31/2022]
Abstract
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.
Collapse
Affiliation(s)
- Letian X. Xie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Edward J. Hsieh
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Shota Watanabe
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Christopher M. Allan
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Jia Y. Chen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - UyenPhuong C. Tran
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angles, Los Angeles, California 90095-1569
| |
Collapse
|
3
|
Dolai S, Yadav RK, Pal S, Adak S. Leishmania major ascorbate peroxidase overexpression protects cells against reactive oxygen species-mediated cardiolipin oxidation. Free Radic Biol Med 2008; 45:1520-9. [PMID: 18822369 DOI: 10.1016/j.freeradbiomed.2008.08.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 11/19/2022]
Abstract
Heme peroxidases are a class of multifunctional redox-active proteins found in all organisms. We recently cloned, expressed, and characterized an ascorbate peroxidase from Leishmania major (LmAPX) that was capable of detoxifying hydrogen peroxide. Localization studies using green fluorescent protein fusions revealed that LmAPX was localized within the mitochondria by its N-terminal signal sequence. Subcellular fractionation analysis of the cell homogenate by the Percoll density-gradient method and subsequent Western blot analysis with anti-LmAPX antibody further confirmed the mitochondrial localization of mature LmAPX. Submitochondrial fractionation analysis showed that the mature enzyme (~3.6 kDa shorter than the theoretical value of the whole gene) was present in the intermembrane space side of the inner membrane. Moreover, expression of the LmAPX gene was increased by treatment with exogenous H(2)O(2), indicating that LmAPX was induced by oxidative stress. To investigate the biological role of LmAPX we generated Leishmania cells overexpressing LmAPX in the mitochondria. Flow-cytometric analysis, thin-layer chromatography, and IC(50) measurements suggested that overexpression of LmAPX caused depletion of the mitochondrial ROS burden and conferred a protection against mitochondrial cardiolipin oxidation and increased tolerance to H(2)O(2). These results suggest that the single-copy LmAPX gene plays a protective role against oxidative damage.
Collapse
Affiliation(s)
- Subhankar Dolai
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
4
|
Maloney AP, Callan SM, Murray PG, Tuohy MG. Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii. ACTA ACUST UNITED AC 2004; 271:3115-26. [PMID: 15265031 DOI: 10.1111/j.1432-1033.2004.04230.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mitochondrial malate dehydrogenase (m-MDH; EC 1.1.1.37), from mycelial extracts of the thermophilic, aerobic fungus Talaromyces emersonii, was purified to homogeneity by sequential hydrophobic interaction and biospecific affinity chromatography steps. Native m-MDH was a dimer with an apparent monomer mass of 35 kDa and was most active at pH 7.5 and 52 degrees C in the oxaloacetate reductase direction. Substrate specificity and kinetic studies demonstrated the strict specificity of this enzyme, and its closer similarity to vertebrate m-MDHs than homologs from invertebrate or mesophilic fungal sources. The full-length m-MDH gene and its corresponding cDNA were cloned using degenerate primers derived from the N-terminal amino acid sequence of the native protein and multiple sequence alignments from conserved regions of other m-MDH genes. The m-MDH gene is the first oxidoreductase gene cloned from T. emersonii and is the first full-length m-MDH gene isolated from a filamentous fungal species and a thermophilic eukaryote. Recombinant m-MDH was expressed in Escherichia coli, as a His-tagged protein and was purified to apparent homogeneity by metal chelate chromatography on an Ni2+-nitrilotriacetic acid matrix, at a yield of 250 mg pure protein per liter of culture. The recombinant enzyme behaved as a dimer under nondenaturing conditions. Expression of the recombinant protein was confirmed by Western blot analysis using an antibody against the His-tag. Thermal stability studies were performed with the recombinant protein to investigate if results were consistent with those obtained for the native enzyme.
