1
|
Life in the serendipitous lane: excitement and gratification in studying DNA repair. DNA Repair (Amst) 2012; 11:595-605. [PMID: 22870513 DOI: 10.1016/j.dnarep.2011.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Gospodinov A, Herceg Z. Shaping chromatin for repair. Mutat Res 2012; 752:45-60. [PMID: 23085398 DOI: 10.1016/j.mrrev.2012.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
To counteract the adverse effects of various DNA lesions, cells have evolved an array of diverse repair pathways to restore DNA structure and to coordinate repair with cell cycle regulation. Chromatin changes are an integral part of the DNA damage response, particularly with regard to the types of repair that involve assembly of large multiprotein complexes such as those involved in double strand break (DSB) repair and nucleotide excision repair (NER). A number of phosphorylation, acetylation, methylation, ubiquitylation and chromatin remodeling events modulate chromatin structure at the lesion site. These changes demarcate chromatin neighboring the lesion, afford accessibility and binding surfaces to repair factors and provide on-the-spot means to coordinate repair and damage signaling. Thus, the hierarchical assembly of repair factors at a double strand break is mostly due to their regulated interactions with posttranslational modifications of histones. A large number of chromatin remodelers are required at different stages of DSB repair and NER. Remodelers physically interact with proteins involved in repair processes, suggesting that chromatin remodeling is a requisite for repair factors to access the damaged site. Together, recent findings define the roles of histone post-translational modifications and chromatin remodeling in the DNA damage response and underscore possible differences in the requirements for these events in relation to the chromatin context.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008, Lyon, France.
| |
Collapse
|
3
|
Battu A, Ray A, Wani AA. ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation. Nucleic Acids Res 2011; 39:7931-45. [PMID: 21727091 PMCID: PMC3185425 DOI: 10.1093/nar/gkr523] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful DNA repair within chromatin requires coordinated interplay of histone modifications, chaperones and remodelers for allowing access of repair and checkpoint machineries to damaged sites. Upon completion of repair, ordered restoration of chromatin structure and key epigenetic marks herald the cell's normal function. Here, we demonstrate such a restoration role of H3K56 acetylation (H3K56Ac) mark in response to ultraviolet (UV) irradiation of human cells. A fast initial deacetylation of H3K56 is followed by full renewal of an acetylated state at ~24-48 h post-irradiation. Histone chaperone, anti-silencing function-1 A (ASF1A), is crucial for post-repair H3K56Ac restoration, which in turn, is needed for the dephosphorylation of γ-H2AX and cellular recovery from checkpoint arrest. On the other hand, completion of DNA damage repair is not dependent on ASF1A or H3K56Ac. H3K56Ac restoration is regulated by ataxia telangiectasia mutated (ATM) checkpoint kinase. These cross-talking molecular cellular events reveal the important pathway components influencing the regulatory function of H3K56Ac in the recovery from UV-induced checkpoint arrest.
Collapse
Affiliation(s)
- Aruna Battu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
4
|
Lux ex tenebris: nucleotide resolution DNA repair and nucleosome mapping. Methods 2009; 48:23-34. [PMID: 19269326 DOI: 10.1016/j.ymeth.2009.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/21/2022] Open
Abstract
In recent years a great deal of progress has been made in understanding how the various DNA repair mechanisms function when DNA is assembled into chromatin. In the case of nucleotide excision repair, a core group of DNA repair proteins is required in vitro to observe DNA repair activity in damaged DNA devoid of chromatin structure. This group of proteins is not sufficient to promote repair in the same DNA when assembled into nucleosomes; the first level of chromatin compaction. Clearly other factors are required for efficient DNA repair of chromatin. For some time chromatin has been considered a barrier to be overcome, and inhibitory to DNA metabolic processes including DNA repair. However, an emerging picture suggests a fascinating link at the interface of chromatin metabolism and DNA repair. In this view these two fundamental processes are mechanistically intertwined and function in concert to bring about regulated DNA repair throughout the genome. Light from the darkness has come as a result of many elegant studies performed by a number of research groups. Here we describe two techniques developed in our laboratories which we hope have contributed to our understanding in this arena.
