1
|
Erickson FL, Nika J, Rippel S, Hannig EM. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 2001; 158:123-32. [PMID: 11333223 PMCID: PMC1461651 DOI: 10.1093/genetics/158.1.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
2
|
Nika J, Rippel S, Hannig EM. Biochemical analysis of the eIF2beta gamma complex reveals a structural function for eIF2alpha in catalyzed nucleotide exchange. J Biol Chem 2001; 276:1051-6. [PMID: 11042214 DOI: 10.1074/jbc.m007398200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor eIF2 is a heterotrimer that binds and delivers Met-tRNA(i)(Met) to the 40 S ribosomal subunit in a GTP-dependent manner. Initiation requires hydrolysis of eIF2-bound GTP, which releases an eIF2.GDP complex that is recycled to the GTP form by the nucleotide exchange factor eIF2B. The alpha-subunit of eIF2 plays a critical role in regulating nucleotide exchange via phosphorylation at serine 51, which converts eIF2 into a competitive inhibitor of the eIF2B-catalyzed exchange reaction. We purified a form of eIF2 (eIF2betagamma) completely devoid of the alpha-subunit to further study the role of eIF2alpha in eIF2 function. These studies utilized a yeast strain genetically altered to bypass a deletion of the normally essential eIF2alpha structural gene (SUI2). Removal of the alpha-subunit did not appear to significantly alter binding of guanine nucleotide or Met-tRNA(i)(Met) ligands by eIF2 in vitro. Qualitative assays to detect 43 S initiation complex formation and eIF5-dependent GTP hydrolysis revealed no differences between eIF2betagamma and the wild-type eIF2 heterotrimer. However, steady-state kinetic analysis of eIF2B-catalyzed nucleotide exchange revealed that the absence of the alpha-subunit increased K(m) for eIF2betagamma.GDP by an order of magnitude, with a smaller increase in V(max). These data indicate that eIF2alpha is required for structural interactions between eIF2 and eIF2B that promote wild-type rates of nucleotide exchange. We suggest that this function contributes to the ability of the alpha-subunit to control the rate of nucleotide exchange through reversible phosphorylation.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083, USA
| | | | | |
Collapse
|
3
|
Nika J, Yang W, Pavitt GD, Hinnebusch AG, Hannig EM. Purification and kinetic analysis of eIF2B from Saccharomyces cerevisiae. J Biol Chem 2000; 275:26011-7. [PMID: 10852917 DOI: 10.1074/jbc.m003718200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the heteropentameric guanine nucleotide exchange factor for translation initiation factor 2 (eIF2). Recent studies in the yeast Saccharomyces cerevisiae have served to characterize genetically the exchange factor. However, enzyme kinetic studies of the yeast enzyme have been hindered by the lack of sufficient quantities of protein suitable for biochemical analysis. We have purified yeast eIF2B and characterized its catalytic properties in vitro. Values for K(m) and V(max) were determined to be 12.2 nm and 250.7 fmol/min, respectively, at 0 degrees C. The calculated turnover number (K(cat)) of 43.2 pmol of GDP released per min/pmol of eIF2B at 30 degrees C is approximately 1 order of magnitude lower than values previously reported for the mammalian factor. Reciprocal plots at varying fixed concentrations of the second substrate were linear and intersected to the left of the y axis. This is consistent with a sequential catalytic mechanism and argues against a ping-pong mechanism similar to that proposed for EF-Tu/EF-Ts. In support of this model, our yeast eIF2B preparations bind guanine nucleotides, with an apparent dissociation constant for GTP in the low micromolar range.