Collapse
Affiliation(s)
- Alan P Maloney
- Molecular Glycobiotechnology Group, Department of Biochemistry, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
5
|
Krause K, Lopes de Souza R, Roberts DGW, Dieckmann CL. The mitochondrial message-specific mRNA protectors Cbp1 and Pet309 are associated in a high-molecular weight complex. Mol Biol Cell 2004; 15:2674-83. [PMID: 15047869 PMCID: PMC420092 DOI: 10.1091/mbc.e04-02-0126] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Saccharomyces cerevisiae, the nuclear-encoded protein Cbp1 promotes stability and translation of mitochondrial cytochrome b transcripts through interaction with the 5' untranslated region. Fusion of a biotin binding peptide tag to the C terminus of Cbp1 has now allowed detection in mitochondrial extracts by using peroxidase-coupled avidin. Cbp1 is associated with the mitochondrial membranes when high ionic strength extraction conditions are used. However, the protein is easily solubilized by omitting salt from the extraction buffer, which suggests Cbp1 is loosely associated with the membrane through weak hydrophobic interactions. Gel filtration analysis and blue native PAGE showed that Cbp1 is part of a single 900,000-Da complex. The complex was purified using the biotin tag and a sequence-specific protease cleavage site. In addition to Cbp1, the complex contains several polypeptides of molecular weights between 113 and 40 kDa. Among these, we identified another message-specific factor, Pet309, which promotes the stability and translation of mitochondrial cytochrome oxidase subunit I mRNA. A hypothesis is presented in which the Cbp1-Pet309 complex contains several message-specific RNA binding proteins and links transcription to translation of the mRNAs at the membrane.
Collapse
Affiliation(s)
- Kirsten Krause
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
6
|
Gibson N, McAlister-Henn L. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes. J Biol Chem 2003; 278:25628-36. [PMID: 12730240 DOI: 10.1074/jbc.m213231200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A truncated form (deltanMDH2) of yeast cytosolic malate dehydrogenase (MDH2) lacking 12 residues on the amino terminus was found to be inadequate for gluconeogenic function in vivo because the mutant enzyme fails to restore growth of a Deltamdh2 strain on minimal medium with ethanol or acetate as the carbon source. The DeltanMDH2 enzyme was also previously found to be refractory to the rapid glucose-induced inactivation and degradation observed for authentic MDH2. In contrast, kinetic properties measured for purified forms of MDH2 and deltanMDH2 enzymes are very similar. Yeast two-hybrid assays indicate weak interactions between MDH2 and yeast phosphoenolpyruvate carboxykinase (PCK1) and between MDH2 and fructose-1,6-bisphosphatase (FBP1). These interactions are not observed for deltanMDH2, suggesting that differences in cellular function between authentic and truncated forms of MDH2 may be related to their ability to interact with other gluconeogenic enzymes. Additional evidence was obtained for interaction of MDH2 with PCK1 using Hummel-Dreyer gel filtration chromatography, and for interactions of MDH2 with PCK1 and with FBP1 using surface plasmon resonance. Experiments with the latter technique demonstrated a much lower affinity for interaction of deltanMDH2 with PCK1 and no interaction between deltanMDH2 and FBP1. These results suggest that the interactions of MDH2 with other gluconeogenic enzymes are dependent on the amino terminus of the enzyme, and that these interactions are important for gluconeogenic function in vivo.
Collapse
Affiliation(s)
- Natalie Gibson
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
7
|
Akhmanova A, Voncken FG, Harhangi H, Hosea KM, Vogels GD, Hackstein JH. Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol 1998; 30:1017-27. [PMID: 9988478 DOI: 10.1046/j.1365-2958.1998.01130.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anaerobic chytrid Piromyces sp. E2 lacks mitochondria, but contains hydrogen-producing organelles, the hydrogenosomes. We are interested in how the adaptation to anaerobiosis influenced enzyme compartmentalization in this organism. Random sequencing of a cDNA library from Piromyces sp. E2 resulted in the isolation of cDNAs encoding malate dehydrogenase, aconitase and acetohydroxyacid reductoisomerase. Phylogenetic analysis of the deduced amino acid sequences revealed that they are closely related to their mitochondrial homologues from aerobic eukaryotes. However, the deduced sequences lack N-terminal extensions, which function as mitochondrial leader sequences in the corresponding mitochondrial enzymes from aerobic eukaryotes. Subcellular fractionation and enzyme assays confirmed that the corresponding enzymes are located in the cytosol. As anaerobic chytrids evolved from aerobic, mitochondria-bearing ancestors, we suggest that, in the course of the adaptation from an aerobic to an anaerobic lifestyle, mitochondrial enzymes were retargeted to the cytosol with the concomitant loss of their N-terminal leader sequences.
