1
|
Ghosh S, Majee M. Protein l-isoAspartyl Methyltransferase (PIMT) and antioxidants in plants. VITAMINS AND HORMONES 2022; 121:413-432. [PMID: 36707142 DOI: 10.1016/bs.vh.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
All life forms, including plants, accumulate reactive oxygen species (ROS) as a byproduct of metabolism; however, environmental stresses, including abiotic stresses and pathogen attacks, cause enhanced accumulation of ROS in plants. The increased accumulation of ROS often causes oxidative damage to cells. Organisms are able to maintain levels of ROS below permissible limits by several mechanisms, including efficient antioxidant systems. In addition to antioxidant systems, recent studies suggest that protein l-isoaspartyl methyltransferase (PIMT), a highly conserved protein repair enzyme across evolutionary diverse organisms, plays a critical role in maintaining ROS homeostasis by repairing isoaspartyl-mediated damage to antioxidants in plants. Under stress conditions, antioxidant proteins undergo spontaneous isoaspartyl (isoAsp) modification which is often detrimental to protein structure and function. This reduces the catalytic action of antioxidants and disturbs the ROS homeostasis of cells. This chapter focuses on PIMT and its interaction with antioxidants in plants, where PIMT constitutes a secondary level of protection by shielding a primary level of antioxidants from dysfunction and permitting them to guard during unfavorable situations.
Collapse
Affiliation(s)
- Shraboni Ghosh
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
2
|
Banreti A, Bhattacharya S, Wien F, Matsuo K, Réfrégiers M, Meinert C, Meierhenrich U, Hudry B, Thompson D, Noselli S. Biological effects of the loss of homochirality in a multicellular organism. Nat Commun 2022; 13:7059. [PMID: 36400783 PMCID: PMC9674851 DOI: 10.1038/s41467-022-34516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.
Collapse
Affiliation(s)
- Agnes Banreti
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Shayon Bhattacharya
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Frank Wien
- grid.426328.9DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Koichi Matsuo
- grid.257022.00000 0000 8711 3200HiSOR Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Matthieu Réfrégiers
- grid.417870.d0000 0004 0614 8532Centre de Biophysique Moléculaire, CNRS; UPR4301, 45071 Orléans, France
| | - Cornelia Meinert
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Uwe Meierhenrich
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, Institut de Chimie de Nice, CNRS; UMR 7272, 06108 Nice, France
| | - Bruno Hudry
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Damien Thompson
- grid.10049.3c0000 0004 1936 9692Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Stéphane Noselli
- grid.461605.0Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
3
|
Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int J Mol Sci 2022; 23:ijms231810515. [PMID: 36142428 PMCID: PMC9499682 DOI: 10.3390/ijms231810515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.
Collapse
Affiliation(s)
- Yiyou Chen
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Juncheng Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Lirong Yao
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Erjing Si
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Ke Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| | - Huajun Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| |
Collapse
|
4
|
Boudier-Lemosquet A, Mahler A, Bobo C, Dufossée M, Priault M. Introducing protein deamidation: Landmark discoveries, societal outreach, and tentative priming workflow to address deamidation. Methods 2021; 200:3-14. [PMID: 34843979 DOI: 10.1016/j.ymeth.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Our current knowledge on protein deamidation results from a journey that started almost 100 years ago, when a handful of researchers first described the non-enzymatic "desamidation" of glutamine, and the effect of different anions on the catalytic rate of the reaction. Since then, the field has tremendously expended and now finds outreach in very diverse areas. In light of all the recent articles published in these areas, it seemed timely to propose an integrated review on the subject, including a short historical overview of the landmark discoveries in the field, highlighting the current global positioning of protein deamidation in biology and non-biology fields, and concluding with a workflow for those asking if a protein can deamidate, and identify the residues involved. This review is essentially intended to provide newcomers in the field with an overview of how deamidation has penetrated our society and what tools are currently at hand to identify and quantify protein deamidation.
Collapse
Affiliation(s)
| | - Adrien Mahler
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Claude Bobo
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Mélody Dufossée
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Muriel Priault
- Univ. Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
6
|
Utility of High Resolution NMR Methods to Probe the Impact of Chemical Modifications on Higher Order Structure of Monoclonal Antibodies in Relation to Antigen Binding. Pharm Res 2019; 36:130. [DOI: 10.1007/s11095-019-2652-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
|
7
|
Serra A, Gallart-Palau X, Wei J, Sze SK. Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics. Anal Chem 2016; 88:10573-10582. [DOI: 10.1021/acs.analchem.6b02688] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aida Serra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Juan Wei
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
8
|
Deuteration protects asparagine residues against racemization. Amino Acids 2016; 48:2189-96. [PMID: 27169868 DOI: 10.1007/s00726-016-2250-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
Abstract
Racemization in proteins and peptides at sites of L-asparaginyl and L-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37 °C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the D-aspartyl and D-isoaspartyl-forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20 day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age.
Collapse
|
9
|
Hoelz D. Armt1: a phoenix rises from the ashes. Oncotarget 2015; 6:32291-2. [PMID: 26450907 PMCID: PMC4741683 DOI: 10.18632/oncotarget.5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022] Open
Affiliation(s)
- Derek Hoelz
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, ME, USA
| |
Collapse
|
10
|
Methylation of histone H4 at aspartate 24 by protein L-isoaspartate O-methyltransferase (PCMT1) links histone modifications with protein homeostasis. Sci Rep 2014; 4:6674. [PMID: 25327473 PMCID: PMC4202215 DOI: 10.1038/srep06674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/16/2014] [Indexed: 11/08/2022] Open
Abstract
Histone modifications play crucial roles in modulating chromatin function and transcriptional activity. Due to their long half-life, histones can, in addition to post-translational modifications, also accumulate spontaneous chemical alterations, which can affect their functionality and require either protein repair or degradation. One of the major sources of such protein damage or ageing is the conversion of aspartate into isoaspartate residues that can then be methylated. Here, we characterize a novel histone modification, the methylation of histone H4 at aspartate 24 (H4D24me). We generated H4D24me specific antibodies and showed that H4D24me is ubiquitously present in different mouse and human cells. Our in vitro and in vivo data identified PCMT1 (Protein L-isoaspartate O-methyltransferase), an enzyme involved in protein repair, as a novel H4D24 specific histone methyltransferase. Furthermore, we demonstrated that VprBP (HIV-1 viral protein R (Vpr)-binding protein), a chromo domain-containing protein, specifically recognizes H4D24me potentially implicating H4D24me in H4 degradation. Thus, this work links for the first time a histone modification with histone protein aging and histone homeostasis, suggesting novel functions for histone modifications beyond transcriptional regulation.
