1
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Murthy KR, Goel R, Subbannayya Y, Jacob HK, Murthy PR, Manda SS, Patil AH, Sharma R, Sahasrabuddhe NA, Parashar A, Nair BG, Krishna V, Prasad TK, Gowda H, Pandey A. Proteomic analysis of human vitreous humor. Clin Proteomics 2014; 11:29. [PMID: 25097467 PMCID: PMC4106660 DOI: 10.1186/1559-0275-11-29] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/16/2014] [Indexed: 12/11/2022] Open
Abstract
Background The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry. Results The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957. Conclusion This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract.
Collapse
Affiliation(s)
- Krishna R Murthy
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690 525, India.,Vittala International Institute Of Ophthalmology, Bangalore, Karnataka 560085, India
| | - Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Department of Biotechnology, Kuvempu University, Shankaraghatta, Karnataka 577 451, India
| | - Yashwanth Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Harrys Kc Jacob
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Praveen R Murthy
- Vittala International Institute Of Ophthalmology, Bangalore, Karnataka 560085, India
| | - Srikanth Srinivas Manda
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Rakesh Sharma
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560 006, India
| | | | | | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690 525, India
| | | | - Ts Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690 525, India.,Centre of Excellence in Bioinformatics, Bioinformatics Centre, School of Life Sciences, Pondicherry University, Puducherry 605 014, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India
| | - Akhilesh Pandey
- Department of Biological Chemistry, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA.,Department of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205 MD, USA
| |
Collapse
|
3
|
Ksantini M, Sénéchal A, Bocquet B, Meunier I, Brabet P, Hamel CP. Screening genes of the visual cycle RGR, RBP1 and RBP3 identifies rare sequence variations. Ophthalmic Genet 2011; 31:200-4. [PMID: 21067480 DOI: 10.3109/13816810.2010.512354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The visual cycle is essential for vision and several genes encoding proteins of the cycle have been found mutated in various forms of inherited retinal dystrophy. We screened 3 genes of the visual cycle. RGR, encoding the retinal pigment epithelium (RPE) G protein-coupled receptor acting in vitro as a photoisomerase; RBP1, encoding the ubiquitous cellular retinol binding protein carrying intracellular all-trans retinoids; RBP3, encoding the interphotoreceptor retinoid binding protein, a retinal-specific protein which shuttles all-trans retinol from photoreceptors to RPE and 11-cis retinal from RPE to photoreceptors. We used denaturing high performance liquid chromatography (D-HPLC) and direct sequencing to screen 216 patients (134 with autosomal recessive or sporadic retinitis pigmentosa (RP) and 82 with other retinal dystrophies) for RBP1 and RBP3, and 331 patients for RGR (79 cases with autosomal dominant RP and 36 RP cases with undetermined inheritance were added to the 216 previous patients). Several variants were found in the 3 genes, including unique amino acid changes, but none of them showed evidence of pathogenicity. It is likely that mutations in RGR, RBP3, and possibly RBP1 occur rarely in inherited retinal dystrophies.
Collapse
Affiliation(s)
- Mohamed Ksantini
- Genetics of Sensory Diseases, Hospital of Montpellier, Montpellier, France
| | | | | | | | | | | |
Collapse
|
4
|
Muniz A, Villazana-Espinoza ET, Hatch AL, Trevino SG, Allen DM, Tsin ATC. A novel cone visual cycle in the cone-dominated retina. Exp Eye Res 2007; 85:175-84. [PMID: 17618621 PMCID: PMC2001262 DOI: 10.1016/j.exer.2007.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 11/19/2022]
Abstract
The visual processing of humans is primarily reliant upon the sensitivity of cone photoreceptors to light during daylight conditions. This underscores the importance of understanding how cone photoreceptors maintain the ability to detect light. The vertebrate retina consists of a combination of both rod and cone photoreceptors. Subsequent to light exposure, both rod and cone photoreceptors are dependent upon the recycling of vitamin A to regenerate photopigments, the proteins responsible for detecting light. Metabolic processing of vitamin A in support of rod photopigment renewal, the so-called "rod visual cycle", is well established. However, the metabolic processing of vitamin A in support of cone photopigment renewal remains a challenge for characterization in the recently discovered "cone visual cycle". In this review we summarize the research that has defined the rod visual cycle and our current concept of the novel cone visual cycle. Here, we highlight the research that supports the existence of a functional cone-specific visual cycle: the identification of novel enzymatic activities that contribute to retinoid recycling, the observation of vitamin A recycling in cone-dominated retinas, and the localization of some of these activities to the Müller cell. In the opinions of the authors, additional research on the possible interactions between these two visual cycles in the duplex retina is needed to understand visual detection in the human retina.