Collapse
Affiliation(s)
- A Akhmanova
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Small WC, McAlister-Henn L. Metabolic effects of altering redundant targeting signals for yeast mitochondrial malate dehydrogenase. Arch Biochem Biophys 1997; 344:53-60. [PMID: 9244381 DOI: 10.1006/abbi.1997.0179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic cells contain highly homologous isozymes of malate dehydrogenase which catalyze the same reaction in different cellular compartments. To examine whether the metabolic functions of these isozymes are interchangeable, we have altered the cellular localization of mitochondrial malate dehydrogenase (MDH1) in yeast. Since a previous study showed that removal of the targeting presequence from MDH1 does not prevent mitochondrial import in vivo, we tested the role of a putative cryptic targeting sequence near the amino terminus of the mature polypeptide. Three residues in this region were changed to residues present in analogous positions in the other two yeast MDH isozymes. Alone, these replacements did not affect activity or localization of MDH1 but, in combination with deletion of the presequence, prevented mitochondrial import in vivo. Measurable levels of the resulting cytosolic form of MDH1 were low with expression from a centromere-based plasmid but were comparable to normal cellular levels with expression from a multicopy plasmid. The cytosolic form of MDH1 restored the ability of a deltaMDH1 disruption strain to grow on ethanol or acetate, suggesting that mitochondrial localization of MDH1 is not essential for its function in the TCA cycle. This TCA cycle function observed for the cytosolic form of MDH1 is unique to that isozyme since overexpression of MDH2 and of a cytosolic form of MDH3 in a deltaMDH1 strain failed to restore growth. Finally, only partial restoration of growth of a deltaMDH2 disruption mutant was attained with the cytosolic form of MDH1, suggesting that MDH2 may also have unique metabolic functions.
Collapse
Affiliation(s)
- W C Small
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | |
Collapse
|
9
|
McAlister-Henn L, Small WC. Molecular genetics of yeast TCA cycle isozymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:317-39. [PMID: 9175438 DOI: 10.1016/s0079-6603(08)60285-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- L McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | |
Collapse
|
10
|
Takahashi M, Hood DA. Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions. J Biol Chem 1996; 271:27285-91. [PMID: 8910303 DOI: 10.1074/jbc.271.44.27285] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To date, no studies have described the import of proteins in mitochondria obtained from skeletal muscle. In this tissue, mitochondria consist of the functionally and biochemically distinct intermyofibrillar (IMF) and subsarcolemmal (SS) subfractions, which are localized in specialized cellular compartments. This mitochondrial heterogeneity in muscle could be due, in part, to differential rates of protein import. To evaluate this possibility, the import of precursor malate dehydrogenase and ornithine carbamyltransferase proteins was investigated in isolated IMF and SS mitochondria in vitro. Import of these was 3-4-fold greater in IMF compared with SS mitochondria as a function of time. This could account for the higher malate dehydrogenase enzyme activity in IMF mitochondria. Divergent import rates in IMF and SS mitochondria likely result from a differential reliance on various components of the import pathway. SS mitochondria possess a greater content of the molecular chaperones hsp60 and Grp75, yet import is lower than in IMF mitochondria. On the other hand, adriamycin inhibition studies illustrated a greater reliance on acidic phospholipids (i.e. cardiolipin) for the import process in SS mitochondria. Matrix ATP levels were 3-fold higher in IMF mitochondria, but experiments in which ATP depletion was performed with atractyloside and oligomycin illustrated a dissociation between import rates and levels of ATP. In contrast, a close relationship was found between the rate of ATP production (i.e. mitochondrial respiration) and protein import. When respiratory rates in IMF and SS mitochondria were equalized, import rates in both subfractions were similar. These data indicate that 1) import rates are more closely related to the rate of ATP production than the steady state ATP level, 2) import into IMF and SS mitochondrial subfractions is regulated differently, and 3) mitochondrial heterogeneity within a cell type can be due to differences in the rates of protein import, suggesting that this step is a potentially regulatable event in determining the final mitochondrial phenotype.
