1
|
Chen J, Yang S, Li Y, Ziwen X, Zhang P, Song Q, Yao Y, Pei H. De novo nucleotide biosynthetic pathway and cancer. Genes Dis 2023; 10:2331-2338. [PMID: 37554216 PMCID: PMC10404870 DOI: 10.1016/j.gendis.2022.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms. Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation. Thus, the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases, such as cancer. It has been shown that many enzymes in this pathway are overactivated in different cancers. In this review, we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway, regulatory mechanisms, its role in tumorigenesis, and potential targeting opportunities.
Collapse
Affiliation(s)
- Jie Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Xu Ziwen
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Huadong Pei
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA
| |
Collapse
|
2
|
Bai R, He AL, Guo J, Li Z, Yu X, Zeng J, Mi Y, Wang L, Zhang J, Yang D. Novel pathogenic variant (c.2947C > T) of the carbamoyl phosphate synthetase 1 gene in neonatal-onset deficiency. Front Neurosci 2022; 16:1025572. [PMID: 36340787 PMCID: PMC9634248 DOI: 10.3389/fnins.2022.1025572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder characterized by hyperammonaemia. The biochemical measurement of the intermediate metabolites is helpful for CPS1D diagnosis; it however cannot distinguish CPS1D from N-acetylglutamate synthetase deficiency. Therefore, next-generation sequencing (NGS) is often essential for the accurate diagnosis of CPS1D. Methods NGS was performed to identify candidate gene variants of CPS1D in a Asian neonatal patient presented with poor feeding, reduced activity, tachypnea, lethargy, and convulsions. The potential pathogenicity of the identified variants was predicted by various types of bioinformatical analyses, including evolution conservation, domain and 3D structure simulations. Results Compound heterozygosity of CPS1D were identified. One was in exon 24 with a novel heterozygous missense variant c.2947C > T (p.P983S), and another was previously reported in exon 20 with c.2548C > T (p.R850C). Both variants were predicted to be deleterious. Conservation analysis and structural modeling showed that the two substituted amino acids were highly evolutionarily conserved, resulting in potential decreases of the binding pocket stability and the partial loss of enzyme activity. Conclusion In this study, two pathogenic missense variants were identified with NGS, expanding the variants pectrum of the CPS1 gene. The variants and related structural knowledge of CPS enzyme demonstrate the applicability for the accurate diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ruimiao Bai
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - ALing He
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Zhankui Li
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Xiping Yu
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - JunAn Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Lin Wang
- Genetics Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jingjing Zhang
- Medical Imaging Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Dong Yang
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis. Sci Rep 2015; 5:16950. [PMID: 26592762 PMCID: PMC4655335 DOI: 10.1038/srep16950] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations.
Collapse
|
4
|
Joshi AD, Mustafa MG, Lichti CF, Elferink CJ. Homocitrullination Is a Novel Histone H1 Epigenetic Mark Dependent on Aryl Hydrocarbon Receptor Recruitment of Carbamoyl Phosphate Synthase 1. J Biol Chem 2015; 290:27767-78. [PMID: 26424795 DOI: 10.1074/jbc.m115.678144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a regulator of xenobiotic toxicity, is a member of the eukaryotic Per-Arnt-Sim domain protein family of transcription factors. Recent evidence identified a novel AhR DNA recognition sequence called the nonconsensus xenobiotic response element (NC-XRE). AhR binding to the NC-XRE in response to activation by the canonical ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin resulted in concomitant recruitment of carbamoyl phosphate synthase 1 (CPS1) to the NC-XRE. Studies presented here demonstrate that CPS1 is a bona fide nuclear protein involved in homocitrullination (hcit), including a key lysine residue on histone H1 (H1K34hcit). H1K34hcit represents a hitherto unknown epigenetic mark implicated in enhanced gene expression of the peptidylarginine deiminase 2 gene, itself a chromatin-modifying protein. Collectively, our data suggest that AhR activation promotes CPS1 recruitment to DNA enhancer sites in the genome, resulting in a specific enzyme-independent post-translational modification of the linker histone H1 protein (H1K34hcit), pivotal in altering local chromatin structure and transcriptional activation.
Collapse
Affiliation(s)
- Aditya D Joshi
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | | | - Cheryl F Lichti
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| | - Cornelis J Elferink
- From the Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555 and
| |
Collapse
|
5
|
Wille M, Schümann A, Kreutzer M, Glocker MO, Wree A, Mutzbauer G, Schmitt O. The proteome profiles of the olfactory bulb of juvenile, adult and aged rats - an ontogenetic study. Proteome Sci 2015; 13:8. [PMID: 25709559 PMCID: PMC4337183 DOI: 10.1186/s12953-014-0058-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background In this study, we searched for proteins that change their expression in the olfactory bulb (oB) of rats during ontogenesis. Up to now, protein expression differences in the developing animal are not fully understood. Our investigation focused on the question whether specific proteins exist which are only expressed during different development stages. This might lead to a better characterization of the microenvironment and to a better determination of factors and candidates that influence the differentiation of neuronal progenitor cells. Results After analyzing the samples by two-dimensional polyacrylamide gel electrophoresis (2DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), it could be shown that the number of expressed proteins differs depending on the developmental stages. Especially members of the functional classes, like proteins of biosynthesis, regulatory proteins and structural proteins, show the highest differential expression in the stages of development analyzed. Conclusion In this study, quantitative changes in the expression of proteins in the oB at different developmental stages (postnatal days (P) 7, 90 and 637) could be observed. Furthermore, the expression of many proteins was found at specific developmental stages. It was possible to identify these proteins which are involved in processes like support of cell migration and differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-014-0058-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Wille
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Antje Schümann
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Michael Kreutzer
- Proteome Center Rostock, Schillingallee 69, 18055 Rostock, Germany
| | | | - Andreas Wree
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| | - Grit Mutzbauer
- Department of Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Oliver Schmitt
- Department of Anatomy, Gertrudenstr. 9, 18055 Rostock, Germany
| |
Collapse
|
6
|
Ng BG, Wolfe LA, Ichikawa M, Markello T, He M, Tifft CJ, Gahl WA, Freeze HH. Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet 2015; 24:3050-7. [PMID: 25678555 DOI: 10.1093/hmg/ddv057] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022] Open
Abstract
In mitochondria, carbamoyl-phosphate synthetase 1 activity produces carbamoyl phosphate for urea synthesis, and deficiency results in hyperammonemia. Cytoplasmic carbamoyl-phosphate synthetase 2, however, is part of a tri-functional enzyme encoded by CAD; no human disease has been attributed to this gene. The tri-functional enzyme contains carbamoyl-phosphate synthetase 2 (CPS2), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities, which comprise the first three of six reactions required for de novo pyrimidine biosynthesis. Here we characterize an individual who is compound heterozygous for mutations in different domains of CAD. One mutation, c.1843-1G>A, results in an in-frame deletion of exon 13. The other, c.6071G>A, causes a missense mutation (p.Arg2024Gln) in a highly conserved residue that is essential for carbamoyl-phosphate binding. Metabolic flux studies showed impaired aspartate incorporation into RNA and DNA through the de novo synthesis pathway. In addition, CTP, UTP and nearly all UDP-activated sugars that serve as donors for glycosylation were decreased. Uridine supplementation rescued these abnormalities, suggesting a potential therapy for this new glycosylation disorder.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford - Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and
| | - Mie Ichikawa
- Human Genetics Program, Sanford - Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Thomas Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and
| | - Miao He
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19103, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA and
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director and National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Hudson H Freeze
- Human Genetics Program, Sanford - Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 2014; 88:2261-87. [DOI: 10.1007/s00204-014-1400-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
8
|
Diez-Fernandez C, Martínez AI, Pekkala S, Barcelona B, Pérez-Arellano I, Guadalajara AM, Summar M, Cervera J, Rubio V. Molecular Characterization of Carbamoyl-Phosphate Synthetase (CPS1) Deficiency Using Human Recombinant CPS1 as a Key Tool. Hum Mutat 2013; 34:1149-59. [DOI: 10.1002/humu.22349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Diez-Fernandez
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
| | | | - Satu Pekkala
- Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Belén Barcelona
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | | | - Marshall Summar
- Childrens National Medical Center; Washington District of Columbia
| | - Javier Cervera
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| |
Collapse
|
9
|
Lallous N, Grande-García A, Molina R, Ramón-Maiques S. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1341-5. [PMID: 23143245 DOI: 10.1107/s1744309112038857] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/10/2012] [Indexed: 11/11/2022]
Abstract
CAD is a 243 kDa eukaryotic multifunctional polypeptide that catalyzes the first three reactions of de novo pyrimidine biosynthesis: glutamine-dependent carbamyl phosphate synthetase, aspartate transcarbamylase and dihydroorotase (DHO). In prokaryotes, these activities are associated with monofunctional proteins, for which crystal structures are available. However, there is no detailed structural information on the full-length CAD protein or any of its functional domains apart from that it associates to form a homohexamer of ∼1.5 MDa. Here, the expression, purification and crystallization of the DHO domain of human CAD are reported. The DHO domain forms homodimers in solution. Crystallization experiments yielded small crystals that were suitable for X-ray diffraction studies. A diffraction data set was collected to 1.75 Å resolution using synchrotron radiation at the SLS, Villigen, Switzerland. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a=82.1, b=159.3, c=61.5 Å. The Matthews coefficient calculation suggested the presence of one protein molecule per asymmetric unit, with a solvent content of 48%.