Collapse
Affiliation(s)
- Albert Muniz
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
5
|
Deeg CA, Hauck SM, Amann B, Kremmer E, Stangassinger M, Ueffing M. Major retinal autoantigens remain stably expressed during all stages of spontaneous uveitis. Mol Immunol 2007; 44:3291-6. [PMID: 17467057 DOI: 10.1016/j.molimm.2007.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
Equine recurrent uveitis (ERU) is a valuable model for autoimmune diseases, since it develops frequently and occurs spontaneously. We investigated the overall expression level of three major retinal autoantigens in normal retinas and various ERU stages. Analysis of retinal proteomes of both, healthy and diseased retinas revealed an almost unaffected expression of IRBP, S-antigen and cRALBP in ERU cases. Validation of these findings with western blots and immunohistochemistry confirmed constant to increased expression of these autoantigens, although loss of their physiological expression sites within retina is evident. In contrast to stable expression of autoantigens, rhodopsin, the major component of phototransduction in photoreceptors, disappeared from destructed retinas. These results explain persistent uveitic attacks even in severely damaged eyes and draw the attention to further investigations of biological pathways and regulations in autoimmune target tissues.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Institute of Animal Physiology, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Yu L, Li QW, Ryder OA, Zhang YP. Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Mol Phylogenet Evol 2004; 32:480-94. [PMID: 15223031 DOI: 10.1016/j.ympev.2004.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 01/12/2004] [Indexed: 11/18/2022]
Abstract
The taxomic classification and phylogenetic relationships within the bear family remain argumentative subjects in recent years. Prior investigation has been concentrated on the application of different mitochondrial (mt) sequence data, herein we employ two nuclear single-copy gene segments, the partial exon 1 from gene encoding interphotoreceptor retinoid binding protein (IRBP) and the complete intron 1 from transthyretin (TTR) gene, in conjunction with previously published mt data, to clarify these enigmatic problems. The combined analyses of nuclear IRBP and TTR datasets not only corroborated prior hypotheses, positioning the spectacled bear most basally and grouping the brown and polar bear together but also provided new insights into the bear phylogeny, suggesting the sister-taxa association of sloth bear and sun bear with strong support. Analyses based on combination of nuclear and mt genes differed from nuclear analysis in recognizing the sloth bears as the earliest diverging species among the subfamily ursine representatives while the exact placement of the sun bear did not resolved. Asiatic and American black bears clustered as sister group in all analyses with moderate levels of bootstrap support and high posterior probabilities. Comparisons between the nuclear and mtDNA findings suggested that our combined nuclear dataset have the resolving power comparable to mtDNA dataset for the phylogenetic interpretation of the bear family. As can be seen from present study, the unanimous phylogeny for this recently derived family was still not produced and additional independent genetic markers were in need.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Molecular Biology of Domestic Animals and Cellular and Molecular Evolution, Kunming Institute of Zoology, Kunming, China
| | | | | | | |
Collapse
|
7
|
Gonzalez-Fernandez F. Interphotoreceptor retinoid-binding protein--an old gene for new eyes. Vision Res 2004; 43:3021-36. [PMID: 14611938 DOI: 10.1016/j.visres.2003.09.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evolving 40 times independently, eyes are striking examples of convergent evolution in that 11-cis retinaldehyde is always used for photon capture, yet the mechanism for its regeneration may be dramatically different in between systems. In particular, insects, cephalopods and vertebrates show varying physical separation of the cis-->trans photoisomerization and chromphore reisomerization. In the vertebrate retina, these two processes are actually distributed between different cells. This compartmentalization is made possible by the phylogenetic innovation of the two-layered optic cup of the vertebrate retina. This unprecedented design created the subretinal space as a novel anatomical compartment allowing photoreceptors access to the retinal pigment epithelium (RPE) and Müller cells, the two cell types which share the burden of 11-cis retinoid regeneration. To take advantage of this arrangement, early vertebrates appear to have recruited for retinoid binding, the betabetaalpha-spiral fold proven useful in enoyl-CoA isomerase/hydratases, and the carboxy-terminal proteases for stabilizing hydrophobic ligands. Quadruplication of this functional domain within a single polypeptide lead to the emergence of interphotoreceptor retinoid-binding protein (IRBP). IRBP is the main soluble component of the IPM, and is prevented from diffusing out of the subretinal space because its large size excludes it from the photoreceptor/Müller cell zonulae adheretes. Despite this physical entrapment, IRBP is rapidly turned over within the IPM through a process that coordinates secretion of the protein by the photoreceptors, and its removal from the matrix by RPE and photoreceptor endocytosis. The present review will summarize what is known about the structure and function of IRBP to anticipate future avenues of research.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Department of Ophthalmology, State University of New York at Buffalo and Medical Research Service, Veteran's Affairs Medical Center, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| |