Collapse
Affiliation(s)
- M Takahashi
- Departments of Biology and Kinesiology, York University, North York, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
11
|
Otto A, Stoltz M, Sailer HP, Brandsch R. Biogenesis of the covalently flavinylated mitochondrial enzyme dimethylglycine dehydrogenase. J Biol Chem 1996; 271:9823-9. [PMID: 8621665 DOI: 10.1074/jbc.271.16.9823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rat dimethylglycine dehydrogenase (Me2GlyDH) was used as model protein to study the biogenesis of a covalently flavinylated mitochondrial enzyme. Here we show that: 1) enzymatically active holoenzyme correlated with trypsin resistance of the protein; 2) folding of the reticulocyte lysate-translated protein into the trypsin-resistant, holoenzyme form was a slow process that was stimulated by the presence of the flavin cofactor and was more efficient at 15 degrees C than at 30 degrees C; 3) the mitochondrial presequence reduced the extent but did not prevent holoenzyme formation; 4) covalent attachment of FAD to the Me2GlyDH apoenzyme proceeded spontaneously and did not require a mitochondrial protein factor; 5) in vitro only the precursor, but not the mature form, of the protein was imported into isolated rat liver mitochondria; in vivo, in stably transfected HepG2 cells, both the precursor and the mature form were imported into the organelle; 6) holoenzyme formation in the cytoplasm did not prevent the translocation of the proteins into the mitochondria in vivo; and 7) lack of vitamin B2 in the tissue culture medium resulted in a reduced recovery of the precursor and the mature form of Me2GlyDH from cell mitochondria, suggesting a decreased efficiency of mitochondrial protein import.
Collapse
Affiliation(s)
- A Otto
- Biochemisches Institut, Universitat Freiburg, Germany
| | | | | | | |
Collapse
|
12
|
Zhao WN, McAlister-Henn L. Assembly and Function of a Cytosolic Form of NADH-specific Isocitrate Dehydrogenase in Yeast. J Biol Chem 1996. [DOI: 10.1074/jbc.271.17.10347] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
McAlister-Henn L, Steffan JS, Minard KI, Anderson SL. Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast. J Biol Chem 1995; 270:21220-5. [PMID: 7673155 DOI: 10.1074/jbc.270.36.21220] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The malate dehydrogenase isozyme MDH3 of Saccharomyces cerevisiae was found to be localized to peroxisomes by cellular fractionation and density gradient centrifugation. However, unlike other yeast peroxisomal enzymes that function in the glyoxylate pathway, MDH3 was found to be refractory to catabolite inactivation, i.e. to rapid inactivation and degradation following glucose addition. To examine the structural requirements for organellar localization, the Ser-Lys-Leu carboxyl-terminal tripeptide, a common motif for localization of peroxisomal proteins, was removed by mutagenesis of the MDH3 gene. This resulted in cytosolic localization of MDH3 in yeast transformants. To examine structural requirements for catabolite inactivation, a 12-residue amino-terminal extension from the yeast cytosolic MDH2 isozyme was added to the amino termini of the peroxisomal and mislocalized "cytosolic" forms of MDH3. This extension was previously shown to be essential for catabolite inactivation of MDH2 but failed to confer this property to MDH3. The mislocalized cytosolic forms of MDH3 were found to be catalytically active and competent for metabolic functions normally provided by MDH2.
Collapse
Affiliation(s)
- L McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | | | |
Collapse
|
14
|
The Cooperative Behavior of Krebs Tricarboxylic Acid Cycle Enzymes. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1569-2558(08)60250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Matsushita Y, Isono K. Mitochondrial transport of mitoribosomal proteins, YmL8 and YmL20, in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:577-85. [PMID: 8513807 DOI: 10.1111/j.1432-1033.1993.tb17956.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two mitochondrial ribosomal (mitoribosomal) proteins, YmL8 and YmL20, of the yeast Saccharomyces cerevisiae and their derivatives were synthesized in vitro and their transport into isolated yeast mitochondria was examined. Of the two proteins, YmL20 possesses an N-terminal presequence of 18 amino acid residues, while YmL8 has no such presequence. Both proteins were found to be transported into isolated mitochondria in an energy-dependent manner. Furthermore, YmL20 protein without its N-terminal presequence was also transported, despite the fact that the presequence alone was capable of transporting a fused passenger protein, Chinese hamster dihydrofolate reductase (DHFR). Therefore, YmL20 protein appears to possess redundant transport signals in its structure. Similarly, YmL8 derivatives lacking either 40 or 86 amino acid residues from the N-terminus and/or 52 amino acid residues from the C-terminus were transported. In addition, the N-terminal segment of this protein was capable of transporting Chinese hamster DHFR into mitochondria, while its C-terminal segment was not. Thus, YmL8 protein also appears to possess two or more transport signals in its structure. Perhaps the presence of many basic amino acid residues in these proteins might, at least partly, contribute to their mitochondrial transport.