Collapse
Affiliation(s)
- Nada Lallous
- Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Gu K, Chiam H, Tian D, Yin Z. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:642-9. [PMID: 21421413 DOI: 10.1016/j.plantsci.2011.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/08/2011] [Accepted: 01/11/2011] [Indexed: 05/08/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors.
Collapse
Affiliation(s)
- Keyu Gu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore
| | | | | | | |
Collapse
|
11
|
Lindley TE, Laberge T, Hall A, Hewett-Emmett D, Walsh PJ, Anderson PM. Sequence, expression and evolutionary relationships of carbamoyl phosphate synthetase I in the toadXenopus laevis. ACTA ACUST UNITED AC 2007; 307:163-75. [PMID: 17397070 DOI: 10.1002/jez.a.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sequence of carbamoyl phosphate synthetase I (CPSase I) cDNA and expression of the enzyme in liver of the toad Xenopus laevis are reported. CPSase I mRNA increases 6-fold when toads are exposed to high salinity for extended periods of time. The deduced 1,494-amino acid sequence of the CPSase I is homologous to other CPSases and reveals a domain structure and conserved amino acids common to other CPSases. A serine residue (S287) is present where there is a cysteine residue required for glutamine-dependent activity in CPSase Types III and II (Type I CPSases utilize only ammonia as nitrogen-donating substrate). A sequence of DNA 964 bases upstream from the ATG start codon for the CPSase I gene is also reported. Phylogenetic analysis for 30 CPSase isoforms, including X. laevis CPSase I, across a wide spectrum of phyla is reported and discussed. The results are consistent with the views that eukaryotic CPSase II as a multifunctional complex evolved from prokaryotic CPSase II and that CPSase I in terrestrial vertebrates and CPSase III in fishes arose from eukaryotic CPSase II by independent events after the divergence of plants in eukaryotic evolution.
Collapse
Affiliation(s)
- Timothy E Lindley
- Department of Biochemistry and Molecular Biology, University of Minnesota-Duluth, Duluth, Minnesota 55812-2487, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
13
|
Eroglu B, Powers-Lee SG. Mutational analysis of ATP-grasp residues in the two ATP sites of Saccharomyces cerevisiae carbamoyl phosphate synthetase. Arch Biochem Biophys 2002; 407:1-9. [PMID: 12392708 DOI: 10.1016/s0003-9861(02)00510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ATP-grasp fold is found in enzymes that catalyze the formation of an amide bond and occurs twice in carbamoyl phosphate synthetase. We have used site-directed mutagenesis to further define the relationship of these ATP folds to the ATP-grasp family and to probe for distinctions between the two ATP sites. Mutations at D265 and D810 severely diminished activity, consistent with consensus ATP-grasp roles of facilitating the transfer of the gamma-phosphate group of ATP. H262N was inactive whereas H807N, the corresponding mutation in the second ATP domain, exhibited robust activity, suggesting that these residues were not involved in the ATP-grasp function common to both domains. Mutations at I316 were somewhat catalytically impaired and were structurally unstable, consistent with a consensus role of interaction with the adenine and/or ribose moiety of ATP. L229G was too unstable to be purified and characterized. S228A showed essentially wild-type behavior.
Collapse
Affiliation(s)
- Binnur Eroglu
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Anderson PM. Urea and glutamine synthesis: Environmental influences on nitrogen excretion. FISH PHYSIOLOGY 2001. [DOI: 10.1016/s1546-5098(01)20008-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Fresquet V, Mora P, Rochera L, Ramón-Maiques S, Rubio V, Cervera J. Site-directed mutagenesis of the regulatory domain of Escherichia coli carbamoyl phosphate synthetase identifies crucial residues for allosteric regulation and for transduction of the regulatory signals. J Mol Biol 2000; 299:979-91. [PMID: 10843852 DOI: 10.1006/jmbi.2000.3794] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbamoyl phosphate (CP), the essential precursor of pyrimidines and arginine, is made in Escherichia coli by a single carbamoyl phosphate synthetase (CPS) consisting of 41.4 and 117.7 kDa subunits, which is feed-back inhibited by UMP and activated by IMP and ornithine. The large subunit catalyzes CP synthesis from ammonia in three steps, and binds the effectors in its 15 kDa C-terminal domain. Fifteen site-directed mutations were introduced in 13 residues of this domain to investigate the mechanism of allosteric modulation by UMP and IMP. Two mutations, K993A and V994A, decreased significantly or abolished enzyme activity, apparently by interfering with the step of carbamate synthesis, and one mutation, T974A, negatively affected ornithine activation. S948A, K954A, T974A, K993A and K993W/H995A abolished or greatly hampered IMP activation and UMP inhibition as well as the binding of both effectors, monitored using photoaffinity labeling and ultracentrifugation binding assays. V994A also decreased significantly IMP and UMP binding. L990A, V991A, H995A, G997A and G1008A had more modest effects or affected more the modulation by and the binding of one than of the other nucleotide. K993W, R1020A, R1021A and K1061A were without substantial effects. The results confirm the independence of the regulatory and catalytic centers, and also confirm functional predictions based on the X-ray structure of an IMP-CPS complex. They prove that the inhibitor UMP and the activator IMP bind in the same site, and exclude that the previously observed binding of ornithine and glutamine in this site were relevant for enzyme activation. K993 and V994 appear to be involved in the transmission of the regulatory signals triggered by UMP and IMP binding. These effectors possibly change the position of K993 and V994, and alter the intermolecular contacts mediated by the regulatory domain.
Collapse
Affiliation(s)
- V Fresquet
- Instituto de Investigaciones Citológicas (FVIB), Amadeo de Saboya 4, Valencia, 46010, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Gassmann MG, Stanzel A, Werner S. Growth factor-regulated expression of enzymes involved in nucleotide biosynthesis: a novel mechanism of growth factor action. Oncogene 1999; 18:6667-76. [PMID: 10597272 DOI: 10.1038/sj.onc.1203120] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keratinocyte growth factor (KGF) is a potent and specific mitogen for epithelial cells, including the keratinocytes of the skin. We investigated the mechanisms of action of KGF by searching for genes which are regulated by this growth factor in cultured human keratinocytes. Using the differential display RT-PCR technology we identified the gene encoding adenylosuccinate lyase [EC 4.3.2.2] as a novel KGF-regulated gene. Adenylosuccinate lyase plays an important role in purine de novo synthesis. To gain further insight into the potential role of nucleotide biosynthesis in the mitogenic effect of KGF, we cloned cDNA fragments of the key regulatory enzymes involved in purine and pyrimidine metabolism (adenylosuccinate synthetase [EC 6.3.4.4], phosphoribosyl pyrophosphate synthetase [EC 2.7.6.1], amidophosphoribosyl transferase [EC 2.4.2.14], hypoxanthine guanine phosphoribosyl transferase [EC 2.4.2.8] and the multifunctional protein CAD which includes the enzymatic activities of carbamoyl-phosphate synthetase II [EC 6.3.5.59], aspartate transcarbamylase [EC 2.1.3.2] and dihydroorotase [EC 3.5.2.3]). Expression of all of these enzymes was upregulated after treatment with KGF and also with epidermal growth factor (EGF), indicating that these mitogens stimulate nucleotide production by induction of these enzymes. To determine a possible in vivo correlation between the expression of KGF, EGF and the enzymes mentioned above, we analysed the expression of the enzymes during cutaneous wound repair, where high levels of these mitogens are present. Indeed, we found a strong mRNA expression of all of these enzymes in the EGF- and KGF-responsive keratinocytes of the hyperproliferative epithelium at the wound edge, indicating that their expression might also be regulated by growth factors during wound healing.
Collapse
Affiliation(s)
- M G Gassmann
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
17
|
Hewagama A, Guy HI, Vickrey JF, Evans DR. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad). J Biol Chem 1999; 274:28240-5. [PMID: 10497179 DOI: 10.1074/jbc.274.40.28240] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.
