1
|
Otte M, Netschitailo O, Weidtkamp-Peters S, Seidel CA, Beye M. Recognition of polymorphic Csd proteins determines sex in the honeybee. SCIENCE ADVANCES 2023; 9:eadg4239. [PMID: 37792946 PMCID: PMC10550236 DOI: 10.1126/sciadv.adg4239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Sex in honeybees, Apis mellifera, is genetically determined by heterozygous versus homo/hemizygous genotypes involving numerous alleles at the single complementary sex determination locus. The molecular mechanism of sex determination is however unknown because there are more than 4950 known possible allele combinations, but only two sexes in the species. We show how protein variants expressed from complementary sex determiner (csd) gene determine sex. In females, the amino acid differences between Csd variants at the potential-specifying domain (PSD) direct the selection of a conserved coiled-coil domain for binding and protein complexation. This recognition mechanism activates Csd proteins and, thus, the female pathway. In males, the absence of polymorphisms establishes other binding elements at PSD for binding and complexation of identical Csd proteins. This second recognition mechanism inactivates Csd proteins and commits male development via default pathway. Our results demonstrate that the recognition of different versus identical variants of a single protein is a mechanism to determine sex.
Collapse
Affiliation(s)
- Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Claus A. M. Seidel
- Institut für Physikalische Chemie, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Alangode A, Reick M, Reick M. Sodium oleate, arachidonate, and linoleate enhance fibrinogenolysis by Russell's viper venom proteinases and inhibit FXIIIa; a role for phospholipase A 2 in venom induced consumption coagulopathy. Toxicon 2020; 186:83-93. [PMID: 32755649 DOI: 10.1016/j.toxicon.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 06/02/2020] [Accepted: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Life-threatening symptoms produced by Russell's viper (RV, Daboia russelii) envenomation result largely from venom induced consumption coagulopathy (VICC). VICC is thought to be mediated to a large degree by venom serine and metalloproteinases, as well as by snake venom phospholipase A2 (svPLA2), the most abundant constituent of RV venom (RVV). The observation that the phenolic lipid anacardic acid markedly enhances proteolytic degradation of fibrinogen by RVV proteinases led us to characterize the chemical basis of this phenomenon with results indicating that svPLA2 products may be major contributors to VICC. RESULTS: Of the chemical analogs tested, the anionic detergents sodium dodecyl sulfate, sodium deoxycholate, N-lauryl sodium sarcosine, and the sodium salts of the fatty acids arachidonic, oleic and to a lesser extend linoleic acid were able to enhance fibrinogenolysis by RVV proteinases. Enhanced Fibrinogenolysis (EF) was observed with various venom size exclusion fractions containing different proteinases, and also with trypsin, indicating that conformational changes of the substrate and increased accessibility of otherwise cryptic cleavage sites are likely to be responsible for EF. In addition to enhancing fibrinogenolysis, sodium arachidonate and oleate were found to partially inhibit thrombin induced, factor XIIIa (FXIIIa) mediated ligation of fibrin chains. In clotting experiments with fresh blood RVV was found to disrupt normal coagulation, leading to small, partial clot formation, whereas RVV pretreated with the PLA2 inhibitor Varespladib induced rapid and complete clot formation (after 5 min) compared to blood alone. CONCLUSION: The observations that fatty acid anions and anionic detergents induce conformational changes that render fibrin(ogen) more susceptible to proteolysis by RVV proteinases and that RVV-PLA2 activity (which produces FFA) is required to render blood incoagulable in clotting experiments with RVV indicate a mechanism by which the activity of highly abundant RVV-PLA2 promotes degradation and depletion of fibrin(ogen) resulting in incoagulable blood seen following RVV envenomation (VICC).
Collapse
Affiliation(s)
- Aswathy Alangode
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Margaret Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India
| | - Martin Reick
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O., Kollam, 690 525, Kerala, India.
| |
Collapse
|
3
|
Stefan A, Calonghi N, Schipani F, Dal Piaz F, Sartor G, Hochkoeppler A. Purification of active recombinant human histone deacetylase 1 (HDAC1) overexpressed in Escherichia coli. Biotechnol Lett 2018; 40:1355-1363. [PMID: 29948514 DOI: 10.1007/s10529-018-2585-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/11/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Fabrizio Schipani
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giorgio Sartor
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy.