Collapse
|
11
|
Dimitrijevic A, Qin Z, Aswad DW. Isoaspartyl formation in creatine kinase B is associated with loss of enzymatic activity; implications for the linkage of isoaspartate accumulation and neurological dysfunction in the PIMT knockout mouse. PLoS One 2014; 9:e100622. [PMID: 24955845 PMCID: PMC4067349 DOI: 10.1371/journal.pone.0100622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 01/12/2023] Open
Abstract
Isoaspartate (isoAsp) formation is a common type of spontaneous protein damage that is normally kept in check by the repair enzyme protein-L-isoaspartyl methyltransferase (PIMT). PIMT-KO (knockout) mice exhibit a pronounced neuropathology highlighted by death from an epileptic seizure at 30 to 60 days after birth. The mechanisms by which isoaspartyl damage disrupts normal brain function are incompletely understood. Proteomic analysis of the PIMT-KO mouse brain has shown that a number of key neuronal proteins accumulate high levels of isoAsp, but the extent to which their cellular functions is altered has yet to be determined. One of the major neuronal targets of PIMT is creatine kinase B (CKB), a well-characterized enzyme whose activity is relatively easy to assay. We show here that (1) the specific activity of CKB is significantly reduced in the brains of PIMT-deficient mice, (2) that in vitro aging of recombinant CKB results in significant accumulation of isoAsp sites with concomitant loss of enzymatic activity, and (3) that incubation of in vitro aged CKB with PIMT and its methyl donor S-adenosyl-L-methionine substantially repairs the aged CKB with regard to both its isoAsp content and its enzymatic activity. These results, combined with similarity in phenotypes of PIMT-KO and CKB-KO mice, suggests that loss of normal CKB structure and function contributes to the mechanisms by which isoAsp accumulation leads to CNS dysfunction in the PIMT-KO mouse.
Collapse
Affiliation(s)
- Aleksandra Dimitrijevic
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
12
|
Qin Z, Kaufman RS, Khoury RN, Khoury MK, Aswad DW. Isoaspartate accumulation in mouse brain is associated with altered patterns of protein phosphorylation and acetylation, some of which are highly sex-dependent. PLoS One 2013; 8:e80758. [PMID: 24224061 PMCID: PMC3818261 DOI: 10.1371/journal.pone.0080758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/14/2013] [Indexed: 12/05/2022] Open
Abstract
Isoaspartate (isoAsp) formation is a major source of protein damage that is kept in check by the repair function of protein L-isoaspartyl methyltransferase (PIMT). Mice deficient in PIMT accumulate isoAsp-containing proteins, resulting in cognitive deficits, abnormal neuronal physiology and cytoarchitecture, and fatal epileptic seizures 30–60 days after birth. Synapsins I and II, dynamin-1, collapsin response mediator protein 2 (CRMP2), and α/β-tubulin are major targets of PIMT in brain. To investigate links between isoAsp accumulation and the neurological phenotype of the KO mice, we used Western blotting to compare patterns of in vivo phosphorylation or acetylation of the major PIMT targets listed above. Phosphorylations of synapsins I and II at Ser-9 were increased in female KO vs. WT mice, and acetylation of tubulin at Lys-40 was decreased in male KO vs. WT mice. Average levels of dynamin-1 phosphorylation at Ser-778 and Ser-795 were higher in male KO vs. WT mice, but the statistical significance (P>0.1) was low. No changes in phosphorylation were found in synapsins I and II at Ser-603, in CRMP2 at Ser-522 or Thr-514, in DARPP-32 at Thr-34, or in PDK1 at Ser-241. General levels of phosphorylation assessed with Pro-Q Diamond stain, or an anti-phosphotyrosine antibody, appeared similar in the WT and KO mice. We conclude that isoAsp accumulation is associated with altered functional status of several neuronal proteins that are highly susceptible to this type of damage. We also uncovered unexpected differences in how male and female mice respond to isoAsp accumulation in the brain.
Collapse
Affiliation(s)
- Zhenxia Qin
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rachel S. Kaufman
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Rana N. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mitri K. Khoury
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Dana W. Aswad
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mikkat S, Kischstein T, Kreutzer M, Glocker MO. Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation. Electrophoresis 2013; 34:1610-8. [DOI: 10.1002/elps.201200682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | - Timo Kischstein
- Oscar Langendorff Institute of Physiology; University Medicine Rostock; Rostock; Germany
| | - Michael Kreutzer
- Proteome Center Rostock; University Medicine Rostock; Rostock; Germany
| | | |
Collapse
|
14
|
Computational investigation of the substrate recognition mechanism of protein d-aspartyl (l-isoaspartyl) O-methyltransferase by docking and molecular dynamics simulation studies and application to interpret size exclusion chromatography data. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3310-6. [DOI: 10.1016/j.jchromb.2011.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022]
|
15
|
New proteomic developments to analyze protein isomerization and their biological significance in plants. J Proteomics 2011; 74:1475-82. [DOI: 10.1016/j.jprot.2011.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/01/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
|
16
|
Bidinosti M, Martineau Y, Frank F, Sonenberg N. Repair of isoaspartate formation modulates the interaction of deamidated 4E-BP2 with mTORC1 in brain. J Biol Chem 2010; 285:19402-8. [PMID: 20424163 PMCID: PMC2885220 DOI: 10.1074/jbc.m110.120774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, a rate-limiting step of translation initiation is recognition of the mRNA 5' m(7)GpppN cap structure by the eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting of the cap-binding protein, eIF4E, along with eIF4G, and eIF4A. The eIF4E-binding proteins (4E-BPs) repress translation by disrupting eIF4F formation, thereby preventing ribosome recruitment to the mRNA. Of the three 4E-BPs, 4E-BP2 is the predominant paralog expressed in the mammalian brain and plays an important role in synaptic plasticity and learning and memory. 4E-BP2 undergoes asparagine deamidation, solely in the brain, during early postnatal development. Deamidation spontaneously converts asparagines into a mixture of aspartates or isoaspartates, the latter of which may be destabilizing to proteins. The enzyme protein L-isoaspartyl methyltransferase (PIMT) prevents isoaspartate accumulation by catalyzing the conversion of isoaspartates to aspartates. PIMT exhibits high activity in the brain, relative to other tissues. We report here that 4E-BP2 is a substrate for PIMT. In vitro deamidated 4E-BP2 accrues isoapartyl residues and is methylated by recombinant PIMT. Using an antibody that recognizes 4E-BP2, which harbors isoaspartates at the deamidation sites, Asn(99) and Asn(102), we demonstrate that 4E-BP2 in PIMT-/- brain lysates contains isoaspartate residues. Further, we show that 4E-BP2 containing isoaspartates lacks the augmented association with raptor that is a feature of deamidated 4E-BP2.
Collapse
Affiliation(s)
- Michael Bidinosti
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
17
|
Shang J, Yu J, Qin Y, Jin H, Cai H, Guo X. Fragmentations of the heptapeptides containing alpha- or beta-aspartate by ESI-MS and low-energy CAD. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:456-460. [PMID: 20205196 DOI: 10.1002/jms.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
18
|
Dick LW, Qiu D, Wong RB, Cheng KC. Isomerization in the CDR2 of a monoclonal antibody: Binding analysis and factors that influence the isomerization rate. Biotechnol Bioeng 2010; 105:515-23. [DOI: 10.1002/bit.22561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Cantor JR, Stone EM, Chantranupong L, Georgiou G. The human asparaginase-like protein 1 hASRGL1 is an Ntn hydrolase with beta-aspartyl peptidase activity. Biochemistry 2009; 48:11026-31. [PMID: 19839645 PMCID: PMC2782781 DOI: 10.1021/bi901397h] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the bacterial expression, purification, and enzymatic characterization of the human asparaginase-like protein 1 (hASRGL1). We present evidence that hASRGL1 exhibits beta-aspartyl peptidase activity consistent with enzymes designated as plant-type asparaginases, which had thus far been found in only plants and bacteria. Similar to nonmammalian plant-type asparaginases, hASRGL1 is shown to be an Ntn hydrolase for which Thr168 serves as the essential N-terminal nucleophile for intramolecular processing and catalysis, corroborated in part by abolishment of both activities through the Thr168Ala point mutation. In light of the activity profile reported here, ASRGL1s may act synergistically with protein l-isoaspartyl methyl transferase to relieve accumulation of potentially toxic isoaspartyl peptides in mammalian brain and other tissues.