Collapse
|
8
|
Cunningham LL, Gonzalez-Fernandez F. Internalization of interphotoreceptor retinoid-binding protein by theXenopus retinal pigment epithelium. J Comp Neurol 2003; 466:331-42. [PMID: 14556291 DOI: 10.1002/cne.10861] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Xenopus rods and cones secrete into the interphotoreceptor matrix (IPM) a 124-kDa glycoprotein termed interphotoreceptor retinoid-binding protein (IRBP; Hessler et al. [1996] J. Comp. Neurol. 367:329-341). IRBP is confined to the IPM, being too large to diffuse through the zonulae adherentes between adjacent photoreceptor and Müller cells. Despite this physical entrapment within the subretinal space, IRBP is rapidly cleared from the IPM by an unknown mechanism. Immunohistochemistry and immunoelectron microscopy were used to localize IRBP in intact and detached retina-retinal pigment epithelium (RPE) eyecups. The effects of light, dark, and time of day on the compartmentalization of IRBP were characterized by quantitative Western blot analysis and by immunoprecipitation of IRBP labeled in vivo by intraocular injection of [(35)S]methionine. Immunohistochemistry showed that the apparent intercellular IRBP in both the RPE and the photoreceptors is resistant to saline extraction, in contrast to that in the IPM. In the RPE, IRBP was associated with matrix material within phagosomes and endosomes. The IPM, RPE, and retina contained 75%, 18%, and 7% of the total IRBP in the eye, respectively. The IPM and RPE contain 130 +/- 14 pmoles and 34 +/- 4 pmoles of IRBP, respectively. The amounts of IRBP in the RPE at middark and midlight were the same. Furthermore, the in vivo uptake of [(35)S]methionine-labeled IRBP was light independent. Our studies suggest that IRBP is not strictly confined to the subretinal space but rather that significant amounts are present intracellularly, particularly within the RPE, which does not synthesize IRBP. Furthermore, IRBP secreted by the photoreceptors is taken up from the IPM mainly through a light-independent endocytic pathway separate from outer segment phagocytosis. The role of RPE endocytosis should be explored in relation to the function of IRBP.
Collapse
Affiliation(s)
- Lisa L Cunningham
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-HNS, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
9
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
10
|
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) greatly enhances the conversion of all- trans -retinol to 11- cis -retinal by the retinal pigment epithelium (RPE) and facilitates 11- cis -retinal release from the RPE. However, the mechanisms by which IRBP exerts these effects are not clear. Using a model system of purified bovine IRBP and isolated bovine RPE membranes, we investigated the possibility that IRBP may favor the delivery of all- trans -retinol to, or the release of 11- cis -retinal from, RPE membranes. As the interphotoreceptor space contains serum retinol-binding protein (RBP) and serum albumin in addition to IRBP, we similarly examined the exchange of retinoids between RPE membranes and human RBP or bovine serum albumin (BSA). Isolated RPE membranes were loaded with radioactive 11- cis -retinal and incubated with solutions of IRBP, RBP, BSA or with buffer alone. Membranes (pellet) and retinoid-binding protein or buffer (supernatant) were separated by centrifugation and analysed for radioactive 11- cis -retinal. Membranes incubated with buffer alone released only 4-5% of their 11- cis -retinal, while 25 microm IRBP removed 18-35%. More retinal was released as the membrane concentration was reduced. In contrast, RBP and BSA removed little retinal, even though both proteins are capable of binding this retinoid. Similar results were obtained with bovine liver membranes, consistent with the idea that the effects of IRBP do not depend on an RPE surface receptor for IRBP. IRBP was also markedly superior to RBP and BSA in removing all- trans -retinol from RPE membranes. In addition, IRBP efficiently delivered bound all- trans -retinol to membranes; however, in contrast to their differential removal of retinoids, all three binding proteins delivered comparable amounts of retinol to membranes. (This result supports the practice of using BSA as a retinoid carrier in in vitro experimental systems). We conclude that, whereas IRBP shares with other retinoid-binding proteins the ability to deliver retinol to membranes, IRBP is unique in its capacity to remove 11- cis -retinal from membranes. This may be the feature of IRBP that drives the vitamin A cycle to efficiently produce 11- cis -retinal.