Collapse
Affiliation(s)
- A Hewagama
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
18
|
Serre V, Guy H, Penverne B, Lux M, Rotgeri A, Evans D, Hervé G. Half of Saccharomyces cerevisiae carbamoyl phosphate synthetase produces and channels carbamoyl phosphate to the fused aspartate transcarbamoylase domain. J Biol Chem 1999; 274:23794-801. [PMID: 10446140 DOI: 10.1074/jbc.274.34.23794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first two steps of the de novo pyrimidine biosynthetic pathway in Saccharomyces cerevisiae are catalyzed by a 240-kDa bifunctional protein encoded by the ura2 locus. Although the constituent enzymes, carbamoyl phosphate synthetase (CPSase) and aspartate transcarbamoylase (ATCase) function independently, there are interdomain interactions uniquely associated with the multifunctional protein. Both CPSase and ATCase are feedback inhibited by UTP. Moreover, the intermediate carbamoyl phosphate is channeled from the CPSase domain where it is synthesized to the ATCase domain where it is used in the synthesis of carbamoyl aspartate. To better understand these processes, a recombinant plasmid was constructed that encoded a protein lacking the amidotransferase domain and the amino half of the CPSase domain, a 100-kDa chain segment. The truncated complex consisted of the carboxyl half of the CPSase domain fused to the ATCase domain via the pDHO domain, an inactive dihydroorotase homologue that bridges the two functional domains in the native molecule. Not only was the "half CPSase" catalytically active, but it was regulated by UTP to the same extent as the parent molecule. In contrast, the ATCase domain was no longer sensitive to the nucleotide, suggesting that the two catalytic activities are controlled by distinct mechanisms. Most remarkably, isotope dilution and transient time measurements showed that the truncated complex channels carbamoyl phosphate. The overall CPSase-ATCase reaction is much less sensitive than the parent molecule to the ATCase bisubstrate analogue, N-phosphonacetyl-L-aspartate (PALA), providing evidence that the endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site.
Collapse
Affiliation(s)
- V Serre
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, UMR 7631 CNRS-Université Pierre et Marie Curie, 96 Bd Raspail 75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Aleksenko A, Liu W, Gojkovic Z, Nielsen J, Piskur J. Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. Mol Microbiol 1999; 33:599-611. [PMID: 10417650 DOI: 10.1046/j.1365-2958.1999.01507.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The six biochemical steps of the de novo pyrimidine biosynthesis pathway are conserved in all known organisms. However, in animals and fungi, unlike prokaryotes, at least the first two activities are grouped on a multifunctional enzyme. Here, we report cloning, mapping and transcriptional characterization of some pyrimidine biosynthesis genes in the filamentous fungus Aspergillus nidulans. The first two steps of the pathway are performed by a multifunctional enzyme comprising the activities of carbamoyl phosphate synthetase (CPSase) and aspartate transcarbamylase (ATCase). This polypeptide is encoded by a 7 kbp cluster gene, pyrABCN, which has a high degree of nucleotide identity with the Ura2 gene in Saccharomyces cerevisiae. The enzyme of the third step, dihydroorotase (DHOase), is encoded by a separate locus, pyrD. However, the pyrABCN gene apparently contains an evolutionary remnant of a DHOase-encoding sequence, similarly to the Ura2 gene of Saccharomyces cerevisiae. The pyrABCN gene is transcribed as a single 7 kb mRNA species. The level of transcripts of pyrABCN, pyrD and, to a lesser degree, pyrF genes responds to the presence of exogenous pyrimidines and to the conditions of pyrimidine starvation. Derepression of pyrABCN and pyrD under pyrimidine starvation is noticeably enhanced in pyrE mutants that accumulate dihydroorotic acid. The pyrABCN gene maps to the distal portion of the right arm of the chromosome VIII, whereas the pyrD gene, in contrast to early genetic data, is closely linked to the brlA gene and located to the right of it. Our data on mitotic recombination should help to verify the genetic map of the chromosome VIII. Comparison of amino acid sequences of active dihydroorotases with related enzymes and with their non-functional homologues in yeast and Aspergillus indicates that the active dihydroorotases from fungi are more similar to ureases and enzymes of the pyrimidine degradation pathway. The 'silent' dihydroorotase domains of the multifunctional enzymes from fungi and active DHOase domains of the multifunctional enzymes in higher eukaryotes are more closely related to bacterial dehydroorotases.
Collapse
Affiliation(s)
- A Aleksenko
- Center for Process Biotechnology, DTU, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Uriarte M, Marina A, Ramón-Maiques S, Fita I, Rubio V. The carbamoyl-phosphate synthetase of Pyrococcus furiosus is enzymologically and structurally a carbamate kinase. J Biol Chem 1999; 274:16295-303. [PMID: 10347186 DOI: 10.1074/jbc.274.23.16295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophiles Pyrococcus furiosus and Pyrococcus abyssi make pyrimidines and arginine from carbamoyl phosphate (CP) synthesized by an enzyme that differs from other carbamoyl-phosphate synthetases and that resembles carbamate kinase (CK) in polypeptide mass, amino acid sequence, and oligomeric organization. This enzyme was reported to use ammonia, bicarbonate, and two ATP molecules as carbamoyl-phosphate synthetases to make CP and to exhibit bicarbonatedependent ATPase activity. We have reexamined these findings using the enzyme of P. furiosus expressed in Escherichia coli from the corresponding gene cloned in a plasmid. We show that the enzyme uses chemically made carbamate rather than ammonia and bicarbonate and catalyzes a reaction with the stoichiometry and equilibrium that are typical for CK. Furthermore, the enzyme catalyzes actively full reversion of the CK reaction and exhibits little bicarbonate-dependent ATPase. In addition, it cross-reacts with antibodies raised against CK from Enterococcus faecium, and its three-dimensional structure, judged by x-ray crystallography of enzyme crystals, is very similar to that of CK. Thus, the enzyme is, in all respects other than its function in vivo, a CK. Because in other organisms the function of CK is to make ATP from ADP and CP derived from arginine catabolism, this is the first example of using CK for making rather than using CP. The reasons for this use and the adaptation of the enzyme to this new function are discussed.
Collapse
Affiliation(s)
- M Uriarte
- Instituto de Biomedicina de Valencia (Consejo Superior de Investigaciones Científicas), C/Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
21
|
Mora P, Rubio V, Fresquet V, Cervera J. Localization of the site for the nucleotide effectors of Escherichia coli carbamoyl phosphate synthetase using site-directed mutagenesis. FEBS Lett 1999; 446:133-6. [PMID: 10100629 DOI: 10.1016/s0014-5793(99)00197-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Replacement by alanine of Ser-948, Thr-974 and Lys-954 of Escherichia coli carbamoyl phosphate synthetase (CPS) shows that these residues are involved in binding the allosteric inhibitor UMP and the activator IMP. The mutant CPSs are active in vivo and in vitro and exhibit normal activation by ornithine, but the modulation by both UMP and IMP is either lost or diminished. The results demonstrate that the sites for UMP and IMP overlap and that the activator ornithine binds elsewhere. Since the mutated residues were found in the crystal structure of CPS near a bound phosphate, Ser-948, Thr-974 and Lys-954 bind the phosphate moiety of UMP and IMP.
Collapse
Affiliation(s)
- P Mora
- Instituto de Investigaciones Citológicas (FVIB), Valencia, Spain
| | | | | | | |
Collapse
|
22
|
Sahay N, Guy HI, Liu X, Evans DR. Regulation of an Escherichia coli/mammalian chimeric carbamoyl-phosphate synthetase. J Biol Chem 1998; 273:31195-202. [PMID: 9813025 DOI: 10.1074/jbc.273.47.31195] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbamoyl-phosphate synthetase (CPSase) consists of a 120-kDa synthetase domain (CPS) that makes carbamoyl phosphate from ATP, bicarbonate, and ammonia usually produced by a separate glutaminase domain. CPS is composed of two subdomains, CPS.A and CPS.B. Although CPS.A and CPS.B have specialized functions in intact CPSase, the separately cloned subdomains can catalyze carbamoyl phosphate synthesis. This report describes the construction of a 58-kDa chimeric CPSase composed of Escherichia coli CPS.A catalytic subdomains and the mammalian regulatory subdomain. The catalytic parameters are similar to those of the E. coli enzyme, but the activity is regulated by the mammalian effectors and protein kinase A phosphorylation. The chimera has a single site that binds phosphoribosyl 5'-pyrophosphate (PRPP) with a dissociation constant of 25 microM. The dissociation constant for UTP of 0.23 mM was inferred from its effect on PRPP binding. Thus, the regulatory subdomain is an exchangeable ligand binding module that can control both CPS.A and CPS.B domains, and the pathway for allosteric signal transmission is identical in E. coli and mammalian CPSase. A deletion mutant that truncates the polypeptide within a postulated regulatory sequence is as active as the parent chimera but is insensitive to effectors. PRPP and UTP bind to the mutant, suggesting that the carboxyl half of the subdomain is essential for transmitting the allosteric signal but not for ligand binding.