- CSGI, University of Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
4
|
Yoneda JS, Scanavachi G, Sebinelli HG, Borges JC, Barbosa LRS, Ciancaglini P, Itri R. Multimeric species in equilibrium in detergent-solubilized Na,K-ATPase. Int J Biol Macromol 2016; 89:238-45. [PMID: 27109755 DOI: 10.1016/j.ijbiomac.2016.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
In this work, we find an equilibrium between different Na,K-ATPase (NKA) oligomeric species solubilized in a non-ionic detergent C12E8 by means of Dynamic Light Scattering (DLS), Analytical Ultracentrifugation (AUC), Small Angle X-ray Scattering (SAXS), Spectrophotometry (absorption at 280/350nm) and enzymatic activity assay. The NKA sample after chromatography purification presented seven different populations as identified by AUC, with monomers and tetramers amounting to ∼55% of the total protein mass in solution. These two species constituted less than 40% of the total protein mass after increasing the NKA concentration. Removal of higher-order oligomer/aggregate species from the NKA solution using 220nm-pore filter resulted in an increase of the specific enzymatic activity. Nevertheless, the enzyme forms new large aggregates over an elapsed time of 20h. The results thus point out that C12E8-solubilized NKA is in a dynamic equilibrium of monomers, tetramers and high-order oligomers/subunit aggregates. These latter have low or null activity. High amount of detergent leads to the dissociation of NKA into smaller aggregates with no enzymatic activity.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil; Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Heitor Gobbi Sebinelli
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlio Cesar Borges
- Instituto de Química de São Carlos, IQSC-USP, 13560-970 São Carlos, SP, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil.
| |
Collapse
|
5
|
Nielsen AD, Borch K, Westh P. Thermal Stability of Humicola insolens Cutinase in aqueous SDS. J Phys Chem B 2007; 111:2941-7. [PMID: 17319710 DOI: 10.1021/jp065896u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cutinase from Humicola insolens (HiC) has previously been shown to bind anomalously low amounts of the anionic surfactant sodium dodecylsulfate (SDS). In the current work, we have applied scanning and titration calorimetry to investigate possible relationships between this weak interaction and the effect of SDS on the equilibrium and kinetic stability of HiC. The results are presented in a "state-diagram," which specifies the stable form of the protein as a function of temperature and SDS concentration. In comparison with other proteins, the equilibrium stability HiC is strongly decreased by SDS. For low SDS concentrations (SDS:HiC molar ratio, MR < 8) this trait is also found for the kinetically controlled thermal aggregation of the protein. At higher MR, however, SDS stabilizes noticeably against irreversible aggregation. We suggest that this relies on electrostatic repulsion of the increasingly negatively charged HiC-SDS complexes. The combined interpretation of calorimetric and binding data allowed the calculation of the changes in enthalpy and heat capacity for the association of HiC and SDS near the saturation point. The latter function was about -410 J mol(-1) K(-1) or similar to the heat capacity change for micelle formation (-470 J mol(-1) K(-1)). This suggests that SDS is hydrated to a similar extent in the micellar and protein associated forms. The results are discussed in terms of the Wyman theory for linked equilibria. Quantitative analysis along these lines suggests that the reversible thermal unfolding of the protein couples to the binding of 2-3 additional SDS molecules. This corresponds to a 15-20% increase in the binding number. Wyman theory also rationalizes relationships between low affinity and high susceptibility observed in this study.
Collapse
Affiliation(s)
- Anders D Nielsen
- Department of Life Sciences and Chemistry, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|
6
|
Smiddy MA, Martin JEGH, Kelly AL, de Kruif CG, Huppertz T. Stability of Casein Micelles Cross-Linked by Transglutaminase. J Dairy Sci 2006; 89:1906-14. [PMID: 16702254 DOI: 10.3168/jds.s0022-0302(06)72258-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, caseins micelles were internally cross-linked using the enzyme transglutaminase (TGase). The integrity of the micelles was examined on solubilization of micellar calcium phosphate (MCP) or on disruption of hydrophobic interactions and breakage of hydrogen bonds. The level of monomeric caseins, determined electrophoretically, decreased with increasing time of incubation with TGase at 30 degrees C; after incubation for 24 h, no monomeric beta- or kappa-caseins were detected, whereas only a small level of monomeric alphaS1-casein remained, suggesting near complete intramicellar cross-linking. The ability of casein micelles to maintain structural integrity on disruption of hydrophobic interactions (using urea, sodium dodecyl sulfate, or heating in the presence of ethanol), solubilization of MCP (using the calcium-chelating agent trisodium citrate) or high-pressure treatment was estimated by measurement of the L*-value of milk; i.e., the amount of back-scattered light. The amount of light scattered by casein micelles in noncross-linked milk was reduced by >95% on complete disruption of hydrophobic interactions or complete solubilization of MCP; treatment of milk with TGase increased the stability of casein micelles against disruption by all methods studied and stability increased progressively with incubation time. After 24 h of cross-linking, reductions in the extent of light scattering were still apparent in the presence of high levels of dissociating agents, possibly through citrate-induced removal of MCP nanoclusters from the micelles, or urea- or sodium dodecyl sulfate-induced increases in solvent refractive index, which reduce the extent of light-scattering.