Collapse
Affiliation(s)
- Jason R. Cantor
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | - Everett M. Stone
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
| | | | - George Georgiou
- Department of Chemical Engineering, University of Texas, Austin, Texas 78712, USA
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| |
Collapse
|
20
|
Identification and measurement of isoaspartic acid formation in the complementarity determining region of a fully human monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3841-9. [PMID: 19819766 DOI: 10.1016/j.jchromb.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/29/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022]
Abstract
Isomerization plays a key role in protein degradation. This isomerization is often difficult to detect by many protein characterization methods such as SDS-PAGE, SEC, and IEF. This work shows the identification of an isomerized aspartic acid residue in the CDR2 of the heavy chain of a fully human monoclonal antibody. This isoaspartic acid increases significantly with storage at 2-8 degrees C. Hydrophobic interaction chromatography was utilized to separate the isoaspartic variant in the intact state. Mass spectrometry including peptide mapping was employed to identify and confirm the exact location of the modification. Since this modification occurs in the complementarity determining region (CDR) it was found that binding is reduced. Therefore, three different analytical methods for regular analysis of this isomerization are evaluated. These methods include peptide mapping by LC-MS, HIC, and a protein isoaspartate methyltransferase assay. It was determined that HIC is the best method to regularly assay the level of isomerization in this monoclonal antibody.
Collapse
|
21
|
|
22
|
Chapter 16 Analysis of Deamidation in Proteins. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0166-526x(08)00216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Klotz AV. 15 Modification of phycobiliproteins at asparagine residues. Enzymes 2007; 24:455-463. [PMID: 26718049 DOI: 10.1016/s1874-6047(06)80017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Side-chain amide methylation of asparagine was described in a special complement of photosynthesis accessory pigment-protein complexes called phycobiliproteins nearly 20 years ago. Since that report, several investigations have assigned this posttranslational modification a functional role in tuning the spectroscopic properties of the phycobiliprotein chromophores. Asparagine methylation has not been reported in other systems and is restricted to the broader phycobiliprotein family. The methyltransferase responsible for this modification has been partially characterized but the structural gene has not been identified.
Collapse
Affiliation(s)
- Alan V Klotz
- Lilly Research Laboratories Eli Lilly and Company Lilly Corporate Center Indianapolis, IN 46285, USA
| |
Collapse
|
24
|
McCudden CR, Kraus VB. Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. Clin Biochem 2006; 39:1112-30. [PMID: 17046734 DOI: 10.1016/j.clinbiochem.2006.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/27/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
During aging, proteins are subject to numerous forms of damage. Several types of non-enzymatic post-translational modifications have been described in aging proteins, including oxidation, nitration, glycation, and racemization. Racemization of amino acids is the spontaneous conversion of L-enantiomers to the D-form, which is dependent on temperature, pH, and time. Because of the time-dependent nature of racemization, it can be used to determine the relative age and turnover rates of long-lived proteins. There are many such long-lived proteins within the body; they are found in the brain, eye, and heart, but are particularly abundant in proteins found in musculoskeletal tissues such as bone and cartilage. During disease, musculoskeletal tissues have pathologically altered turnover rates. Because turnover rates can be estimated from levels of racemization, racemized musculoskeletal protein fragments may serve as useful biomarkers of disease. This review discusses the biochemistry of amino acid racemization in proteins and its clinical application to musculoskeletal disease.
Collapse
Affiliation(s)
- Christopher R McCudden
- Division of Rheumatology, Department of Medicine, Box 3416, Duke University, Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
25
|
Chourey K, Thompson MR, Morrell-Falvey J, Verberkmoes NC, Brown SD, Shah M, Zhou J, Doktycz M, Hettich RL, Thompson DK. Global molecular and morphological effects of 24-hour chromium(VI) exposure on Shewanella oneidensis MR-1. Appl Environ Microbiol 2006; 72:6331-44. [PMID: 16957260 PMCID: PMC1563591 DOI: 10.1128/aem.00813-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological impact of 24-h ("chronic") chromium(VI) [Cr(VI) or chromate] exposure on Shewanella oneidensis MR-1 was assessed by analyzing cellular morphology as well as genome-wide differential gene and protein expression profiles. Cells challenged aerobically with an initial chromate concentration of 0.3 mM in complex growth medium were compared to untreated control cells grown in the absence of chromate. At the 24-h time point at which cells were harvested for transcriptome and proteome analyses, no residual Cr(VI) was detected in the culture supernatant, thus suggesting the complete uptake and/or reduction of this metal by cells. In contrast to the untreated control cells, Cr(VI)-exposed cells formed apparently aseptate, nonmotile filaments that tended to aggregate. Transcriptome profiling and mass spectrometry-based proteomic characterization revealed that the principal molecular response to 24-h Cr(VI) exposure was the induction of prophage-related genes and their encoded products as well as a number of functionally undefined hypothetical genes that were located within the integrated phage regions of the MR-1 genome. In addition, genes with annotated functions in DNA metabolism, cell division, biosynthesis and degradation of the murein (peptidoglycan) sacculus, membrane response, and general environmental stress protection were upregulated, while genes encoding chemotaxis, motility, and transport/binding proteins were largely repressed under conditions of 24-h chromate treatment.
Collapse
Affiliation(s)
- Karuna Chourey
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kinouchi T, Nishio H, Nishiuchi Y, Tsunemi M, Takada K, Hamamoto T, Kagawa Y, Fujii N. Isolation and characterization of mammalian D-aspartyl endopeptidase. Amino Acids 2006; 32:79-85. [PMID: 17021656 DOI: 10.1007/s00726-006-0348-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/01/2006] [Indexed: 12/23/2022]
Abstract
The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer's disease (AD), cataracts and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600 kDa) and is localized in the inner mitochondrial membrane. However, DAEP activity was not detected in E. coli, S. cerevisiae, and C. elegans. A specific inhibitor for DAEP, i-DAEP: (benzoyl-L-Arg-L-His-[D-Asp]-CH(2)Cl; MW: 563.01), was newly synthesized and inhibited DAEP activity (IC(50), 3 microM), a factor of ten greater than lactacystin on DAEP. On the other hand, i-DAEP did not inhibit either the 20S or 26S proteasome. And we identified succinate dehydrogenase and glutamate dehydrogenase 1 as components of DAEP by affinity label using biotinylated i-DAEP. In the long life span of mammals, DAEP may serve as a scavenger against accumulation of racemized proteins in aging. Insights into DAEP will provide the foundation for developing treatments of diseases, such as AD, in which accumulation of D-Asp-containing proteins are implicated.