Collapse
Affiliation(s)
- J Nika
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
4
|
van den Heuvel J, Lang V, Richter G, Price N, Peacock L, Proud C, McCarthy JE. The highly acidic C-terminal region of the yeast initiation factor subunit 2 alpha (eIF-2 alpha) contains casein kinase phosphorylation sites and is essential for maintaining normal regulation of GCN4. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:337-48. [PMID: 7742363 DOI: 10.1016/0167-4781(95)00026-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regulation of the effective activity of eukaryotic initiation factor 2 (eIF-2) in protein synthesis is known to involve phosphorylation of its alpha subunit. Two mammalian enzymes, the haem-controlled repressor (HCR) and the double-stranded RNA-activated inhibitor (dsI), phosphorylate Ser-51 of the alpha subunit, thereby inhibiting the exchange of bound nucleotides on, and thus the recycling of, eIF-2. In Saccharomyces cerevisiae, the equivalent serine seems to be phosphorylated by the GCN2 protein kinase, which is activated by amino acid starvation. However, in the present paper we show that this is not the only site of phosphorylation in yeast eIF-2 alpha. We report the preparation of recombinant yeast eIF-2 alpha from Escherichia coli and its use in in vitro phosphorylation studies. Mammalian HCR and dsI are shown to phosphorylate specifically Ser-51 of yeast eIF-2 alpha, whereas extracts from yeast cells do not. Instead, at least one of three serine residue in the acidic C-terminal region of this protein is phosphorylated by fractions of yeast possessing casein kinase activities 1 and 2. A triple Ser-->Ala mutant form of yeast eIF-2 alpha was found to be no longer phosphorylated by either of the yeast (or mammalian) casein kinase activities in vitro. Isoelectric focusing of yeast extracts confirmed that the mutated sites normally act as sites of phosphorylation in vivo. The same mutant was used to show that the three sites have no essential function under normal physiological conditions in yeast. In contrast, deletion of the 13 amino acid long C-terminal region of eIF-2 alpha, including the three phosphorylation sites, led to derepression of GCN4 in vivo. Thus removal of the short, highly acidic C-terminal region of eIF-2 alpha has the same regulatory effect on translational (re)initiation as phosphorylation of the Ser-51 residue of the wild-type protein. This result provides new insight into the role of eIF-2 alpha activity in the regulation of translational (re-) initiation.
Collapse
Affiliation(s)
- J van den Heuvel
- Department of Gene Expression, GBF-National Biotechnology Research Centre, Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- C G Proud
- Department of Biochemistry, School of Medical Sciences, University of Bristol, England
| |
Collapse
|
6
|
Mateu MG, Maroto FG, Vicente O, Sierra JM. Phosphorylation and guanine nucleotide exchange on polypeptide chain initiation factor-2 from Artemia embryos. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1007:55-60. [PMID: 2909242 DOI: 10.1016/0167-4781(89)90129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Eukaryotic initiation factor-2 (eIF-2) from Artemia embryos is able to exchange guanine nucleotides at the same rate in the presence or absence of Mg2+ when the reaction is carried out with either purified eIF-2 at 30 degrees C or less purified preparations at any temperature (10-30 degrees C). No exchange factor appears to catalyze this reaction. However, with purified eIF-2 at lower temperatures (10 degrees C) the exchange is clearly impaired by Mg2+ and this impairment is overcome by the guanine nucleotide exchange factor (GEF) of rabbit reticulocytes. Thus, Artemia eIF-2 is able to exchange guanine nucleotides by two alternative mechanisms that may reflect two states of the protein. Phosphorylation of the eIF-2 alpha subunit by the heme-controlled inhibitor (HCI) of rabbit reticulocytes abolishes the GEF-dependent reaction, but has no effect on the factor-independent one. The search for eIF-2 alpha kinases in Artemia embryo led to the detection of only one such enzyme, which was identified as a casein kinase type II. None of the exchange reactions is affected by the phosphorylation of the eIF-2 alpha subunit by this kinase, suggesting that, irrespective of the kind of mechanism for guanine nucleotide exchange that is actually operating in Artemia, it might not be a target for regulation by eIF-2 alpha phosphorylation.