Collapse
Affiliation(s)
- M A Smiddy
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
7
|
SDS-induced conformational transitions of ervatamin B: evidence of greater stability of α-rich domain compared to β-rich domain of the SDS derived state. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00160-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Fischer NO, McIntosh CM, Simard JM, Rotello VM. Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci U S A 2002; 99:5018-23. [PMID: 11929986 PMCID: PMC122714 DOI: 10.1073/pnas.082644099] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient binding of biomacromolecular surfaces by synthetic systems requires the effective presentation of complementary elements over large surface areas. We demonstrate here the use of mixed monolayer protected gold clusters (MMPCs) as scaffolds for the binding and inhibition of chymotrypsin. In these studies anionically functionalized amphiphilic MMPCs were shown to inhibit chymotrypsin through a two-stage mechanism featuring fast reversible inhibition followed by a slower irreversible process. This interaction is very efficient, with a K(i)(app) = 10.4 +/- 1.3 nM. The MMPC-protein complex was characterized by CD, demonstrating an almost complete denaturation of the enzyme over time. Dynamic light scattering studies confirm that inhibition proceeds without substantial MMPC aggregation. The electrostatic nature of the engineered interactions provides a level of selectivity: little or no inhibition of function was observed with elastase, beta-galactosidase, or cellular retinoic acid binding protein.
Collapse
Affiliation(s)
- Nicholas O Fischer
- Program in Molecular and Cellular Biology, Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
9
|
Morel MH, Dehlon P, Autran JC, Leygue JP, Bar-L'Helgouac'h C. Effects of Temperature, Sonication Time, and Power Settings on Size Distribution and Extractability of Total Wheat Flour Proteins as Determined by Size-Exclusion High-Performance Liquid Chromatography. Cereal Chem 2000. [DOI: 10.1094/cchem.2000.77.5.685] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M.-H. Morel
- Unité de Technologie des Céréales et des Agropolymères, INRA, Montpellier, France
- Corresponding author. Fax: 3304-67-522094. E-mail:
| | - P. Dehlon
- Institut Technique des Céréales et des Fourrages, Paris, France
| | - J. C. Autran
- Unité de Technologie des Céréales et des Agropolymères, INRA, Montpellier, France
| | - J. P. Leygue
- Institut Technique des Céréales et des Fourrages, Paris, France
| | | |
Collapse
|
10
|
The influence of the binding of low molecular weight surfactants on the thermal stability and secondary structure of IgG. Colloids Surf A Physicochem Eng Asp 2000. [DOI: 10.1016/s0927-7757(99)00332-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rao KS, Suryaprakash P, Prakash V. Interaction of 5,7-dihydroxy-4'-methoxyflavone with a multisubunit protein, carmin: thermodynamics and kinetics of interaction. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 47:323-32. [PMID: 8791154 DOI: 10.1111/j.1399-3011.1996.tb01080.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acacetin (5,7-dihydroxy-4'-methoxy flavone) is a flavone intrinsically present in the seeds of Carthamus tinctorius. Carmin is a multimeric, high molecular weight protein from the seeds of Carthamus tinctorius. The association constant of interaction of acacetin and carmin is maximum at 37.2 degrees C with a value of (3.96 +/- 0.61) x 10(4) M-1 as measured by fluorescence quenching. Acacetin has at least two binding sites on carmin. The interaction follows pseudo-first-order kinetics with a reaction rate constant of 3.4 +/- 0.4 s-1. The titration calorimetric data suggest that binding sites for acacetin and its structural analogue, biochanin A, are conserved. The interaction does not affect the association-dissociation equilibrium of the protein. Also, the binding does not induce any significant conformational changes in the protein as monitored by circular dichroic spectra. Biochanin A (5, 7-dihydroxy-4'-methoxyisoflavone), a structural analogue, interacts with carmin with an association constant of (9.33 +/- 1.44) x 10(4) M-1 at 36.9 degrees C. This indicates that the stereochemistry of the ligand plays an important role in the binding process of flavone to protein. Interaction studies of chemically modified lysyl and tryptophanyl groups separately, and lysyl and tryptophanyl groups sequentially, in the protein carmin with the ligands reveal the involvement of tryptophanyl residues in the binding process and show that it is predominantly an entropically driven hydrophobic interaction.
Collapse
Affiliation(s)
- K S Rao
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore, India
| | | | | |
Collapse
|