Collapse
Affiliation(s)
- R B Edwards
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | |
Collapse
|
11
|
Gonzalez-Fernandez F, Baer CA, Baker E, Okajima TI, Wiggert B, Braiman MS, Pepperberg DR. Fourth module of Xenopus interphotoreceptor retinoid-binding protein: activity in retinoid transfer between the retinal pigment epithelium and rod photoreceptors. Curr Eye Res 1998; 17:1150-7. [PMID: 9872537 DOI: 10.1076/ceyr.17.12.1150.5129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Interphotoreceptor retinoid-binding protein (IRBP), an extracellular protein believed to support the exchange of retinoids between the neural retina and retinal pigment epithelium (RPE) in the vertebrate eye, exhibits a modular, i.e., repeat, structure. The present study was undertaken to determine whether an individual module of IRBP has activity in retinoid transfer between the RPE and rod photoreceptors. METHODS The retinoid transfer activity of a recombinant protein corresponding to the fourth module of Xenopus laevis IRBP (X4IRBP) was examined in two ways. First, X4IRBP was tested for its ability to support the regeneration of porphyropsin in detached/reattached Xenopus retina/RPE-eyecups. Following illumination and removal of native IRBP, Xenopus eyecups supplemented with 42 microM X4IRBP or (as a control) Ringer's solution were incubated in darkness and then analyzed for regenerated porphyropsin. Second, toad (Bufo marinus) RPE-eyecup preparations were used to evaluate X4IRBP's ability to promote the release of 11-cis retinal from the RPE. RESULTS The regeneration of porphyropsin in X4IRBP-supplemented Xenopus retina/RPE-eyecups (0.45 +/- 0.04 nmol; mean +/- SEM, n = 11) exceeded that in controls (0.13 +/- 0.02 nmol, n = 11). For promoting the release of 11-cis retinal from the toad RPE, 42 microM X4IRBP was more effective than equimolar bovine serum albumin although considerably less than that of 26 microM native bovine IRBP. CONCLUSIONS The results indicate a low but significant activity of IRBP's fourth module in reactions relevant to retinoid exchange.
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Baer CA, Retief JD, Van Niel E, Braiman MS, Gonzalez-Fernandez F. Soluble expression in E. coli of a functional interphotoreceptor retinoid-binding protein module fused to thioredoxin: correlation of vitamin A binding regions with conserved domains of C-terminal processing proteases. Exp Eye Res 1998; 66:249-62. [PMID: 9533851 DOI: 10.1006/exer.1997.0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exchange of all-trans retinol and 11-cis retinal between the photoreceptors and retinal pigmented epithelium is mediated by interphotoreceptor retinoid-binding protein (IRBP). IRBP contains binding sites for retinoids, docosahexaenoic acid and probably cell surface and matrix receptors. IRBP arose through the quadruplication of an ancient protein, represented by its carboxy-terminal module (module 4 in amphibians and mammals). Module 4 has retinol binding activity and is composed of regions coded for by each of IRBP's four exons. Determining the function of the exons has been hampered by insoluble expression of module 4 in Escherichia coli. Here, we found that module 4 of Xenopus IRBP (X4IRBP), as well as its exon segments, can be expressed in a soluble form as thioredoxin fusion proteins. The recombinant proteins were purified by ion exchange and arsenical-based affinity chromatography. Liquid chromatography/mass spectrometry confirmed that the sequence of X4IRBP is correct. All-trans retinol binding was characterized by monitoring enhancement of retinol fluorescence, quenching of intrinsic protein fluorescence, and transfer of energy to the bound retinol. Retinol bound to X4IRBP at 2.20+/-0.29 sites with a KD=1.25+/-0.39. One of the two sites was localized to Exons(2+3) and had a KD=0.26+/-0.13 micron. This site, which supported protein quenching and energy transfer, probably contains at least one of the two conserved tryptophans present in this segment. The second site was localized to Exon 4. This site supported the enhancement of retinol fluorescence but not protein quenching or energy transfer and had a KD=1.94+/-0.20 micron. Exon 1 had no retinol binding activity. The location of the retinol binding regions correlated with the distribution of domains conserved between IRBPs and the newly recognized family of C-terminal processing proteases (CtpAs), proteins which bind and cleave non-polar carboxy termini.