Collapse
Affiliation(s)
- M G Mateu
- Centro de Biología Molecular, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
7
|
Roy AL, Chakrabarti D, Datta B, Hileman RE, Gupta NK. Natural mRNA is required for directing Met-tRNA(f) binding to 40S ribosomal subunits in animal cells: involvement of Co-eIF-2A in natural mRNA-directed initiation complex formation. Biochemistry 1988; 27:8203-9. [PMID: 3233204 DOI: 10.1021/bi00421a033] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two protein factors, eIF-2 as well as a high molecular weight protein complex from reticulocyte ribosomal high-salt wash which we term Co-eIF-2, promote Met-tRNA(f) binding to 40S ribosomes. This binding is dependent on the presence of an AUG codon or natural mRNAs [Roy et al. (1984) Biochem. Biophys. Res. Commun. 122, 1418-1425]. Co-eIF-2 contains two component activities, Co-eIF-2A and Co-eIF-2C. Previously, we have purified an 80-kDa polypeptide containing Co-eIF-2A activity and showed that this polypeptide is a component of Co-eIF-2 and is responsible for Co-eIF-2A activity in Co-eIF-2 [Chakravarty et al. (1985) J. Biol. Chem. 260, 6945-6949]. We now report purification of a protein complex (subunits of Mr 180K, 110K, 65K, 63K, 53K, 50K, 43K, and 40K) containing Co-eIF-2C activity and devoid of Co-eIF-2A activity. In SDS-PAGE, the purified Co-eIF-2C preparation and an eIF-3 preparation (purified in Dr. A. Wahba's laboratory) separated into seven similar major polypeptides (Mr 110K, 65K, 63K, 53K, 50K, 43K, and 40K). The 50-kDa polypeptide in Co-eIF-2C was immunoreactive with a monoclonal antibody against eIF-4A (50 kDa). We have studied the roles of purified Co-eIF-2A and Co-eIF-2C activities in ternary and Met-tRNA(f).40S ribosome complex formation. The results are as follows: (1) At low and presumably physiological factor concentration (30 nM), eIF-2 did not form detectable levels of ternary complex. Moreover, such complex formation was totally dependent on the presence of Co-eIF-2A and/or Co-eIF-2C.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A L Roy
- Department of Chemistry, University of Nebraska, Lincoln 68588-0304
| | | | | | | | | |
Collapse
|
8
|
Proud CG. Isolation and characterisation of the guanine nucleotide exchange factor from rat liver. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 914:64-73. [PMID: 3607063 DOI: 10.1016/0167-4838(87)90162-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A factor possessing guanine nucleotide exchange factor (GEF) activity has been isolated from microsomal high salt wash fractions derived from rat liver. The subsequent purification procedure employed ion-exchange chromatography on phosphocellulose (which resolved it from protein synthesis initiation factor-2 (eIF-2] and on carboxymethyl-Sephadex. The factor stimulated the formation of initiation complexes by eIF-2 and this stimulation was inhibited by phosphorylation of eIF-2 on its alpha-subunit. In particular the factor promoted the exchange of GDP bound to eIF-2 for GTP, and its functional properties therefore closely resemble those of GEF from other sources, including rabbit reticulocytes. However, its native molecular mass (450-480 kDa as estimated by gel filtration or density gradient centrifugation) was greater than those reported for GEF from other types of cells. Analysis of the rat liver GEF preparation on SDS-polyacrylamide gels revealed components of molecular weights similar to those reported for reticulocyte GEF.
Collapse
|
9
|
Mateu MG, Sierra JM. Protein synthesis in Drosophila melanogaster embryos. Two mechanisms for guanine nucleotide exchange on eukaryotic initiation factor 2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:507-13. [PMID: 3109905 DOI: 10.1111/j.1432-1033.1987.tb11468.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism for guanine nucleotide exchange with eukaryotic initiation factor-2 (eIF-2) from Drosophila melanogaster embryos was studied using the reaction eIF-2 X [3H]GDP + GDP (GTP) in equilibrium eIF-2 X GDP (GTP) + [3H]GDP. When highly purified eIF-2 is used the rate of nucleotide exchange is greatly reduced by Mg2+ and this reduction is overcome by the guanine-nucleotide-exchange factor (GEF) of rabbit reticulocytes. This GEF-dependent exchange is inhibited when Drosophila eIF-2 is either phosphorylated by the hemin-controlled inhibitor (HCI) of rabbit reticulocytes or treated with phosphatidylserine or a rabbit eIF-2 X phosphatidylserine complex. The Mg2+ impairment of guanine nucleotide exchange is less severe when highly purified eIF-2 is incubated at a higher temperature (37 degrees C) and is not observed at any temperature if partially purified eIF-2 is used instead of the highly purified factor. In the latter two cases the exchange is not inhibited by either phosphorylation with HCI or phospholipid treatment of Drosophila eIF-2, possibly suggesting that the observed exchange is not mediated by a GEF-like factor. Our data support two possible mechanisms for GDP/GTP exchange with Drosophila embryos eIF-2: a GEF-dependent exchange, similar to that described in rabbit reticulocytes, which may be regulated by phosphorylation of eIF-2, and a factor-independent exchange which appears to be insensitive to this type of control.