Collapse
Affiliation(s)
- N Sahay
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
23
|
Hewagama A, Guy HI, Chaparian M, Evans DR. The function of Glu338 in the catalytic triad of the carbamoyl phosphate synthetase amidotransferase domain. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:489-99. [PMID: 9858783 DOI: 10.1016/s0167-4838(98)00212-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synthesis of carbamoyl phosphate by the mammalian multifunctional protein, CAD, involves the concerted action of the 40 kDa amidotransferase domain (GLN), that hydrolyzes glutamine and the 120 kDa synthetase (CPS) domain that uses the ammonia, thus produced, ATP and bicarbonate to make carbamoyl phosphate. The separately cloned GLN domain has very low activity due to a reduction in kcat and an increase in Km but forms a hybrid complex with the isolated Escherichia coli CPS subunit. The hybrid has full glutamine-dependent catalytic activity and a functional interdomain linkage. The mammalian-E. coli hybrid was used to investigate the functional consequence of replacing His336 and Glu338, two residues postulated to participate in catalysis as part of a catalytic triad. The mutant mammalian GLN domains formed stable complexes with the E. coli CPS subunit, but the catalytic activity was severely impaired. While the His336Asn mutant does not form measurable amounts of the gamma-glutamyl thioester, the steady state concentration of the intermediate with the Glu338Gly mutant was comparable to the wild type hybrid because both the rate of formation and breakdown of the thioester are reduced. This result is consistent with the postulated role of Glu338 in maintaining His336 in the optimal orientation for catalysis and suggests a mechanism for the GLN CPS functional linkage.
Collapse
Affiliation(s)
- A Hewagama
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
24
|
Nara T, Gao G, Yamasaki H, Nakajima-Shimada J, Aoki T. Carbamoyl-phosphate synthetase II in kinetoplastids. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:462-8. [PMID: 9748664 DOI: 10.1016/s0167-4838(98)00127-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genes for carbamoyl-phosphate synthetase II (CPS II), the first enzyme of de novo pyrimidine biosynthesis, were cloned from kinetoplastids, Trypanosoma cruzi and Leishmania mexicana. T. cruzi CPS II gene encodes a protein of 1524 amino acids that encompasses the glutaminase and CPS domains, but incorporates neither aspartate carbamoyltransferase nor dihydroorotase. The residue corresponding to lysine 993 of Escherichia coli CPS, a residue that characterizes the CPS inhibited by UMP and that is replaced by tryptophan in those inhibited by UTP, is in kinetoplastids a hydrophilic glutamine, in line with the preferential inhibition by UDP of kinetoplastid CPS II.
Collapse
Affiliation(s)
- T Nara
- Department of Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
25
|
Serre V, Guy H, Liu X, Penverne B, Hervé G, Evans D. Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins. J Mol Biol 1998; 281:363-77. [PMID: 9698553 DOI: 10.1006/jmbi.1998.1856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The initial steps of pyrimidine biosynthesis in yeast and mammals are catalyzed by large multifunctional proteins of similar size, sequence and domain structure, but appreciable functional differences. The mammalian protein, CAD, has carbamyl phosphate synthetase (CPSase), aspartate transcarbamylase (ATCase) and dihydroorotase (DHOase) activities. The yeast protein, ura2, catalyzes the first two reactions and has a domain, called pDHO, which is homologous to mammalian DHOase, but is inactive. In CAD, only CPSase is regulated, whereas both CPSase and ATCase in the yeast protein are inhibited by UTP. These functional differences were explored by constructing a series of mammalian yeast chimeras. The isolated ATCase domain is catalytically active, but is not regulated. The inclusion of the yeast sequences homologous to the mammalian regulatory domain (B3) and the intervening pDHO domain did not confer regulation. Chimeric proteins in which the homologous regions of the mammalian protein were replaced by the corresponding domains of ura2 exhibited full catalytic activity, as well regulation of the CPSase, but not the ATCase, activities. The yeast B3 subdomain confers UTP sensitivity on the mammalian CPSase, suggesting that it is the locus of CPSase regulation in ura2. Taken together, these results indicate that there are regulatory site(s) in ura2. Channeling is impaired in all the chimeric complexes and completely abolished in the chimera in which the pDHO domain of yeast is replaced by the mammalian DHO domain.
Collapse
Affiliation(s)
- V Serre
- UMR 7631, CNRS and Université Pierre et Marie Curie, 96 Bd Raspail, Paris, 75006, France
| | | | | | | | | | | |
Collapse
|
26
|
Guy HI, Schmidt B, Hervé G, Evans DR. Pressure-induced dissociation of carbamoyl-phosphate synthetase domains. The catalytically active form is dimeric. J Biol Chem 1998; 273:14172-8. [PMID: 9603918 DOI: 10.1074/jbc.273.23.14172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbamoyl-phosphate synthetase consists of an amidotransferase domain or subunit (GLN) that hydrolyzes glutamine and transfers the ammonia to the synthetase component (CPS) where the biosynthetic reaction occurs. The CPS domain is composed of two homologous subdomains, CPS.A and CPS.B, that catalyze different ATP-dependent reactions involved in carbamoyl phosphate synthesis. When the individual CPS.A and CPS.B subdomains were individually cloned and expressed in Escherichia coli (Guy, H. I., and Evans, D. R. (1996) J. Biol. Chem. 271, 13762-13769), they were found to be functionally equivalent and could each independently catalyze carbamoyl phosphate synthesis. The proposal was advanced that, although the monomers could catalyze the individual partial reactions, overall synthesis of carbamoyl phosphate required a homodimer of CPS.A or CPS.B. To test this hypothesis, the GLN-CPS.B dimer was reversibly dissociated at 1500 bar in a high pressure cell. Dissociation was accompanied by a loss of both glutamine- and ammonia-dependent CPSase activity. Activity was recovered once the protein was returned to atmospheric pressure. If the sample was cross-linked before exposure to high pressure, there was no dissociation and no loss of biosynthetic activity. In contrast, the bicarbonate-dependent ATPase and the carbamoyl phosphate-dependent ATP synthetase activities were largely unaffected by pressure-induced dissociation. These experiments confirmed the hypothesis that the synthesis of carbamoyl phosphate requires the concerted action of the two active sites within the homodimer.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
27
|
Gao G, Nara T, Nakajima-Shimada J, Aoki T. Molecular characterization of a carbamoyl-phosphate synthetase II (CPS II) gene from Leishmania mexicana. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:237-40. [PMID: 9598066 DOI: 10.1007/978-1-4615-5381-6_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- G Gao
- Department of Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
28
|
Angeletti PC, Engler JA. Adenovirus preterminal protein binds to the CAD enzyme at active sites of viral DNA replication on the nuclear matrix. J Virol 1998; 72:2896-904. [PMID: 9525610 PMCID: PMC109735 DOI: 10.1128/jvi.72.4.2896-2904.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Accepted: 12/18/1997] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) replicative complexes form at discrete sites on the nuclear matrix (NM) via an interaction mediated by the precursor of the terminal protein (pTP). The identities of cellular proteins involved in these complexes have remained obscure. We present evidence that pTP binds to a multifunctional pyrimidine biosynthesis enzyme found at replication domains on the NM. Far-Western blotting identified proteins of 150 and 240 kDa that had pTP binding activity. Amino acid sequencing of the 150-kDa band revealed sequence identity to carbamyl phosphate synthetase I (CPS I) and a high degree of homology to the related trifunctional enzyme known as CAD (for carbamyl phosphate synthetase, aspartate transcarbamylase, and dihydroorotase). Western blotting with an antibody directed against CAD detected a 240-kDa band that comigrated with that detected by pTP far-Western blotting. Binding experiments showed that a pTP-CAD complex was immunoprecipitable from cell extracts in which pTP was expressed by a vaccinia virus recombinant. Additionally, in vitro-translated epitope-tagged pTP and CAD were immunoprecipitable as a complex, indicating the occurrence of a protein-protein interaction. Confocal fluorescence microscopy of Ad-infected NM showed that pTP and CAD colocalized in nuclear foci. Both pTP and CAD were confirmed to colocalize with active sites of replication detected by bromodeoxyuridine incorporation. These data support the concept that the pTP-CAD interaction may allow anchorage of Ad replication complexes in the proximity of required cellular factors and may help to segregate replicated and unreplicated viral DNA.