Collapse
Affiliation(s)
- C A Baer
- Department of Ophthalmology, University of Virginia Health Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
13
|
Bobola N, Hirsch E, Albini A, Altruda F, Noonan D, Ravazzolo R. A single cis-acting element in a short promoter segment of the gene encoding the interphotoreceptor retinoid-binding protein confers tissue-specific expression. J Biol Chem 1995; 270:1289-94. [PMID: 7836393 DOI: 10.1074/jbc.270.3.1289] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is the major protein component of the interphotoreceptor matrix. IRBP has a highly restricted tissue-specific expression in retinal photoreceptor cells and in a subgroup of pinealocytes. With the purpose of understanding how transcriptional regulation contributes to the expression of human IRBP, we have studied a short promoter fragment (from -123 to +18, relative to the transcription start site). We demonstrate, by analysis of the expression of the lacZ reporter gene fused to this short promoter fragment in transgenic mice, that it is sufficient to confer tissue-specific expression in retinal photoreceptors and in pinealocytes. DNA/protein binding assays, performed to identify binding sites for tissue-specific trans-acting factors, have shown that an element between -45 and -58 binds a factor present only in nuclear extracts of retinoblastoma-derived cell lines, which express IRBP. An element further upstream, between -86 and -106, binds apparently ubiquitous factors. Site-directed mutagenesis was performed to disrupt a GATTAA motif included in the -45 to -58 binding site and a second inverted GATTAA motif present shortly upstream. In transgenic mice bearing the mutated version of the promoter fragment, the expression of the reporter gene was completely abolished, thus suggesting that this element is essential for tissue-specific expression. A GATTAA motif appears in the 5'-flanking regions of several photoreceptor-specific genes, suggesting that this could be the recognition site for a photoreceptor-specific factor.
Collapse
Affiliation(s)
- N Bobola
- Institute of Biology and Genetics, University of Genova, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Baer CA, Kittredge KL, Klinger AL, Briercheck DM, Braiman MS, Gonzalez-Fernandez F. Expression and characterization of the fourth repeat of Xenopus interphotoreceptor retinoid-binding protein in E. coli. Curr Eye Res 1994; 13:391-400. [PMID: 7924403 DOI: 10.3109/02713689408999866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interphotoreceptor retinoid-binding protein (IRBP) is an extracellular glycolipoprotein which in higher vertebrates has a 4-repeat structure and carries endogenous vitamin A and fatty acids. The location of IRBP's 1-2 binding sites for retinol is unknown. To begin to understand which repeat(s) are responsible for ligand-binding, we expressed the fourth repeat of Xenopus IRBP in E. coli to determine if it could by itself bind all-trans retinol. Our expression studies used a polyhistidine fusion domain to purify the recombinant protein directly from inclusion bodies. The fusion protein could be renatured without aggregation if refolded at a sufficiently dilute concentration (< 3 microM). The recombinant fourth repeat of Xenopus IRBP binds [3H]all-trans retinol and the fluorescence of this ligand increases 8-fold upon binding. The binding is saturable with a Kd = 0.4 microM. The expression of recombinant IRBP fragments as fusion proteins in prokaryotes will be useful for defining the structural requirements for ligand binding by this interesting protein.