Collapse
Affiliation(s)
- Y Matsushita
- Graduate School of Science and Technology, Faculty of Science, Kobe University, Japan
| | | |
Collapse
|
16
|
Minard K, McAlister-Henn L. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41948-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Gietl C. Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1100:217-34. [PMID: 1610875 DOI: 10.1016/0167-4838(92)90476-t] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malate dehydrogenases belong to the most active enzymes in glyoxysomes, mitochondria, peroxisomes, chloroplasts and the cytosol. In this review, the properties and the role of the isoenzymes in different compartments of the cell are compared, with emphasis on molecular biological aspects. Structure and function of malate dehydrogenase isoenzymes from plants, mammalian cells and ascomycetes (yeast, Neurospora) are considered. Significant information on evolutionary aspects and characterisation of functional domains of the enzymes emanates from bacterial malate and lactate dehydrogenases modified by protein engineering. The review endeavours to give up-to-date information on the biogenesis and intracellular targeting of malate dehydrogenase isoenzymes as well as enzymes cooperating with them in the flow of metabolites of a given pathway and organelle.
Collapse
Affiliation(s)
- C Gietl
- Institute of Botany, Technical University of Munich, München, Germany
| |
Collapse
|
18
|
Zara V, Palmieri F, Mahlke K, Pfanner N. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49808-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Steffan JS, Minard KI, McAlister-Henn L. Expression and function of heterologous forms of malate dehydrogenase in yeast. Arch Biochem Biophys 1992; 293:93-102. [PMID: 1731644 DOI: 10.1016/0003-9861(92)90370-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structure of the tricarboxylic acid cycle enzyme malate dehydrogenase is highly conserved in various organisms. To test the extent of functional conservation, the rat mitochondrial enzyme and the enzyme from Escherichia coli were expressed in a strain of Saccharomyces cerevisiae containing a disruption of the chromosomal MDH1 gene encoding yeast mitochondrial malate dehydrogenase. The authentic precursor form of the rat enzyme, expressed using a yeast promoter and a multicopy plasmid, was found to be efficiently targeted to yeast mitochondria and processed to a mature active form in vivo. Mitochondrial levels of the polypeptide and malate dehydrogenase activity were found to be similar to those for MDH1 in wild-type yeast cells. Efficient expression of the E. coli mdh gene was obtained with multicopy plasmids carrying gene fusions encoding either a mature form of the procaryotic enzyme or a precursor form with the amino terminal mitochondrial targeting sequence from yeast MDH1. Very low levels of mitochondrial import and processing of the precursor form were obtained in vivo and activity could be demonstrated for only the expressed precursor fusion protein. Results of in vitro import experiments suggest that the percursor form of the E. coli protein associates with yeast mitochondria but is not efficiently internalized. Respiratory rates measured for isolated yeast mitochondria containing the mammalian or procaryotic enzyme were, respectively, 83 and 62% of normal, suggesting efficient delivery of NADH to the respiratory chain. However, expression of the heterologous enzymes did not result in full complementation of growth phenotypes associated with disruption of the yeast MDH1 gene.
Collapse
Affiliation(s)
- J S Steffan
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | | | |
Collapse
|
20
|
|
21
|
Giannattasio S, Marra E, Abruzzese MF, Greco M, Quagliariello E. The in vitro-synthesized precursor and mature mitochondrial aspartate aminotransferase share the same import pathway in isolated mitochondria. Arch Biochem Biophys 1991; 290:528-34. [PMID: 1929419 DOI: 10.1016/0003-9861(91)90577-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Both the precursor and the mature form of mitochondrial aspartate aminotransferase were synthesized in a cell-free coupled transcription/translation system directed by the recombinant expression plasmid pOTS-pmAspAT and pOTS-mAspAT, respectively. Both newly synthesized forms of the protein were imported into isolated mitochondria, with the precursor correctly processed to the mature form. In both cases the import process showed resistance to externally added pronase and was abolished in mitochondria treated with the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Moreover the imported products showed the same intramitochondrial localization as judged by a subfractionation procedure. In both cases import was time dependent and was completed in about 15 min. Finally a competitive inhibition of the import of the precursor of aspartate aminotransferase was found due to externally added purified aspartate aminotransferase.