Collapse
|
10
|
Mateu MG, Vicente O, Sierra JM. Protein synthesis in Drosophila melanogaster embryos. Purification and characterization of polypeptide chain-initiation factor 2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:221-9. [PMID: 3102232 DOI: 10.1111/j.1432-1033.1987.tb10564.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Eukaryotic initiation factor 2 (elF-2) was purified from the high-salt wash fraction of Drosophila melanogaster embryos. This factor, with a molecular mass of about 90 kDa, consists of two subunits of 47 kDa and 39 kDa on dodecylsulfate/polyacrylamide gel electrophoresis. The 39-kDa subunit is phosphorylated by the hemin-controlled inhibitor of rabbit reticulocytes in a terminal fragment which can be cleaved by mild treatment with trypsin. Drosophila elF-2 is not a substrate for protein kinases capable of phosphorylating the beta subunit of elF-2 from rabbit reticulocytes. It is also shown that Drosophila elF-2 can form a ternary complex with GTP and Met-tRNAi, which can be efficiently transferred to 40S ribosomes in the presence of AUG and Mg2+. This factor is able to form a binary complex with GDP. Furthermore, purified elF-2 contains about 0.3 mol bound GDP/mol suggesting a high affinity of the factor for this nucleotide. Data supporting the notion that this affinity is increased in the presence of Mg2+, which impairs the GDP/GTP exchange on elF-2, are presented. The properties of Drosophila elF-2 suggest that this factor may be susceptible to regulation by a mechanism like that operating on rabbit reticulocyte elF-2.
Collapse
|
11
|
Nasrin N, Ahmad MF, Nag MK, Tarburton P, Gupta NK. Protein synthesis in yeast Saccharomyces cerevisiae. Purification of Co-eIF-2A and 'mRNA-binding factor(s)' and studies of their roles in Met-tRNAf.40S.mRNA complex formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 161:1-6. [PMID: 3096729 DOI: 10.1111/j.1432-1033.1986.tb10116.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Antibodies prepared against a homogeneous preparation of Co-eIF-2A20 [Ahmad et al. (1985) J. Biol. Chem. 260, 6955-6959] reacted with several polypeptides including an 80-kDa polypeptide present in a crude yeast ribosomal salt wash. This 80-kDa polypeptide, containing Co-eIF-2A (Co-eIF-2A80) activity, has been extensively purified using a two-step purification procedure involving an immunoaffinity column chromatograph prepared using antibodies against Co-eIF-2A20 (fraction II) and hydroxyapatite chromatography (fraction III). The factors, eIF-2 + homogeneous Co-eIF-2A80 (fraction III) promoted Met-tRNAf.40S complex formation with an AUG codon but not with a physiological mRNA or a polyribonucleotide messenger poly(U,G) whereas eIF-2 + a partially purified Co-eIF-2A80 preparation (fraction II) promoted Met-tRNAf.40S complex formation with an AUG codon as well as with globin mRNA and poly(U,G) messenger. This factor-promoted Met-tRNAf binding to 40S ribosomes depends absolutely on the presence of a polyribonucleotide messenger containing an initiation codon (such as AUG or GUG). Other polyribonucleotide messengers tested, such as poly(U), poly(A) and poly(A,C) were completely ineffective in this binding reaction. This result indicates that the Met-tRNAf.40S.mRNA complex is formed by a direct interaction between Met-tRNAf, 40S ribosomes and the initiation site in mRNA. A mechanism has been proposed for Met-tRNAf.40S.mRNA complex formation in yeast.
Collapse
|
12
|
Mehta HB, Dholakia JN, Roth WW, Parekh BS, Montelaro RC, Woodley CL, Wahba AJ. Structural studies on the eukaryotic chain initiation factor 2 from rabbit reticulocytes and brine shrimp Artemia embryos. Phosphorylation by the heme-controlled repressor and casein kinase II. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)62673-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Ahmad MF, Nasrin N, Banerjee AC, Gupta NK. Purification and properties of eukaryotic initiation factor 2 and its ancillary protein factor (Co-eIF-2A) from yeast Saccharomyces cerevisiae. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)88873-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|