Collapse
Affiliation(s)
- T Kinouchi
- Department of Radiation Life Science and Radiation Medical Science, Research Reactor Institute, Kyoto University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Curnis F, Longhi R, Crippa L, Cattaneo A, Dondossola E, Bachi A, Corti A. Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 2006; 281:36466-76. [PMID: 17015452 DOI: 10.1074/jbc.m604812200] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoaspartate formation in extracellular matrix proteins, by aspartate isomerization or asparagine deamidation, is generally viewed as a degradation reaction occurring in vivo during tissue aging. For instance, non-enzymatic isoaspartate formation at RGD-integrin binding sites causes loss of cell adhesion sites, which in turn can be enzymatically "repaired" to RGD by protein-l-isoAsp-O-methyltransferase. We show here that isoaspartate formation is also a mechanism for extracellular matrix activation. In particular, we show that deamidation of Asn263 at the Asn-Gly-Arg (NGR) site in fibronectin N-terminal region generates an alpha(v)beta3-integrin binding site containing the L-isoDGR sequence, which is enzymatically "deactivated" to DGR by protein-L-isoAsp-O-methyltransferase. Furthermore, rapid NGR-to-isoDGR sequence transition in fibronectin fragments generates alpha(v)beta3 antagonists (named "isonectins") that competitively bind RGD binding sites and inhibit endothelial cell adhesion, proliferation, and tumor growth. Time-dependent generation of isoDGR may represent a sort of molecular clock for activating latent integrin binding sites in proteins.
Collapse
Affiliation(s)
- Flavio Curnis
- Department of Oncology, Cancer Immunotherapy and Gene Therapy Program and Italian Institute of Technology Network Research Unit of Molecular Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhu JX, Doyle HA, Mamula MJ, Aswad DW. Protein repair in the brain, proteomic analysis of endogenous substrates for protein L-isoaspartyl methyltransferase in mouse brain. J Biol Chem 2006; 281:33802-13. [PMID: 16959769 DOI: 10.1074/jbc.m606958200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) catalyzes repair of L-isoaspartyl peptide bonds, a major source of protein damage under physiological conditions. PIMT knock-out (KO) mice exhibit brain enlargement and fatal epileptic seizures. All organs accumulate isoaspartyl proteins, but only the brain manifests an overt pathology. To further explore the role of PIMT in brain function, we undertook a global analysis of endogenous substrates for PIMT in mouse brain. Extracts from PIMT-KO mice were subjected to two-dimensional gel electrophoresis and blotted onto membranes. Isoaspartyl proteins were radiolabeled on-blot using [methyl-(3)H]S-adenosyl-L-methionine and recombinant PIMT. Fluorography of the blot revealed 30-35 (3)H-labeled proteins, 22 of which were identified by peptide mass fingerprinting. These isoaspartate-prone proteins represent a wide range of cellular functions, including neuronal development, synaptic transmission, cytoskeletal structure and dynamics, energy metabolism, nitrogen metabolism, pH homeostasis, and protein folding. The following five proteins, all of which are rich in neurons, accumulated exceptional levels of isoaspartate: collapsin response mediator protein 2 (CRMP2/ULIP2/DRP-2), dynamin 1, synapsin I, synapsin II, and tubulin. Several of the proteins identified here are prone to age-dependent oxidation in vivo, and many have been identified as autoimmune antigens, of particular interest because isoaspartate can greatly enhance the antigenicity of self-peptides. We propose that the PIMT-KO phenotype results from the cumulative effect of isoaspartate-related damage to a number of the neuron-rich proteins detected in this study. Further study of the isoaspartate-prone proteins identified here may help elucidate the molecular basis of one or more developmental and/or age-related neurological diseases.
Collapse
Affiliation(s)
- Jeff X Zhu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
29
|
Kawai T, Shibata A, Kurosawa K, Sato Y, Kato S, Ohki K, Hashimoto T, Sakura N. Structure-activity relationships of neuromedin U. V. study on the stability of porcine neuromedin U-8 at the C-terminal asparagine amide under mild alkaline and acidic conditions. Chem Pharm Bull (Tokyo) 2006; 54:659-64. [PMID: 16651761 DOI: 10.1248/cpb.54.659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porcine neuromedin U-8 (X-Asn-NH(2), X=H-Tyr-Phe-Leu-Phe-Arg-Pro-Arg) is occasionally unstable in the biological fluids used for bioassay as well as in the acidic solutions used for purification of synthetic peptides. In this study, HPLC examination of an incubate solution of X-Asn-NH(2) revealed that the main decomposition products in Tyrode's solution (pH 7.4) were either alpha- or beta-monocarboxylic acid analogs (X-Asn-OH or X-Asp-NH(2)), and that no dicarboxylic acid analog (X-Asp-OH) was produced. Further investigation, employing a model peptide (Y-Asn-NH(2), Y=Benzoyl-Pro-Arg) incubated in a 0.1 M sodium bicarbonate solution at 60 degrees C, revealed that the decomposition of C-terminal Asn-NH(2) occurred through the formation of an aminosuccinimide intermediate (Y-Asu), at a rate faster than that of Y-Asn-Ser peptide but slower than that of Y-Asn-Gly peptide. Mild acid hydrolysis of X-Asn-NH(2) examined in a 1 M HCl solution at 60 degrees C yielded X-Asn-OH and X-Asp-NH(2), which further decomposed to yield X-Asp-OH. The C-terminal degradation of X-Asn-NH(2) resulted in reduced biological and immunochemical binding activities.
Collapse
Affiliation(s)
- Takako Kawai
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Reissner KJ, Paranandi MV, Luc TM, Doyle HA, Mamula MJ, Lowenson JD, Aswad DW. Synapsin I is a major endogenous substrate for protein L-isoaspartyl methyltransferase in mammalian brain. J Biol Chem 2006; 281:8389-98. [PMID: 16443604 DOI: 10.1074/jbc.m510716200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of potentially deleterious L-isoaspartyl linkages in proteins is prevented by the action of protein L-isoaspartyl O-methyltransferase, a widely distributed enzyme that is particularly active in mammalian brain. Methyltransferase-deficient (knock-out) mice exhibit greatly increased levels of isoaspartate and typically succumb to fatal epileptic seizures at 4-10 weeks of age. The link between isoaspartate accumulation and the neurological abnormalities of these mice is poorly understood. Here, we demonstrate that synapsin I from knock-out mice contains 0.9 +/- 0.3 mol of isoaspartate/mol of synapsin, whereas the levels in wild-type and heterozygous mice are undetectable. Transgenic mice that selectively express methyltransferase only in neurons show reduced levels of synapsin damage, and the degree of reduction correlates with the phenotype of these mice. Isoaspartate levels in synapsin from the knock-out mice are five to seven times greater than those in the average protein from brain cytosol or from a synaptic vesicle-enriched fraction. The isoaspartyl sites in synapsin from knock-out mice are efficiently repaired in vitro by incubation with purified methyltransferase and S-adenosyl-L-methionine. These findings demonstrate that synapsin I is a major substrate for the isoaspartyl methyltransferase in neurons and suggest that isoaspartate-related alterations in the function of presynaptic proteins may contribute to the neurological abnormalities of mice deficient in this enzyme.