Collapse
Affiliation(s)
- P C Angeletti
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, 35294-0005, USA
| | | |
Collapse
|
29
|
Kong H, Edberg DD, Korte JJ, Salo WL, Wright PA, Anderson PM. Nitrogen excretion and expression of carbamoyl-phosphate synthetase III activity and mRNA in extrahepatic tissues of largemouth bass (Micropterus salmoides). Arch Biochem Biophys 1998; 350:157-68. [PMID: 9473289 DOI: 10.1006/abbi.1997.0522] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low levels of all of the enzymes required for urea synthesis via the urea cycle, including mitochondrial glutamine- and acetylglutamate-dependent carbamoyl-phosphate synthetase III (CPSase III) and cytosolic glutamine synthetase, are known to be present in liver of the teleost fish largemouth bass (Micropterus salmoides). The levels of these enzymes are higher than those in most other teleosts, but they are significantly lower than the levels present in liver of ureoosmotic elasmobranchs. The purpose of this study was to assess the physiological role of CPSase III in the context of urea synthesis in adult bass. The results showed that urea-N accounts for about 30% of the total nitrogen (ammonia-N plus urea-N) excreted under control conditions. The rate of urea-N excretion did not increase in response to exposure to 1 mM NH4Cl (3 days) or 0.25 mM NH4Cl (12 days) in the external water, except for a transient increase after a day or two of exposure. CPSase III activity in liver also did not increase in response to exposure to ammonia. Adult largemouth bass, while apparently ureogenic, are primarily ammonotelic and remain so even in the presence of relatively high concentrations of ammonia in the external environment. The total units of CPSase III activity in liver are not sufficient to account for the quantity of urea that is excreted. However, CPSase III and ornithine carbamoyltransferase (OCTase) activities were found to be present in intestinal tissue and, unexpectedly, in muscle tissue. The total units of CPSase III and OCTase in muscle, intestine, and liver appear to be sufficient to account for the observed rate of urea excretion. The sequence of CPSase III cDNA was determined, which permitted the use of ribonuclease protection assays to demonstrate the presence of CPSase III mRNA in these tissues.
Collapse
Affiliation(s)
- H Kong
- School of Medicine, University of Minnesota at Duluth, Duluth, Minnesota 55812, USA
| | | | | | | | | | | |
Collapse
|
30
|
Guy HI, Bouvier A, Evans DR. The smallest carbamoyl-phosphate synthetase. A single catalytic subdomain catalyzes all three partial reactions. J Biol Chem 1997; 272:29255-62. [PMID: 9361005 DOI: 10.1074/jbc.272.46.29255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli carbamoyl-phosphate synthetase (CPSase) is comprised of a 40-kDa glutaminase (GLN) and a 120-kDa synthetase (CPS) subunit. The CPS subunit consists of two homologous domains, CPS.A and CPS.B, which catalyze the two different ATP-dependent partial reactions involved in carbamoyl phosphate synthesis. Sequence similarities and controlled proteolysis experiments suggest that the CPS subdomains consist, in turn, of three subdomains, designated A1, A2, A3 and B1, B2, B3 for CPS.A and CPS.B, respectively. Previous studies of individually cloned CPS.A and CPS. B from E. coli and mammalian CPSase have shown that homologous dimers of either of these "half-molecules" could catalyze all three reactions involved in ammonia-dependent carbamoyl phosphate synthesis. Four smaller recombinant proteins were made for this study as follows: 1) A1-A2 in which the A3 subdomain was deleted from CPS.A, 2) B1-B2 lacking subdomain B3 of CPS.B, 3) the A2 subdomain of CPS.A, and 4) the B2 subdomain of CPS.B. When associated with the GLN subunit, A1-A2 and B1-B2 had both glutamine- and ammonia-dependent CPSase activities comparable to the wild-type protein. In contrast, the 27-kDa A2 and B2 recombinant proteins, which represent only 17% of the mass of the parent protein, were unable to use glutamine as a nitrogen donor, but the ammonia-dependent activity was enhanced 14-16-fold. The hyperactivity suggests that A2 and B2 are the catalytic subdomains and that A1 and B1 are attenuation domains which suppress the intrinsically high activity and are required for the physical association with the GLN subunit.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
31
|
Kothe M, Eroglu B, Mazza H, Samudera H, Powers-Lee S. Novel mechanism for carbamoyl-phosphate synthetase: a nucleotide switch for functionally equivalent domains. Proc Natl Acad Sci U S A 1997; 94:12348-53. [PMID: 9356452 PMCID: PMC24940 DOI: 10.1073/pnas.94.23.12348] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Carbamoyl-phosphate synthetases (CPSs) utilize two molecules of ATP at two internally duplicated domains, B and C. Domains B and C have recently been shown to be structurally [Thoden, J. B., Holden, H. M., Wesenberg, G., Raushel, F. M. & Rayment, I. (1997) Biochemistry 36, 6305-6316] and functionally [Guy, H. I. & Evans, D. R. (1996) J. Biol. Chem. 271, 13762-13769] equivalent. We have carried out a site-directed mutagenic analysis that is consistent with ATP binding to a palmate motif rather than to a Walker A/B motif in domains B and C. To accommodate our present findings, as well as the other recent findings of structural and functional equivalence, we are proposing a novel mechanism for CPS. In this mechanism utilization of ATP bound to domain C is coupled to carbamoyl-phosphate synthesis at domain B via a nucleotide switch, with the energy of ATP hydrolysis at domain C allowing domain B to cycle between two alternative conformations.
Collapse
Affiliation(s)
- M Kothe
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
32
|
Zheng W, Lim AL, Powers-Lee SG. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1341:35-48. [PMID: 9300807 DOI: 10.1016/s0167-4838(97)00058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbamoyl-phosphate synthetases (CPSases) utilize two molecules of ATP at two homologous domains, B and C, with ATP(B) used to form the enzyme-bound intermediate carboxy-phosphate and ATP(C) used to phosphorylate the carbamate intermediate. To further define the role of one CPSase peptide suggested by affinity labeling studies to be near the ATP(B) site, we have carried out site-directed mutagenic analysis of peptide 234-242 of the Saccharomyces cerevisiae arginine-specific CPSase. Mutants E234A, E234D, E236A, E236D and E238A were unable to complement the CPSase-deficient yeast strain LPL26 whereas mutants Y237A, E238D, R241K, R241E and R241P supported LPL26 growth as well as wild-type CPSase. Kinetic analysis of E234A and Y237A indicated impaired utilization of ATP(B) but not of ATP(C). D242A, a temperature-sensitive mutant, retained no detectable activity when assayed in vitro. These findings, together with the affinity labeling data and primary sequence analysis, strongly suggest that the yeast CPSase peptide 234-242 is located at the ATP(B) site and that some of its residues are important for functioning of the enzyme. D242 appears to occupy a critical structural position and E234, E236 and E238 appear to be critical for function, with the spatial arrangement of the carboxyl side chain also critical for E234 and E236.