Collapse
Affiliation(s)
- S Giannattasio
- C.N.R. Centro di Studio sui Mitocondri e Metabolismo Energetico, Bari, Italy
| | | | | | | | | |
Collapse
|
22
|
Steffan JS, McAlister-Henn L. Structural and functional effects of mutations altering the subunit interface of mitochondrial malate dehydrogenase. Arch Biochem Biophys 1991; 287:276-82. [PMID: 1898005 DOI: 10.1016/0003-9861(91)90479-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among highly conserved residues in eucaryotic mitochondrial malate dehydrogenases are those with roles in maintaining the interactions between identical monomeric subunits that form the dimeric enzymes. The contributions of two of these residues, Asp-43 and His-46, to structural stability and catalytic function were investigated by construction of mutant enzymes containing Asn-43 and Leu-46 substitutions using in vitro mutagenesis of the Saccharomyces cerevisiae gene (MDH1) encoding mitochondrial malate dehydrogenase. The mutant enzymes were expressed in and purified from a yeast strain containing a disruption of the chromosomal MDH1 locus. The enzyme containing the H46L substitution, as compared to the wild type enzyme, exhibits a dramatic shift in the pH profile for catalysis toward an optimum at low pH values. This shift corresponds with an increased stability of the dimeric form of the mutant enzyme, suggesting that His-46 may be the residue responsible for the previously described pH-dependent dissociation of mitochondrial malate dehydrogenase. The D43N substitution results in a mutant enzyme that is essentially inactive in in vitro assays and that tends to aggregate at pH 7.5, the optimal pH for catalysis for the dimeric wild type enzyme.
Collapse
Affiliation(s)
- J S Steffan
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
23
|
Hartmann CM, Lindenmann JM, Christen P, Jaussi R. The precursor of mitochondrial aspartate aminotransferase is imported into mitochondria faster than the homologous cytosolic isoenzyme with the same presequence attached. Biochem Biophys Res Commun 1991; 174:1232-8. [PMID: 1996986 DOI: 10.1016/0006-291x(91)91553-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial and cytosolic aspartate aminotransferase (AspAT) are homologous proteins with identically folded polypeptide chains. The cDNAs of the two isoenzymes of chicken were used to express the following proteins in yeast: the precursor of mitochondrial AspAT, mature mitochondrial AspAT, and two chimeric proteins in one of which (pc) the presequence of the precursor was attached to the entire cytosolic isoenzyme and in the other one (pmc) the N-terminal segment (amino acid residues -22 to 23) of the precursor was linked to the slightly truncated cytosolic isoenzyme (residues 34 to 412). All presequence containing proteins were imported into the mitochondria and processed to the mature form whereas mature mitochondrial AspAT remained in the cytosol. The rate of import of the authentic precursor was four times faster than that of the chimeric proteins pc and pmc, t1/2 for importation at 29 degrees C being 3, 13 and 14 min, respectively. Apparently, the mature moiety of the precursor of mitochondrial AspAT promotes importation.
Collapse
Affiliation(s)
- C M Hartmann
- Biochemisches Institut Universität Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Barile M, Giannattasio S, Marra E, Passarella S, Pucci P, Sannia G, Quagliariello E. Certain N-terminal peptides inhibit uptake of mature aspartate aminotransferase by isolated mitochondria. Biochem Biophys Res Commun 1990; 170:609-15. [PMID: 2383258 DOI: 10.1016/0006-291x(90)92135-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To gain insight into the uptake of mature aspartate aminotransferase by isolated mitochondria, the capability of certain cyanogen bromide peptides from mature beef heart mitochondrial aspartate aminotransferase to inhibit enzyme uptake was kinetically tested. N-terminal peptides (1-9 and 10-31) proved to inhibit the rate of aspartate aminotransferase uptake respectively in purely competitive and non-competitive ways, whereas other peptides distal from the N-terminus (203-217, 321-327 and 328-353) were found to be completely ineffective.
Collapse
Affiliation(s)
- M Barile
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi, Bari-Italy
| | | | | | | | | | | | | |
Collapse
|