Collapse
Affiliation(s)
- Kathryn J Reissner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
O'Connor CM. 13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair. Enzymes 2006; 24:385-433. [PMID: 26718047 DOI: 10.1016/s1874-6047(06)80015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Protein L-isoaspartyl, D-aspartyl O-methyltransferases (PIMTs) are ancient enzymes distributed through all phylogenetic domains. PIMTs catalyze the methylation of L-isoaspartyl, and to a lesser extent D-aspartyl, residues arising from the spontaneous deamidation and isomerization of protein asparaginyl and aspartyl residues. PIMTs catalyze the methylation of isoaspartyl residues in a large number of primary sequence configurations, which accounts for the broad specificity of the enzyme for protein substrates both in vitro and in vivo. PIMT-catalyzed methylation of isoaspartyl substrates initiates the repair of the polypeptide backbone in its damaged substrates by a spontaneous mechanism that involves a succinimidyl intermediate. The repair process catalyzed by PEVITs is not completely efficient, however, leaving open the possibility that unidentified enzymatic activities cooperate with PIMT in the repair process. Structurally, PIMTs are members of the class I family of AdoMet-dependent methyltransferases. PIMTs have a unique topological arrangement of strands in the central β sheet that provides a signature for this class of enzymes. The regulation and physiological significance of PIMT has been studied in several model organisms. PIMTs are constitutively synthesized by cells, but they can be upregulated in response to conditions that are potentially damaging to protein structures, or when proteins are stored for prolonged periods of time. Disruption of PIMT genes in bacteria and simple eukaryotes produces subtle phenotypes that are apparent only under stress. Loss of PIMT function in transgenic mice leads to fatalepilepsy, suggesting that PIMT function is particularly important to neurons in mammals.
Collapse
Affiliation(s)
- Clare M O'Connor
- Biology Department Boston College 140 Commonwealth Avenue Chestnut Hill, MA 02467, USA
| |
Collapse
|
32
|
Young GW, Hoofring SA, Mamula MJ, Doyle HA, Bunick GJ, Hu Y, Aswad DW. Protein L-Isoaspartyl Methyltransferase Catalyzes in Vivo Racemization of Aspartate-25 in Mammalian Histone H2B. J Biol Chem 2005; 280:26094-8. [PMID: 15908425 DOI: 10.1074/jbc.m503624200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L-isoaspartyl methyltransferase (PIMT) has been implicated in the repair or metabolism of proteins containing atypical L-isoaspartyl peptide bonds. The repair hypothesis is supported by previous studies demonstrating in vitro repair of isoaspartyl peptides via formation of a succinimide intermediate. Utilization of this mechanism in vivo predicts that PIMT modification sites should exhibit significant racemization as a side reaction to the main repair pathway. We therefore studied the D/L ratio of aspartic acid at specific sites in histone H2B, a known target of PIMT in vivo. Using H2B from canine brain, we found that Asp25 (the major PIMT target site in H2B) was significantly racemized, exhibiting d/l ratios as high as 0.12, whereas Asp51, a comparison site, exhibited negligible racemization (D/L < or = 0.01). Racemization of Asp25 was independent of animal age over the range of 2-15 years. Using H2B from 2-3-week mouse brain, we found a similar D/L ratio (0.14) at Asp25 in wild type mice, but substantially less racemization (D/L = 0.035) at Asp25 in PIMT-deficient mice. These findings suggest that PIMT functions in the repair, rather than the metabolic turnover, of isoaspartyl proteins in vivo. Because PIMT has numerous substrates in cells, these findings also suggest that D-aspartate may be more common in cellular proteins than hitherto imagined and that its occurrence, in some proteins at least, is independent of animal age.
Collapse
Affiliation(s)
- Glen W Young
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Huang L, Lu J, Wroblewski VJ, Beals JM, Riggin RM. In Vivo Deamidation Characterization of Monoclonal Antibody by LC/MS/MS. Anal Chem 2005; 77:1432-9. [PMID: 15732928 DOI: 10.1021/ac0494174] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spontaneous nonenzymatic deamidation of glutaminyl and asparaginyl residues of peptides and proteins has been observed both in vitro and in vivo. Deamidation may change the structure and function of a peptide or protein, potentially resulting in decreased bioactivity, as well as alterations in pharmacokinetics and antigenicity of the protein pharmaceutical. Therefore, it is necessary to monitor the effect of storage and formulation conditions on deamidation of a protein drug candidate. Of particular interest is the investigation of in vivo deamidation mechanisms of protein drug candidates. Several methods are available to characterize the deamidation of peptides and proteins. We present here a LC/MS/MS method used to evaluate the deamidation of an antibody after in vivo administration. A humanized monoclonal IgG1 antibody (MAb) has several "hot spots" for spontaneous deamidation. One site, amino acid residue Asn55 located in the CDR2 region of the heavy chain, is of particular interest since deamidation at this site greatly decreases the binding activity. MAb was administered to cynomolgus monkeys by intravenous and subcutaneous routes. At various times after dosing, monkey serum was prepared and MAb captured by the immobilized antigen or a goat anti-human IgG Fcgamma antibody. The captured MAb was treated with trypsin followed by endoproteinase Glu-C. The digests were separated on RP-HPLC and analyzed by MS/MS on Q-Tof Global mass spectrometer. Using this method, we were able to determine the deamidation half-life of amino acid residue Asn55 in vivo and the ratio of the deamidated derivatives, i.e., isoAsp55 and Asp55. The method is rapid and sensitive with low-nanogram quantities of protein detected in the biological matrix.
Collapse
Affiliation(s)
- Lihua Huang
- Biopharmaceutical Product Development, Biotechnology Discovery Research, Drug Disposition Development/Commercialization, and Manufacturing Science and Technology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
34
|
Kinouchi T, Ishiura S, Mabuchi Y, Urakami-Manaka Y, Nishio H, Nishiuchi Y, Tsunemi M, Takada K, Watanabe M, Ikeda M, Matsui H, Tomioka S, Kawahara H, Hamamoto T, Suzuki K, Kagawa Y. Mammalian d-aspartyl endopeptidase: a scavenger for noxious racemized proteins in aging. Biochem Biophys Res Commun 2004; 314:730-6. [PMID: 14741696 DOI: 10.1016/j.bbrc.2003.12.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The accumulation of D-isomers of aspartic acid (D-Asp) in proteins during aging has been implicated in the pathogenesis of Alzheimer's disease, cataracts, and arteriosclerosis. Here, we identified a specific lactacystin-sensitive endopeptidase that cleaves the D-Asp-containing protein and named it D-aspartyl endopeptidase (DAEP). DAEP has a multi-complex structure (MW: 600kDa) and is localized in the inner mitochondrial membrane of mouse and rabbit, but DAEP activity was not detected in Escherichia coli, Saccharomyces cerevisiae, and Caenorhabditis elegans. A specific inhibitor for DAEP was newly synthesized, and inhibited DAEP activity (IC(50), 3microM), a factor of 10 greater than lactacystin on DAEP. On the other hand, the inhibitor did not inhibit either the 20S or 26S proteasome.
Collapse
Affiliation(s)
- Tadatoshi Kinouchi
- Department of Biochemistry, Jichi Medical School, 329-0498, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2:263-85. [PMID: 12726775 DOI: 10.1016/s1568-1637(03)00011-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deamidated, isomerized, and racemized aspartyl and asparaginyl residues represent a significant part of the spontaneous damage to proteins that results from the aging process. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. However, almost all cells in nature contain a methyltransferase that can recognize the major damaged form of the L-isoaspartyl residue, and some of these enzymes can also recognize the racemized D-aspartyl residue. The methyl esterification reaction can initiate the conversion of these altered residues to the normal L-aspartyl form, although there is no evidence yet that the L-asparaginyl form can be regenerated. This enzyme, the protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77), thus functions as a protein repair enzyme. The importance of this enzyme in attenuating age-related protein damage can be seen by the phenotypes of organisms where the gene encoding has been disrupted, or where its expression has been augmented.