Collapse
Affiliation(s)
- W Zheng
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Guy HI, Evans DR. Trapping an activated conformation of mammalian carbamyl-phosphate synthetase. J Biol Chem 1997; 272:19906-12. [PMID: 9242656 DOI: 10.1074/jbc.272.32.19906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The amidotransferase or glutaminase domain (GLN domain) of mammalian carbamyl-phosphate synthetase II (CPSase II) catalyzes glutamine hydrolysis and transfers ammonia to the synthetase domain (CPS domain), where carbamyl phosphate formation is catalyzed in three consecutive reactions. The GLN and CPS domains are part of a single polypeptide and are connected via a 29-amino acid chain segment (GC linker). In contrast, the two comparable domains of Escherichia coli CPSase are not fused, but are separate, noncovalently associated subunits. To establish the function of the GC linker in mammalian CPSase, it was deleted, and the two domains were directly fused. The deletion mutant not only catalyzed glutamine-dependent carbamyl phosphate synthesis, but was activated 10-fold relative to its wild-type counterpart. However, ammonia-dependent synthesis of carbamyl phosphate was abolished, indicating that ammonia no longer had access to the active site on the CPS domain. The mutant was still sensitive to inhibition by the allosteric effector UTP, but was no longer activated by the allosteric effector phosphoribosyl pyrophosphate, although evidence indicated that the latter could bind to the enzyme. The linker appears to serve as a spacer that allows the complex to cycle between two conformations, an open low activity form in which the ammonia site on the CPS domain is accessible and an activated conformation in which the ammonia generated in situ from glutamine is directly channeled to the CPS active site and access to exogenous ammonia is blocked.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
34
|
Guy HI, Rotgeri A, Evans DR. Activation by fusion of the glutaminase and synthetase subunits of Escherichia coli carbamyl-phosphate synthetase. J Biol Chem 1997; 272:19913-8. [PMID: 9242657 DOI: 10.1074/jbc.272.32.19913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli carbamyl-phosphate synthetase consists of two subunits that act in concert to synthesize carbamyl phosphate. The 40-kDa subunit is an amidotransferase (GLN subunit) that hydrolyzes glutamine and transfers ammonia to the 120-kDa synthetase subunit (CPS subunit). The enzyme can also catalyze ammonia-dependent carbamyl phosphate synthesis if provided with exogenous ammonia. In mammalian cells, homologous amidotransferase and synthetase domains are carried on a single polypeptide chain called CAD. Deletion of the 29-residue linker that bridges the GLN and CPS domains of CAD stimulates glutamine-dependent carbamyl phosphate synthesis and abolishes the ammonia-dependent reaction (Guy, H. I., and Evans, D. R. (1997) J. Biol. Chem. 272, 19906-19912), suggesting that the deletion mutant is trapped in a closed high activity conformation. Since the catalytic mechanisms of the mammalian and bacterial proteins are the same, we anticipated that similar changes in the function of the E. coli protein could be produced by direct fusion of the GLN and CPS subunits. A construct was made in which the intergenic region between the contiguous carA and carB genes was deleted and the sequences encoding the carbamyl-phosphate synthetase subunits were fused in frame. The resulting fusion protein was activated 10-fold relative to the native protein, was unresponsive to the allosteric activator ornithine, and could no longer use ammonia as a nitrogen donor. Moreover, the functional linkage that coordinates the rate of glutamine hydrolysis with the activation of bicarbonate was abolished, suggesting that the protein was locked in an activated conformation similar to that induced by the simultaneous binding of all substrates.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
35
|
Flores MV, Atkins D, Wade D, O'Sullivan WJ, Stewart TS. Inhibition of Plasmodium falciparum proliferation in vitro by ribozymes. J Biol Chem 1997; 272:16940-5. [PMID: 9202005 DOI: 10.1074/jbc.272.27.16940] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Catalytic RNA (ribozymes) suppressed the growth of the human malarial parasite Plasmodium falciparum in vitro. The phosphorothioated hammerhead ribozymes targeted unique regions of the P. falciparum carbamoyl-phosphate synthetase II gene. The P. falciparum carbamoyl-phosphate synthetase II gene encodes the first and limiting enzyme in the pathway, and its mRNA transcript contains two large insert regions absent in other carbamoyl-phosphate synthetases, including that from humans. These inserts are ideal targets for nucleic acid therapy. Exogenous delivery of ribozymes to cultures reduced malarial viability up to 55% at 0.5 microM ribozyme concentrations, which is significantly greater than control levels (5-15% reduction), suggesting a sequence-specific inhibition. This inhibition was shown to be stage-specific, with optimal inhibitions being detected after 24 h, coincident with maximal production of the carbamoyl-phosphate synthetase enzyme in the course of the life cycle of the parasite. A decrease in total carbamoyl-phosphate synthetase activity was observed only in cultures treated with the ribozymes. The task of developing alternative therapeutic agents against malaria is urgent due to the evolution of drug-resistant strains of P. falciparum, the most virulent of all human malarial parasites. Another critical issue to be addressed is the possibility of eliminating or reducing any systemic toxicity to the host, which can potentially be provided by nucleic acid therapy. This work is the first reported assessment of the ability of ribozymes as antimalarials. Ribozyme inhibition assays can also aid in identifying important antimalarial loci for chemotherapy. The malarial parasite can, in turn, be a useful in vivo host to study the catalysis and function of new ribozyme designs.
Collapse
Affiliation(s)
- M V Flores
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | |
Collapse
|
36
|
Lim AL, Powers-Lee SG. Critical roles for arginine 1061/1060 and tyrosine 1057 in Saccharomyces cerevisiae arginine-specific carbamoyl-phosphate synthetase. Arch Biochem Biophys 1997; 339:344-52. [PMID: 9056267 DOI: 10.1006/abbi.1997.9887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbamoyl-phosphate synthetases (CPSases) bind two molecules of ATP at two internally duplicated domains. Previous affinity labeling studies with the ATP analog 5'-p-fluorosulfonylbenzoyladenosine (FSBA; Kim, H., Kelly, R. E., and Evans, D. R. (1991) Biochemistry 30, 10322-10329; Potter, M. D., and Powers-Lee, S. G. (1992) J. Biol. Chem. 267, 2023-2031) have identified several peptides as being near the ATP sites, with most of the FSBA-labeled peptides localized to the internally duplicated domains. However, two of the FSBA-labeled peptides were localized to the third domain of CPSase, an autonomously folded but flexible domain at the extreme C-terminus of the protein. These findings suggested that the C-terminal domain is also involved in interaction with both molecules of ATP and that it might serve to complement the ATP binding sites on the duplicated domains by participating in catalytic processing of the ATP molecules. To further define the role of the C-terminal domain in ATP utilization, we have now carried out site-directed mutagenic analysis of peptide 1052-1061 of the Saccharomyces cerevisiae arginine-specific CPSase. Aspartate residues at positions 1053, 1054, and 1056 did not appear to play a significant role in CPSase structure or function. However, tyrosine 1057 was critical for CPSase structure and the presence of one of the tandem arginyl residues at positions 1061 and 1060 was critical for CPSase catalytic function.
Collapse
Affiliation(s)
- A L Lim
- Department of Biology, Northeastern University, Boston, Massachusetts, 02115, USA
| | | |
Collapse
|
37
|
Korte JJ, Salo WL, Cabrera VM, Wright PA, Felskie AK, Anderson PM. Expression of carbamoyl-phosphate synthetase III mRNA during the early stages of development and in muscle of adult rainbow trout (Oncorhynchus mykiss). J Biol Chem 1997; 272:6270-7. [PMID: 9045644 DOI: 10.1074/jbc.272.10.6270] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It has been reported that the activities of the urea cycle-related enzymes ornithine carbamoyltransferase and carbamoyl-phosphate synthetase III (CPSase III) are induced during early life stages of ammonotelic rainbow trout (Oncorhynchus mykiss), suggesting that the urea cycle may play a physiological role in early development in teleost fish (Wright, P. A., Felskie, A., and Anderson, P. M. (1995) J. Exp. Biol. 198, 127-135). CPSase III cDNA prepared from embryo mRNA was sequenced, confirming the existence of the CPSase III gene in trout and its expression. The deduced amino acid sequence of the CPSase III is homologous to other CPSases. Supporting evidence for the expression of CPSase III activity in trout embryos was obtained by demonstrating expression of CPSase III mRNA as early as day 3 post-fertilization, reaching a maximum at 10-14 days, declining to a minimum at day 70, and then increasing to a relatively constant level from days 90 to 110 (relative to total RNA). Unexpectedly, in tissues of adult and fingerling trout, CPSase III mRNA was found to be present in muscle but not in other tissues, including liver. This finding was confirmed by assay of extracts, which showed CPSase III and ornithine carbamoyltransferase activity in muscle but not in other tissues. The pyrimidine nucleotide pathway-related CPSase II mRNA was expressed in all tissues.
Collapse
Affiliation(s)
- J J Korte
- Department of Biochemistry and Molecular Biology, University of Minnesota-Duluth, Duluth, Minnesota 55812, USA
| | | | | | | | | | | |
Collapse
|
38
|
McCudden CR, Powers-Lee SG. Required allosteric effector site for N-acetylglutamate on carbamoyl-phosphate synthetase I. J Biol Chem 1996; 271:18285-94. [PMID: 8663466 DOI: 10.1074/jbc.271.30.18285] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carbamoyl-phosphate synthetase I (CPSase I) catalyzes the entry and rate-limiting step in the urea cycle, the pathway by which mammals detoxify ammonia. One facet of CPSase I regulation is a requirement for N-acetylglutamate (AGA), which induces an active enzyme conformation and does not participate directly in the chemical reaction. We have utilized labeling with carbodiimide-activated [14C]AGA to identify peptides 120-127, 234-237, 625-630, and 1351-1356 as potentially being near the binding site for AGA. Identification of peptide 1351-1356 confirms the previous demonstration (Rodriquez-Aparicio, L. B., Guadalajara, A. M., and Rubio, V.(1989) Biochemistry 28, 3070-3074) that the C-terminal region is involved in binding AGA. Identification of peptides 120-127 and 234-237 constitutes the first evidence that the N-terminal region of the synthetase is involved in ligand binding. Since peptides 631-638 and 1327-1348 have been identified near the ATP site of CPSase I (Potter, M. D., and Powers-Lee, S. G.(1992) J. Biol. Chem. 267, 2023-2031), the present finding of involvement of peptides 625-630 and 1351-1356 at an "allosteric" activator site was unexpected. The idea that portions of the AGA effector site might be derived from an ancestral glutamine substrate site via a gene duplication and diversification event was considered.