Collapse
Affiliation(s)
- C A Baer
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Gonzalez-Fernandez F, Kittredge KL, Rayborn ME, Hollyfield JG, Landers RA, Saha M, Grainger RM. Interphotoreceptor retinoid-binding protein (IRBP), a major 124 kDa glycoprotein in the interphotoreceptor matrix of Xenopus laevis. Characterization, molecular cloning and biosynthesis. J Cell Sci 1993; 105 ( Pt 1):7-21. [PMID: 8360278 DOI: 10.1242/jcs.105.1.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that the neural retina of Xenopus laevis secretes into the extracellular matrix surrounding the inner and outer segments of its photoreceptors a glycoprotein containing hydrophobic domains conserved in mammalian interphotoreceptor retinoid-binding proteins (IRBPs). The soluble extract of the interphotoreceptor matrix contains a 124 kDa protein that cross-reacts with anti-bovine IRBP immunoglobulins. In vitro [3H]fucose incorporation studies combined with in vivo light and electron microscopic autoradiographic analysis, showed that the IRBP-like glycoprotein is synthesized by the neural retina and secreted into the interphotoreceptor matrix. A 1.2 kb Xenopus IRBP cDNA was isolated by screening a stage 42 (swimming tadpole) lambda Zap II library with a human IRBP cDNA under low-stringency conditions. The cDNA hybridizes with a 4.2 kb mRNA in adult Xenopus neural retina, tadpole heads as well as a less-abundant mRNA of the same size in brain. During development, IRBP and opsin mRNA expression correlates with photoreceptor differentiation. The translated amino acid sequence of the Xenopus IRBP clone has an overall 70% identity with the fourth repeat of the human protein. Sequence alignment with the four repeats of human IRBP showed three highly conserved regions, rich in hydrophobic residues. This focal conservation predicts domains important to the protein's function, which presumably is to facilitate the exchange of 11-cis retinal and all-trans retinol between the pigment epithelium and photoreceptors, and to the transport of fatty acids through the hydrophilic interphotoreceptor matrix.
Collapse
Affiliation(s)
- F Gonzalez-Fernandez
- Department of Ophthalmology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | | | | | | | | | | | | |
Collapse
|
17
|
Jordan SA, Farrar GJ, Kenna P, Humphries MM, Sheils DM, Kumar-Singh R, Sharp EM, Soriano N, Ayuso C, Benitez J. Localization of an autosomal dominant retinitis pigmentosa gene to chromosome 7q. Nat Genet 1993; 4:54-8. [PMID: 8513324 DOI: 10.1038/ng0593-54] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retinitis pigmentosa is a group of clinically and genetically heterogeneous retinopathies and a significant cause of worldwide visual handicap. We have typed DNA from members of a Spanish family segregating an autosomal dominant form of retinitis pigmentosa (adRP) using a large series of simple sequence polymorphic markers. Positive two-point lod scores have been obtained with fifteen markers including D7S480 (theta max = 0.00, Zmax = 7.22). Multipoint analyses using a subset of these markers gave a lod score of 7.51 maximizing at D7S480. These data provide definitive evidence for the localisation of an adRP gene on chromosome 7q, and highlight the extensive genetic heterogeneity that exists in the autosomal dominant form of this disease.
Collapse
Affiliation(s)
- S A Jordan
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol 1993; 7:61-85. [PMID: 8318167 DOI: 10.1007/bf02780609] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retina pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.
Collapse
Affiliation(s)
- D R Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences
| | | | | | | | | | | |
Collapse
|
19
|
Yokoyama T, Liou GI, Caldwell RB, Overbeek PA. Photoreceptor-specific activity of the human interphotoreceptor retinoid-binding protein (IRBP) promoter in transgenic mice. Exp Eye Res 1992; 55:225-33. [PMID: 1426058 DOI: 10.1016/0014-4835(92)90186-v] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In order to define the cellular specificity of the interphotoreceptor retinoid-binding protein (IRBP) promoter in the retina, we linked the human IRBP promoter to the beta-galactosidase (lacZ) gene and made five lines of transgenic mice. In three of the five transgenic mouse lines, retinas showed positive staining upon incubation with 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-gal). Mice from one line (OVE278B) showed positive X-gal staining throughout the retina except for the most peripheral regions. Interestingly, the staining was heterogeneous throughout the retina. Heavily stained regions were interspersed with lightly stained areas. Mice in two other lines showed highly mosaic X-gal staining patterns. Histological examination demonstrated that staining was confined to photoreceptor cells in all three expressing families. Furthermore, electron microscopy showed that the promoter is active in both rod and cone cells. Our results demonstrate that the human IRBP promoter can be used to obtain photoreceptor-specific gene expression in transgenic mice.