Collapse
Affiliation(s)
- Steven Clarke
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
36
|
Solstad T, Carvalho RN, Andersen OA, Waidelich D, Flatmark T. Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:929-38. [PMID: 12603326 DOI: 10.1046/j.1432-1033.2003.03455.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two dimensional electrophoresis has revealed a microheterogeneity in the recombinant human phenylalanine hydroxylase (hPAH) protomer, that is the result of spontaneous nonenzymatic deamidations of labile asparagine (Asn) residues [Solstad, T. and Flatmark, T. (2000) Eur. J. Biochem.267, 6302-6310]. Using of a computer algorithm, the relative deamidation rates of all Asn residues in hPAH have been predicted, and we here verify that Asn32, followed by a glycine residue, as well as Asn28 and Asn30 in a loop region of the N-terminal autoregulatory sequence (residues 19-33) of wt-hPAH, are among the susceptible residues. First, on MALDI-TOF mass spectrometry of the 24 h expressed enzyme, the E. coli 28-residue peptide, L15-K42 (containing three Asn residues), was recovered with four monoisotopic mass numbers (i.e., m/z of 3106.455, 3107.470, 3108.474 and 3109.476, of decreasing intensity) that differed by 1 Da. Secondly, by reverse-phase chromatography, isoaspartyl (isoAsp) was demonstrated in this 28-residue peptide by its methylation by protein-l-isoaspartic acid O-methyltransferase (PIMT; EC 2.1.1.77). Thirdly, on incubation at pH 7.0 and 37 degrees C of the phosphorylated form (at Ser16) of this 28-residue peptide, a time-dependent mobility shift from tR approximately 34 min to approximately 31 min (i.e., to a more hydrophilic position) was observed on reverse-phase chromatography, and the recovery of the tR approximately 34 min species decreased with a biphasic time-course with t0.5-values of 1.9 and 6.2 days. The fastest rate is compatible with the rate determined for the sequence-controlled deamidation of Asn32 (in a pentapeptide without 3D structural interference), i.e., a deamidation half-time of approximately 1.5 days in 150 mm Tris/HCl, pH 7.0 at 37 degrees C. Asn32 is located in a cluster of three Asn residues (Asn28, Asn30 and Asn32) of a loop structure stabilized by a hydrogen-bond network. Deamidation of Asn32 introduces a negative charge and a partial beta-isomerization (isoAsp), which is predicted to result in a change in the backbone conformation of the loop structure and a repositioning of the autoregulatory sequence and thus affect its regulatory properties. The functional implications of this deamidation was further studied by site-directed mutagenesis, and the mutant form (Asn32-->Asp) revealed a 1.7-fold increase in the catalytic efficiency, an increased affinity and positive cooperativity of L-Phe binding as well as substrate inhibition.
Collapse
Affiliation(s)
- Therese Solstad
- Department of Biochemistry and Molecular Biology, Proteomic Unit, University of Bergen, Arstadveien 19, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
37
|
Thapar N, Griffith SC, Yeates TO, Clarke S. Protein repair methyltransferase from the hyperthermophilic archaeon Pyrococcus furiosus. Unusual methyl-accepting affinity for D-aspartyl and N-succinyl-containing peptides. J Biol Chem 2002; 277:1058-65. [PMID: 11694513 DOI: 10.1074/jbc.m108261200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein l-isoaspartate-(d-aspartate) O-methyltransferases (EC ), present in a wide variety of prokaryotic and eukaryotic organisms, can initiate the conversion of abnormal l-isoaspartyl residues that arise spontaneously with age to normal l-aspartyl residues. In addition, the mammalian enzyme can recognize spontaneously racemized d-aspartyl residues for conversion to l-aspartyl residues, although no such activity has been seen to date for enzymes from lower animals or prokaryotes. In this work, we characterize the enzyme from the hyperthermophilic archaebacterium Pyrococcus furiosus. Remarkably, this methyltransferase catalyzes both l-isoaspartyl and d-aspartyl methylation reactions in synthetic peptides with affinities that can be significantly higher than those of the human enzyme, previously the most catalytically efficient species known. Analysis of the common features of l-isoaspartyl and d-aspartyl residues suggested that the basic substrate recognition element for this enzyme may be mimicked by an N-terminal succinyl peptide. We tested this hypothesis with a number of synthetic peptides using both the P. furiosus and the human enzyme. We found that peptides devoid of aspartyl residues but containing the N-succinyl group were in fact methyl esterified by both enzymes. The recent structure determined for the l-isoaspartyl methyltransferase from P. furiosus complexed with an l-isoaspartyl peptide supports this mode of methyl-acceptor recognition. The combination of the thermophilicity and the high affinity binding of methyl-accepting substrates makes the P. furiosus enzyme useful both as a reagent for detecting isomerized and racemized residues in damaged proteins and for possible human therapeutic use in repairing damaged proteins in extracellular environments where the cytosolic enzyme is not normally found.
Collapse
Affiliation(s)
- Nitika Thapar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
38
|
Amphlett G, Cacia J, Callahan W, Cannova-Davis E, Chang B, Cleland JL, Darrington T, DeYoung L, Dhingra B, Everett R, Foster L, Frenz J, Garcia A, Giltinan D, Gitlin G, Gombotz W, Hageman M, Harris R, Heller D, Herman A, Hershenson S, Hora M, Ingram R, Janes S, Watanabe C. A compendium and hydropathy/flexibility analysis of common reactive sites in proteins: reactivity at Asn, Asp, Gln, and Met motifs in neutral pH solution. PHARMACEUTICAL BIOTECHNOLOGY 2002; 9:1-140. [PMID: 8914190 DOI: 10.1007/0-306-47452-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Amphlett
- Department of pharmaceutical Research and Development, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Young AL, Carter WG, Doyle HA, Mamula MJ, Aswad DW. Structural integrity of histone H2B in vivo requires the activity of protein L-isoaspartate O-methyltransferase, a putative protein repair enzyme. J Biol Chem 2001; 276:37161-5. [PMID: 11479322 DOI: 10.1074/jbc.m106682200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein L-isoaspartate O-methyltransferase (PIMT) is postulated to repair beta-aspartyl linkages (isoaspartyl (isoAsp)) that accumulate at certain Asp-Xaa and Asn-Xaa sites in association with protein aging and deamidation. To identify major targets of PIMT action we cultured rat PC12 cells with adenosine dialdehyde (AdOx), a methyltransferase inhibitor that promotes accumulation of isoAsp in vivo. Subcellular fractionation of AdOx-treated cells revealed marked accumulation of isoAsp in a 14-kDa nuclear protein. Gel electrophoresis and chromatography of nuclei (3)H-methylated in vitro by PIMT revealed this protein to be histone H2B. The isoAsp content of H2B in AdOx-treated cells was approximately 18 times that in control cells, although no isoAsp was seen in other core histones, regardless of treatment. To confirm the relevance and specificity of this effect, we measured isoAsp levels in histones from brains of PIMT knockout mice. IsoAsp was found at near stoichiometric levels in H2B extracted from knockout brains and was at least 80 times greater than that in H2B from normal mice. Little or no isoAsp was detected in H2A, H3, or H4 from mice of either genotype. Accumulation of isoAsp in histone H2B may disrupt normal gene regulation and contribute to the reduced life span that characterizes PIMT knockouts. In addition to disrupting protein function, isoAsp has been shown to trigger immunity against self-proteins. The propensity of H2B to generate isoAsp in vivo may help explain why this histone in particular is found as a major antigen in autoimmune diseases such as lupus erythematosus.