Collapse
Affiliation(s)
- C R McCudden
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Guy HI, Evans DR. Function of the major synthetase subdomains of carbamyl-phosphate synthetase. J Biol Chem 1996; 271:13762-9. [PMID: 8662713 DOI: 10.1074/jbc.271.23.13762] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The amidotransferase domain (GLNase) of mammalian carbamyl-phosphate synthetase II hydrolyzes glutamine and transfers ammonia to the synthetase domain where carbamyl phosphate is formed in a three-step reaction sequence. The synthetase domain consists of two homologous subdomains, CPS.A and CPS.B. Recent studies suggest that CPS.A catalyzes the initial ATP dependent-activation of bicarbonate, whereas CPS.B uses a second ATP to form carbamyl phosphate. To establish the function of these substructural elements, we have cloned and expressed the mammalian protein and its subdomains in Escherichia coli. Recombinant CPSase (GLNase-CPS.A-CPS.B) was found to be fully functional. Two other proteins were made; the first consisted of only GLNase and CPS.A, whereas the second lacked CPS.A and had the GLNase domain fused directly to CPS.B. Remarkably, both proteins catalyzed the entire series of reactions involved in glutamine-dependent carbamyl phosphate synthesis. The stoichiometry, like that of the native enzyme, was 2 mol of ATP utilized per mol of carbamyl phosphate formed. GLN-CPS.B is allosterically regulated, whereas GLN-CPS.A was insensitive to effectors, a result consistent with evidence showing that allosteric effectors bind to CPS.B. These properties are not peculiar to the mammalian protein, because the separately cloned CPS.A subdomain of the E. coli enzyme was also found to catalyze carbamyl phosphate synthesis. Gel filtration chromatography and chemical cross-linking studies showed that these molecules are dimers, a structural organization that may be a prerequisite for the overall reaction. Thus, the homologous CPS.A and CPS.B subdomains are functionally equivalent, although in the native enzyme they may have different functions resulting from their juxtaposition relative to the other components in the complex.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
40
|
Cervera J, Bendala E, Britton HG, Bueso J, Nassif Z, Lusty CJ, Rubio V. Photoaffinity labeling with UMP of lysine 992 of carbamyl phosphate synthetase from Escherichia coli allows identification of the binding site for the pyrimidine inhibitor. Biochemistry 1996; 35:7247-55. [PMID: 8679554 DOI: 10.1021/bi952549u] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UMP is a highly specific reagent for photoaffinity labeling of the allosteric inhibitor site of carbamyl phosphate synthetase (CPS) from Escherichia coli and has been found to be photoincorporated in the COOH-terminal domain of the large subunit [Rubio et al. (1991) Biochemistry 30, 1068-1075]. In the present work we identify lysine 992 as the residue that is covalently attached to UMP. This identification is based on two lines of evidence. First, [14C]UMP is found to be incorporated between residues 939 and 1006, as shown by peptide mapping and by mass estimates of [14C]UMP-peptides generated by chemical and enzymatic cleavage of CPS. Secondly, we have purified two radioactive peptides derived exclusively from those enzyme molecules (approximately 5% of the total enzyme) that had incorporated [14C]-UMP. Edman analyses show the sequences of the labeled peptides (989)LVNXVHEGRPHIQD and (989)LVNXVHE to be overlapping. Since neither a phenylthiohydantoin (Pth) derivative (in cycle 4) nor any radioactivity is released from the membrane during sequencing, we can conclude that Lys992 and [14C]-UMP form a covalent adduct that remains bound to the membrane. Formation of this adduct agrees with all of the evidence and with the finding that UMP labeling prevents trypsin cleavage at Lys992. Lysine 992 is invariant in those CPSs that are inhibited by UMP, and is located 30 residues upstream of the site whose phosphorylation in hamster CAD reduces inhibition of CAD by UTP. Multiple sequence alignment of the residues surrounding Lys992 of the E. coli enzyme and the corresponding residues of the yeast and animal enzymes supports the existence of a uridine nucleotide binding fold in this region of the protein. We conclude that sequence changes in the binding fold provide a structural basis for the different regulatory properties found among CPSs I, II, and III.
Collapse
Affiliation(s)
- J Cervera
- Instituto de Investigaciones Citológicas (FIB and CSIC), Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Lim AL, Powers-Lee SG. Requirement for the carboxyl-terminal domain of Saccharomyces cerevisiae carbamoyl-phosphate synthetase. J Biol Chem 1996; 271:11400-9. [PMID: 8626695 DOI: 10.1074/jbc.271.19.11400] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The arginine-specific carbamoyl phosphate synthetase of Saccharomyces cerevisiae is a heterodimeric enzyme, with a 45-kDa CPA1 subunit binding and cleaving glutamine, and a 124-kDa CPA2 subunit accepting the ammonia moiety cleaved from glutamine, binding all of the remaining substrates and carrying out all of the other catalytic events. CPA2 is composed of two apparently duplicated amino acid sequences involved in binding the two ATP molecules needed for carbamoyl phosphate synthesis and a carboxyl-terminal domain which appears to be less tightly folded than the remainder of the protein. Using deletion mutagenesis, we have established that essentially all of the carboxyl-terminal domain of CPA2 is required for catalytic function and that even small truncations lead to significant changes in the CPA2 conformation. In addition, we have demonstrated that the C-terminal region of CPA2 can be expressed as an autonomously folded unit which is stabilized by specific interactions with the remainder of CPA2. We also made the unexpected finding that, even when ammonia is used as the substrate and there is no catalytic role for CPA1, interaction with CPA1 led to an increase in the Vmax of CPA2 in crude extracts.
Collapse
Affiliation(s)
- A L Lim
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
Purcarea C, Simon V, Prieur D, Hervé G. Purification and characterization of carbamoyl-phosphate synthetase from the deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:189-99. [PMID: 8617264 DOI: 10.1111/j.1432-1033.1996.00189.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamoyl-phosphate synthetase was purified from the deep-sea hyperthermophilic archaebacterium Pyrococcus abyssi. This enzyme appears to be monomeric and uses ammonium salts as nitrogen donor. Its activity is inhibited by some nucleotides that compete with ATP. In contrast with the carbamoyl-phosphate synthetases investigated so far, this enzyme is very resistant to high temperature. Its low molecular mass (46.6 kDa) and its catalytic properties suggest that the gene coding for this enzyme is a previously postulated ancestor, whose duplication gave the genes coding for carbamoyl-phosphate synthetases and carbamate kinases.
Collapse
Affiliation(s)
- C Purcarea
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
43
|
Hawkins AR, Lamb HK. The molecular biology of multidomain proteins. Selected examples. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:7-18. [PMID: 7556173 DOI: 10.1111/j.1432-1033.1995.tb20775.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this review is to give an overview of the contribution molecular biology can make to an understanding of the functions and interactions within multidomain proteins. The contemporary advantages ascribed to multidomain proteins include (a) the potential for metabolite channelling and the protection of unstable intermediates; (b) the potential for interactions between domains catalysing sequential steps in a metabolic pathway, thereby giving the potential for allosteric interactions; and (c) the facility to produce enzymic activities in a fixed stoichiometric ratio. The alleged advantages in (a) and (b) however apply equally well to multi-enzyme complexes; therefore, specific examples of these phenomena are examined in multidomain proteins to determine whether the proposed advantages are apparent. Some transcription-regulating proteins active in the control of metabolic pathways are composed of multiple domains and their control is exerted and modulated at the molecular level by protein-DNA, protein-protein and protein-metabolite interactions. These complex recognition events place strong constraints upon the proteins involved, requiring the recognition of and interaction with different classes of cellular metabolites and macromolecules. Specific examples of transcription-regulating proteins are examined to probe how their multidomain nature facilitates a general solution to the problem of multiple recognition events. A general unifying theme that emerges from these case studies is that a basic unitary design of modules provided by enzymes is exploited to produce multidomain proteins by a complex series of gene duplication and fusion events. Successful modules provided by enzymes are co-opted to new function by selection apparently acting upon duplicated copies of the genes encoding the enzymes. In multidomain transcription-regulating proteins, former enzyme modules can be recruited as molecular sensors that facilitate presumed allosteric interactions necessary for the molecular control of transcription.
Collapse
Affiliation(s)
- A R Hawkins
- Department of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, England
| | | |
Collapse
|
44
|
Hemmens B, Carrey EA. Mammalian Dihydroorotase; Secondary Structure, and Interactions with Other Proteolytic Fragments from the Multienzyme Polypeptide CAD. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20690.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Hong J, Salo WL, Anderson PM. Nucleotide sequence and tissue-specific expression of the multifunctional protein carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) mRNA in Squalus acanthias. J Biol Chem 1995; 270:14130-9. [PMID: 7775474 DOI: 10.1074/jbc.270.23.14130] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Carbamoyl-phosphate synthetase II (CPSase II), aspartate transcarbamoylase (ATCase), and dihydroorotase (DHOase) catalyze the first three steps of de novo pyrimidine nucleotide biosynthesis, respectively. In mammalian species, these three enzyme activities exist in the cytosol in liver and other tissues as a multifunctional complex on a single polypeptide called carbamoyl-phosphate synthetase-aspartate transcarbamoylase-dihydroorotase (CAD) in the order of NH2-CPSase II-DHOase-ATCase-COOH. Previous studies provided evidence that in Squalus acanthias (spiny dogfish) these enzymes are not expressed in liver and that they exist as separate entities in the cytosol of extra-hepatic tissues such as testes and spleen (Anderson, P. M. (1989) Biochem. J. 261, 523-529). Here we report that the genes for these three enzymes are expressed in testes as a single transcript analogous to CAD in mammalian species and that these genes are not expressed in liver at levels that can be detected by Northern blots or by the polymerase chain reaction. The absence of the pyrimidine pathway in the liver may be related to the exclusive localization of glutamine synthetase in the mitochondrial matrix which provides for efficient assimilation of ammonia as glutamine for urea synthesis in these ureoosmotic species; thus glutamine may not be available for CPSase II or other amidotransferase activities in the cytosol. The amino acid sequence deduced from the nucleotide sequence of the shark CAD cDNA reported here is very similar to CAD from other species; alignment with the hamster CAD sequence shows 77% identical residues.