Collapse
Affiliation(s)
- T Yokoyama
- Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | |
Collapse
|
20
|
Expression of Mouse Interphotoreceptor Retinoid-Binding Protein Gene during Development. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-12-185267-2.50013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Liou GI, Matragoon S, Yang J, Geng L, Overbeek PA, Ma DP. Retina-specific expression from the IRBP promoter in transgenic mice is conferred by 212 bp of the 5'-flanking region. Biochem Biophys Res Commun 1991; 181:159-65. [PMID: 1958183 DOI: 10.1016/s0006-291x(05)81395-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IRBP is a photoreceptor-specific glycoprotein that has been suggested as a retinoid carrier in the visual process. Previous research has shown that 1.3 kb of 5'-flanking sequence from the human IRBP gene is sufficient to promote photoreceptor-specific expression of reporter genes in transgenic mice. To define more narrowly the sequences that promote tissue-specific expression, chimeric constructs with shorter promoters were used to generate transgenic mice. The bacterial CAT gene was fused to fragments of 706 bp or 212 bp from the 5' end of the human IRBP gene. Analysis of the three transgenic families bearing the 706 bp IRBP promoter revealed that CAT expression was confined to the neuro-retina and the pineal gland. Analysis of the four transgenic families bearing the 212 bp IRBP promoter revealed the same tissue-specific CAT expression in three families. These results establish that tissue-specific expression of IRBP can be regulated by a short 212 bp promoter which has been conserved between humans and mice.
Collapse
Affiliation(s)
- G I Liou
- Department of Ophthalmology, Medical College of Georgia, Augusta 30912
| | | | | | | | | | | |
Collapse
|
22
|
Liou GI, Geng L, al-Ubaidi MR, Matragoon S, Hanten G, Baehr W, Overbeek PA. Tissue-specific expression in transgenic mice directed by the 5'-flanking sequences of the human gene encoding interphotoreceptor retinoid-binding protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38895-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Fong SL, Fong WB, Morris TA, Kedzie KM, Bridges CD. Characterization and comparative structural features of the gene for human interstitial retinol-binding protein. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39642-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Affiliation(s)
- U Eriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| |
Collapse
|
25
|
Si JS, Borst DE, Redmond TM, Nickerson JM. Cloning of cDNAs encoding human interphotoreceptor retinoid-binding protein (IRBP) and comparison with bovine IRBP sequences. Gene X 1989; 80:99-108. [PMID: 2792773 DOI: 10.1016/0378-1119(89)90254-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have determined the sequence of the human interphotoreceptor retinoid-binding protein mRNA from three separately isolated cDNAs. The sequence is 4.28 kb long and encodes a protein of 1247 amino acids (aa) including a putative signal peptide and propeptide. The sequence is shorter (by about 1.67 kb) than the bovine mRNA with the major difference in the lengths located in the 3'-untranslated region. We suggest that this resulted from an insertion in the bovine gene or a large deletion from the human gene. The insertion/deletion is flanked on either side by sequences that are similar in the bovine and human sequences. Like the bovine polypeptide, the deduced protein sequence from the human cDNA contains a fourfold repeat, with each repeat containing about 300 aa. Among the four repeats, the identity is about 30-40%. The identity between the complete bovine and human polypeptide sequences is 84%. The identity between the nucleotide sequences is 83% (excluding the major insertion/deletion). Comparison with the bovine gene indicates that the human sequence may lack about 5-10 bp at the 5' end of the cDNA; it, however, includes a poly(A) tail at the 3' end. Thus, the human sequence is virtually full length, is similar to the bovine sequence, and contains a striking fourfold repeat.
Collapse
Affiliation(s)
- J S Si
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892
| | | | | | | |
Collapse
|