Collapse
Affiliation(s)
- A L Young
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
40
|
Kinzel V, König N, Pipkorn R, Bossemeyer D, Lehmann WD. The amino terminus of PKA catalytic subunit--a site for introduction of posttranslational heterogeneities by deamidation: D-Asp2 and D-isoAsp2 containing isozymes. Protein Sci 2000; 9:2269-77. [PMID: 11152138 PMCID: PMC2144497 DOI: 10.1110/ps.9.11.2269] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conserved deamidation of PKA catalytic subunit isozymes Calpha and Cbeta--more than 25% at Asn2 in vivo in both cases--has been shown to yield Asp2- and isoAsp2-containing isozymes (Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D, 1998, Protein Sci 7:457-469). Isoaspartate formation in proteins in vivo is indicative of succinimide intermediates involved in both the initial deamidation reaction as well as the "repair" of isoAsp to Asp by the action of protein L-isoaspartyl (D-aspartyl) O-methyl transferase (PIMT). L-Succinimide is prone to racemization to D-succinimide, which may hydrolyze to D-isoAsp- and D-Asp-containing diastereomers with, respectively, no and poor substrate character for PIMT. To analyze native PKA catalytic subunit from cardiac muscle for these isomers the N-terminal tryptic peptides (T1) of the enzyme were analyzed following procedures refined specifically with a set of corresponding synthetic peptides. The methods combined high resolution high-performance liquid chromatography and a new mass spectrometric procedure for the discrimination between Asp- and isoAsp-residues in peptides (Lehmann et al., 2000). The results demonstrate the occurrence of D-isoAsp- and D-Asp-containing T1 fragments in addition to the L-isomers. The small amount of the L-isoAsp isomer, representing only part of the D-isoAsp isomer, and the relatively large amounts of the L-Asp and D-Asp isomers argues for an effective action of PIMT present in cardiac tissue.
Collapse
Affiliation(s)
- V Kinzel
- Department of Pathochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T. Isoaspartate formation and neurodegeneration in Alzheimer's disease. Arch Biochem Biophys 2000; 381:225-34. [PMID: 11032409 DOI: 10.1006/abbi.2000.1955] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We reviewed here that protein isomerization is enhanced in amyloid-beta peptides (Abeta) and paired helical filaments (PHFs) purified from Alzheimer's disease (AD) brains. Biochemical analyses revealed that Abeta purified from senile plaques and vascular amyloid are isomerized at Asp-1 and Asp-7. A specific antibody recognizing isoAsp-23 of Abeta further suggested the isomerization of Abeta at Asp-23 in vascular amyloid as well as in the core of senile plaques. Biochemical analyses of purified PHFs also revealed that heterogeneous molecular weight tau contains L-isoaspartate at Asp-193, Asn-381, and Asp-387, indicating a modification, other than phosphorylation, that differentiates between normal tau and PHF tau. Since protein isomerization as L-isoaspartate causes structural changes and functional inactivation, or enhances the aggregation process, this modification is proposed as one of the progression factors in AD. Protein L-isoaspartyl methyltransferase (PIMT) is suggested to play a role in the repair of isomerized proteins containing L-isoaspartate. We show here that PIMT is upregulated in neurodegenerative neurons and colocalizes in neurofibrillary tangles (NFTs) in AD. Taken together with the enhanced protein isomerization in AD brains, it is implicated that the upregulated PIMT may associate with increased protein isomerization in AD. We also reviewed studies on PIMT-deficient mice that confirmed that PIMT plays a physiological role in the repair of isomerized proteins containing L-isoaspartate. The knockout study also suggested that the brain of PIMT-deficient mice manifested neurodegenerative changes concomitant with accumulation of L-isoaspartate. We discuss the pathological implications of protein isomerization in the neurodegeneration found in model mice and AD.
Collapse
Affiliation(s)
- T Shimizu
- Department of Molecular Genetics, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | | | |
Collapse
|
42
|
Ingrosso D, D'angelo S, di Carlo E, Perna AF, Zappia V, Galletti P. Increased methyl esterification of altered aspartyl residues in erythrocyte membrane proteins in response to oxidative stress. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4397-405. [PMID: 10880963 DOI: 10.1046/j.1432-1327.2000.01485.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl sites in membrane proteins as a key event in erythrocyte spleen conditioning and hemocatheresis is proposed.
Collapse
Affiliation(s)
- D Ingrosso
- Institute of Biochemistry of Macromolecules and Division of Nephrology/Department of Pediatrics, School of Medicine, Second University of Naples, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Pepperkok R, Hotz-Wagenblatt A, König N, Girod A, Bossemeyer D, Kinzel V. Intracellular distribution of mammalian protein kinase A catalytic subunit altered by conserved Asn2 deamidation. J Cell Biol 2000; 148:715-26. [PMID: 10684253 PMCID: PMC2169370 DOI: 10.1083/jcb.148.4.715] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The catalytic (C) subunit of protein kinase A functions both in the cytoplasm and the nucleus. A major charge variant representing about one third of the enzyme in striated muscle results from deamidation in vivo of the Asn2 residue at the conserved NH(2)-terminal sequence myrGly-Asn-Ala (Jedrzejewski, P.T., A. Girod, A. Tholey, N. König, S. Thullner, V. Kinzel, and D. Bossemeyer. 1998. Protein Sci. 7:457-469). Because of the increase of electronegativity by generation of Asp2, it is reminiscent of a myristoyl-electrostatic switch. To compare the intracellular distribution of the enzymes, both forms of porcine or bovine heart enzyme were microinjected into the cytoplasm of mouse NIH 3T3 cells after conjugation with fluorescein, rhodamine, or in unlabeled form. The nuclear/cytoplasmic fluorescence ratio (N/C) was analyzed in the presence of cAMP (in the case of unlabeled enzyme by antibodies). Under all circumstances, the N/C ratio obtained with the encoded Asn2 form was significantly higher than that with the deamidated, Asp2 form; i.e., the Asn2 form reached a larger nuclear concentration than the Asp2 form. Comparable data were obtained with a human cell line. The differential intracellular distribution of both enzyme forms is also reflected by functional data. It correlates with the degree of phosphorylation of the key serine in CREB family transcription factors in the nucleus. Microinjection of myristoylated recombinant bovine Calpha and the Asn2 deletion mutant of it yielded N/C ratios in the same range as encoded native enzymes. Thus, Asn2 seems to serve as a potential site for modulating electronegativity. The data indicate that the NH(2)-terminal domain of the PKA C-subunit contributes to the intracellular distribution of free enzyme, which can be altered by site-specific in vivo deamidation. The model character for other signaling proteins starting with myrGly-Asn is discussed.