Collapse
Affiliation(s)
- J Hong
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth 55812, USA
| | | | | |
Collapse
|
46
|
Marina A, Bravo J, Fita I, Rubio V. Crystallization, characterization, and preliminary crystallographic studies of mitochondrial carbamoyl phosphate synthetase I of Rana catesbeiana. Proteins 1995; 22:193-6. [PMID: 7567968 DOI: 10.1002/prot.340220213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbamoyl phosphate synthetase I (ammonia; E C 6.3.4.16) was purified from the liver of Rana catesbeiana (bullfrog). Crystals of the protein have been obtained at 22 degrees C by the hanging drop vapor diffusion technique, with polyethylene glycol as precipitant. Tetragonal crystals of about 0.3 x 0.3 x 0.7 mm diffract at room temperature to at least 3.5 A using a conventional source and are stable to X-radiation for about 12 h. Therefore, these crystals are suitable for high resolution studies. The space group is P4(1)2(1)2 (or its enantiomorph P4(3)2(1)2), with unit cell dimensions a = b = 291.6 A and c = 189.4 A. Density packing considerations are consistent with the presence of 4-6 monomers (M(r) of the monomer, 160,000) in the asymmetric unit. Amino-terminal sequence of the enzyme and of a chymotryptic fragment of 73.7 kDa containing the COOH-terminus has been obtained. The extensive sequence identity with rat and human carbamoyl phosphate synthetase I indicates the relevance for mammals of structural data obtained with the frog enzyme.
Collapse
Affiliation(s)
- A Marina
- Instituto de Investigaciones Citológicas de la Fundación Valenciana de Investigaciones Biomédicas (Centro Asociado del CSIC), Spain
| | | | | | | |
Collapse
|
47
|
Lawson FS, Billowes FM, Dillon JAR. Organization of carbamoyl-phosphate synthase genes in Neisseria gonorrhoeae includes a large, variable intergenic sequence which is also present in other Neisseria species. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 5):1183-1191. [PMID: 7773412 DOI: 10.1099/13500872-141-5-1183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The carbamoyl-phosphate synthase (CPS) enzyme in prokaryotes is a heterodimer, encoded by genes commonly called carA and carB. In most prokaryotes examined, these genes are separated by up to 24 bp and are cotranscribed. In Pseudomonas aeruginosa, carA and carB are also co-transcribed, but are separated by 682 bp. We have determined the complete DNA sequence of the carA and carB genes of Neisseria gonorrhoeae strain CH811. carA (1125 bp) and carB (3237 bp) are similar in size and sequence to other prokaryotic CPS genes, however they are separated by an intervening sequence of 3290 bp which has no similarity to the intervening sequence between other CPS genes; furthermore, putative transcription terminators are found downstream of both carA and carB. Several neisserial repetitive sequences were identified within the 9 kb sequenced, as well as novel 120 and 150 bp repeats (designated RS6 and RS7, respectively) which were found within the intervening sequence between carA and carB. To determine whether the intervening sequence observed in N. gonorrhoeae CH811 was not unusual, the sequence between carA and carB was amplified by PCR from 30 isolates of N. gonorrhoeae. The intervening sequence was found to vary in size, from approximately 2.2 to 3.7 kb, although the carA and carB genes themselves did not vary in size in isolates with functional CPS enzyme. A similar large, variably sized intervening sequence was also found between the carA and carB genes of 12 isolates of N. meningitidis and 18 commensal Neisseria isolates comprising nine species. This unexpected organization of the CPS genes in N. gonorrhoeae is therefore widespread throughout the genus Neisseria.
Collapse
Affiliation(s)
- Fiona S Lawson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Finola M Billowes
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jo-Anne R Dillon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Alonso E, Rubio V. Affinity cleavage of carbamoyl-phosphate synthetase I localizes regions of the enzyme interacting with the molecule of ATP that phosphorylates carbamate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:377-84. [PMID: 7744060 DOI: 10.1111/j.1432-1033.1995.tb20478.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two ATP molecules are used in the reaction catalyzed by carbamoyl-phosphate synthetase I. One molecule (ATPA) phosphorylates HCO3- and the other (ATPB) phosphorylates carbamate. Carbamoyl-phosphate synthetase I is a 160-kDa polypeptide consisting of a 40-kDa N-terminal moiety and a 120-kDa C-terminal moiety, the latter being composed of two similar halves of molecular mass 60 kDa. We showed [Alonso, E., Cervera, J., García-España, A., Bendala, E. & Rubio, V. (1992) J. Biol. Chem. 267, 4524-4532] that Fe.ATP bound at the site for ATPB catalyzes the oxidative inactivation of carbamoyl-phosphate synthetase I in a model oxidative system consisting of Fe3+, ascorbate, and O2, and we detected ATP-promoted oxidative cleavage of the enzyme. We now provide further evidence indicating that this cleavage is catalyzed by bound Fe.ATPB, and we demonstrate that the enzyme is cleaved at seven points, which we identify as residues 1002, 1064, 1083, 1128, 1200, 1242, and 1270. All these cleavage points are confined within and distributed throughout the more N-terminal 40-kDa region of the C-terminus of the 120-kDa moiety. Thus, this 40-kDa region contains the ATPB site, is folded as a globular domain with the polypeptide recurring several times towards the nucleotide, and appears to be a modular unit equivalent to carbamate kinase, with full responsibility for ATPB binding and carbamate phosphorylation. The present results and our previous demonstration [Rodríguez-Aparicio, L., Guadalajara, A.M. & Rubio, V. (1989) Biochemistry 28, 3070-3074] of the binding of N-acetyl-L-glutamate in the C-terminal 20-kDa region, strongly support the idea that each homologous half of the 120-kDa moiety of carbamoyl-phosphate synthetase I is composed of a 40-kDa ATP-binding domain and a 20-kDa domain that, in the carboxyl half, is the regulatory domain.
Collapse
Affiliation(s)
- E Alonso
- Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas (Centro Asociado del Consejo Superior de Investigaciones Científicas), Amadeo de Saboya, Spain
| | | |
Collapse
|
49
|
Guy HI, Evans DR. Substructure of the amidotransferase domain of mammalian carbamyl phosphate synthetase. J Biol Chem 1995; 270:2190-7. [PMID: 7836449 DOI: 10.1074/jbc.270.5.2190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The amidotransferase or glutaminase (GLNase) domain of mammalian carbamyl phosphate synthetase (CPSase), part of the 243-kDa CAD polypeptide, consists of a carboxyl half that is homologous to all trpG-type amidotransferases and an amino half unique to the carbamyl phosphate synthetases. The two halves of the mammalian GLNase domain have been cloned separately, expressed in Escherichia coli, and purified. The 21-kDa carboxyl half, the catalytic subdomain, is extraordinarily active. The kcat is 347-fold higher and the KGlnm is 40-fold lower than the complete GLNase domain. Unlike the GLNase domain, the catalytic subdomain does not form a stable hybrid complex with the E. coli CPSase synthetase subunit. Nevertheless, titration of the synthetase subunit with the catalytic subdomain partially restores glutamine-dependent CPSase activity. The 19-kDa amino half, the interaction subdomain, binds tightly to the E. coli CPSase large subunit. Thus, the GLNase domain consists of two subdomains which can autonomously fold and function. The catalytic subdomain weakly interacts with the synthetase domain and has all of the residues necessary for catalysis. The interaction subdomain is required for complex formation and also attenuates the intrinsically high activity of the catalytic subdomain and, thus, may be a key element of the interdomain functional linkage.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
50
|
Aoki T, Shimogawara R, Ochiai K, Yamasaki H, Shimada J. Molecular characterization of a carbamoyl-phosphate synthetase II (CPS II) gene from Trypanosoma cruzi. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 370:513-6. [PMID: 7660959 DOI: 10.1007/978-1-4615-2584-4_108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Aoki
- Department of Parasitology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|