Collapse
Affiliation(s)
- Rainer Pepperkok
- European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Norbert König
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Andreas Girod
- European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dirk Bossemeyer
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Volker Kinzel
- Department of Pathochemistry, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
González LJ, Shimizu T, Satomi Y, Betancourt L, Besada V, Padrón G, Orlando R, Shirasawa T, Shimonishi Y, Takao T. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:2092-2102. [PMID: 11114015 DOI: 10.1002/1097-0231(20001130)14:22<2092::aid-rcm137>3.0.co;2-v] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Spectra obtained by low-energy electrospray ionization tandem mass spectrometry (ESI-MS/MS) of 34 peptides containing aspartic acids at position n were studied and unambiguously differentiated. beta-Aspartic acid yields an internal rearrangement similar to that of the C-terminal rearrangements of protonated and cationized peptides. As a result of this rearrangement, two different ions containing the N- and the C-terminal ends of the original peptide are formed, namely, the bn-1 + H2O and y"l - n + 1 - 46 ions, respectively, where e is the number of amino acid residues in the peptide. The structure suggested for the y"l - n + 1 - 46 ion is identical to that proposed for the vn ions observed upon high-energy collision-induced dissociation (CID) experiments. The intensity of these ions in the low-energy MS/MS spectra is greatly influenced by the presence and position of basic amino acids within the sequences. Peptides with a basic amino acid residue at position n - 1 with respect to the beta-aspartic acid yield very intense bn-1 + H2O ions, while the y"l - n + 1 - 46 ion was observed mostly in tryptic peptides. Comparison between the high- and low-energy MS/MS spectra of several isopeptides suggests that a metastable fragmentation process is the main contributor to this rearrangement, whereas for long peptides (40 AA) CID plays a more important role. We also found that alpha-aspartic acid containing peptides yield the normal immonium ion at 88 Da, while peptides containing beta-aspartic acid yield an ion at m/z 70, and a mechanism to explain this phenomenon is proposed. Derivatizing isopeptides to form quaternary amines, and performing MS/MS on the sodium adducts of isopeptides, both improve the relative intensity of the bn + 1 + H2O ions. Based on the above findings, it was possible to determine the isomerization sites of two aged recombinant growth proteins.
Collapse
Affiliation(s)
- L J González
- Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Mature human erythrocytes are highly differentiated cells which have lost the ability to biosynthesize proteins de novo. During cell aging in circulation, erythrocyte proteins undergo spontaneous postbiosynthetic modifications, regarded as "protein fatigue" damage, which include formation of isomerized and/or racemized aspartyl residues. These damaged proteins cannot be replaced by new molecules; nevertheless, data support the notion that they can be repaired to a significant extent, through an enzymatic transmethylation reaction. This repair reaction has therefore been used as a means to monitor the increase of altered aspartyl residues in erythrocyte membrane proteins during cell aging. The relationship between protein repair and aspartyl racemization in red blood cell stress and disease is discussed.
Collapse
Affiliation(s)
- D Ingrosso
- Institute of Biochemistry of Macromolecules, S.U.N. School of Medicine and Surgery, Naples, Italy
| | | |
Collapse
|
46
|
Jedrzejewski PT, Girod A, Tholey A, König N, Thullner S, Kinzel V, Bossemeyer D. A conserved deamidation site at Asn 2 in the catalytic subunit of mammalian cAMP-dependent protein kinase detected by capillary LC-MS and tandem mass spectrometry. Protein Sci 1998; 7:457-69. [PMID: 9521123 PMCID: PMC2143929 DOI: 10.1002/pro.5560070227] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The N-terminal sequence myr-Gly-Asn is conserved among the myristoylated cAPK (protein kinase A) catalytic subunit isozymes Calpha, Cbeta, and Cgamma. By capillary LC-MS and tandem MS, we show that, in approximately one third of the Calpha and Cbeta enzyme populations from cattle, pig, rabbit, and rat striated muscle, Asn 2 is deamidated to Asp 2. This deamidation accounts for the major isoelectric variants of the cAPK C-subunits formerly called CA and CB. Deamidation also includes characteristic isoaspartate isomeric peptides from Calpha and Cbeta. Asn 2 deamidation does not occur during C-subunit preparation and is absent in recombinant myristoylated Calpha (rCalpha) from Escherichia coli. Deamidation appears to be the exclusive pathway for introduction of an acidic residue adjacent to the myristoylated N-terminal glycine, verified by the myristoylation negative phenotype of an rCalpha(Asn 2 Asp) mutant. This is the first report thus far of a naturally occurring myr-Gly-Asp sequence. Asp 2 seems to be required for the well-characterized (auto)phosphorylation of the native enzyme at Ser 10. Our results suggest that the myristoylated N terminus of cAPK is a conserved site for deamidation in vivo. Comparable myr-Gly-Asn sequences are found in several signaling proteins. This may be especially significant in view of the recent knowledge that negative charges close to myristic acid in some proteins contribute to regulating their cellular localization.
Collapse
Affiliation(s)
- P T Jedrzejewski
- Department of Central Spectroscopy, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Cacia J, Keck R, Presta LG, Frenz J. Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 1996; 35:1897-903. [PMID: 8639672 DOI: 10.1021/bi951526c] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This report describes the effect on antigen binding of an isomerized aspartate residue located in the complementarity-determining regions (CDRs) of a recombinant monoclonal antibody. The antibody, which binds human IgE, contains two Asp-Gly sequences within its CDRs, but only one site was found to be labile to isomerization. Isolation and characterization of antibody fragments differing in the labile sequence were facilitated by using a technique involving hydrophobic interaction chromatography (HIC) that separates aspartyl, isoaspartyl, and cyclic imide variants to the residue located in CDR-L1. The variants were isolated for structural characterization and for determination of their relative antigen binding affinities. Mutants were constructed with altered residues to obviate the effects of isomerization and were evaluated for their ability to bind to IgE. Inspection of published crystal structures of CDRs of antibodies indicated that hydrogen binding of the Asp side chain of the unreactive residue may be the constraint that prevents isomerization. The strategy outlined here may prove to be of general utility in the biochemical and immunochemical characterization of recombinant antibodies.
Collapse
Affiliation(s)
- J Cacia
- Department of Manufacturing Sciences, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Many cereal proteins, such as wheat, corn, and oat proteins, have high levels of the amide-containing amino acids, glutamine and asparagine. These side chains are susceptible to hydrolysis of the amide bond, which leads to release of ammonia and transformation to acidic groups. The released ammonia has been implicated in the formation of aroma compounds and pigments because of its participation in the Maillard browning reaction. The conversion of the amide groups to acid groups may partially unfold the protein, resulting in an amphiphilic molecule that can be used as a surface active agent or emulsifier by food processors. This review provides general information on the factors that affect deamidation of proteins as well as the implications of deamidation for food processing.
Collapse
Affiliation(s)
- W E Riha
- Department of Food Science, Cook College, Rutgers, State University of New Jersey, New Brunswick 08903, USA
| | | | | | | |
Collapse
|
50
|
Bischoff R, Kolbe HV. Deamidation of asparagine and glutamine residues in proteins and peptides: structural determinants and analytical methodology. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 662:261-78. [PMID: 7719481 DOI: 10.1016/0378-4347(94)00203-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Non-enzymatic deamidation of asparagine and glutamine residues in proteins and peptides are reviewed by first outlining the well-described reaction mechanism involving cyclic imide intermediates, followed by a discussion of structural features which influence the reaction rate. The second and major part describes analytical techniques that allow studying deamidation in proteins using recombinant human growth hormone and recombinant hirudin as examples. Finally, the significance of non-enzymatic deamidation with respect to the production of pharmaceutical proteins is discussed.
Collapse
|