Collapse
|
5
|
Waters R, Teng Y, Yu Y, Yu S, Reed SH. Tilting at windmills? The nucleotide excision repair of chromosomal DNA. DNA Repair (Amst) 2008; 8:146-52. [PMID: 19041427 DOI: 10.1016/j.dnarep.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
A typical view of how DNA repair functions in chromatin usually depicts a struggle in which the DNA repair machinery battles to overcome the inhibitory effect of chromatin on the repair process. It may be that in this current interpretation the repair mechanisms are 'tilting at windmills', fighting an imaginary foe. An emerging picture suggests that we should not consider chromatin as an inhibitory force to be overcome like some quixotic giant by the DNA repair processes. Instead we should now recognize that DNA repair and chromatin metabolism are inextricably and mechanistically linked. Here we discuss the latest findings which are beginning to reveal how changes in chromatin dynamics integrate with the DNA repair process in response to UV induced DNA damage, with an emphasis on events in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Raymond Waters
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
6
|
Gong F, Kwon Y, Smerdon MJ. Nucleotide excision repair in chromatin and the right of entry. DNA Repair (Amst) 2007; 4:884-96. [PMID: 15961354 DOI: 10.1016/j.dnarep.2005.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/22/2022]
Abstract
DNA is packaged with histones and other accessory proteins into chromatin in eukaryotic cells. It is well established that the assembly of DNA into chromatin affects induction of DNA damage as well as repair of the damage. How the DNA repair machinery detects a lesion and 'fixes it' in chromatin has been an intriguing question since the dawn of understanding DNA packaging in chromatin. Direct recognition/binding by damaged DNA binding proteins is one obvious tactic to detect a lesion. Rearrangement of chromatin structure during DNA repair was reported more than two decades ago. This early observation suggests that unfolding of chromatin structure may be required to facilitate DNA repair after lesions are detected. Cells can also exploit DNA processing events to assist DNA repair. Transcription coupled repair (TCR) is such an example. During TCR, an RNA polymerase blocked by a lesion, may act as a signal to recruit DNA repair machinery. Possible roles of histone modification enzymes, ATP-dependent chromatin remodeling complexes and chromatin assembly factors in DNA repair are discussed.
Collapse
Affiliation(s)
- Feng Gong
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA
| | | | | |
Collapse
|
7
|
Osley MA, Tsukuda T, Nickoloff JA. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 2007; 618:65-80. [PMID: 17291544 PMCID: PMC1904433 DOI: 10.1016/j.mrfmmm.2006.07.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 07/31/2006] [Indexed: 02/08/2023]
Abstract
The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA damage repair. In this review, we focus on the role of chromatin in nucleotide excision repair (NER) and double-strand break (DSB) repair. NER and DSB repair use very different enzymatic machineries, and these two modes of DNA damage repair are also differentially affected by chromatin. Only a small number of nucleosomes are likely to be involved in NER, while a more extensive region of chromatin is involved in DSB repair. However, a key feature of both NER and DSB repair pathways is the participation of ATP-dependent chromatin remodeling factors at various points in the repair process. We discuss recent data that have identified roles for SWI/SNF-related chromatin remodeling factors in the two repair pathways.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
8
|
Kim SH, Lee JY, Kim J. Characterization of a wide range base-damage-endonuclease activity of mammalian rpS3. Biochem Biophys Res Commun 2005; 328:962-7. [PMID: 15707971 DOI: 10.1016/j.bbrc.2005.01.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Indexed: 11/17/2022]
Abstract
Mammalian rpS3, a ribosomal protein S3 with a DNA repair endonuclease activity, nicks heavily UV-irradiated DNA and DNA containing AP sites. RpS3 calls for a novel endonucleolytic activity on AP sites generated from pyrimidine dimers by T4 pyrimidine dimer glycosylase activity. This study revealed that rpS3 cleaves the lesions including AP sites, thymine glycols, and other UV damaged lesions such as pyrimidine dimers. This enzyme does not have a glycosylase activity as predicted from its amino acid sequence. However, it has an endonuclease activity on DNA containing thymine glycol, which is exactly overlapped with UV-irradiated or AP DNAs, indicating that rpS3 cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity acting as a base-damage-endonuclease. RpS3 cleaves supercoiled UV damaged DNA more efficiently than the relaxed counterpart, and the endonuclease activity of rpS3 was inhibited by MgCl2 on AP DNA but not on UV-irradiated DNA.
Collapse
Affiliation(s)
- Sang Hwa Kim
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
9
|
Hara R, Mo J, Sancar A. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol Cell Biol 2000; 20:9173-81. [PMID: 11094069 PMCID: PMC102175 DOI: 10.1128/mcb.20.24.9173-9181.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of nucleosomes on nucleotide excision repair in humans, we prepared a mononucleosome containing a (6-4) photoproduct in the nucleosome core and examined its repair with the reconstituted human excision nuclease system and with cell extracts. Nucleosomal DNA is repaired at a rate of about 10% of that for naked DNA in both systems. These results are in agreement with in vivo data showing a considerably slower rate of repair of overall genomic DNA relative to that for transcriptionally active DNA. Furthermore, our results indicate that the first-order packing of DNA in nucleosomes is a primary determinant of slow repair of DNA in chromatin.
Collapse
Affiliation(s)
- R Hara
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
10
|
Tseng M, Palaniyar N, Zhang W, Evans DH. DNA binding and aggregation properties of the vaccinia virus I3L gene product. J Biol Chem 1999; 274:21637-44. [PMID: 10419472 DOI: 10.1074/jbc.274.31.21637] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vaccinia virus I3L gene encodes a single-stranded DNA-binding protein which may play a role in viral replication and genetic recombination. We have purified native and recombinant forms of gpI3L and characterized both the DNA-binding reaction and the structural properties of DNA-protein complexes. The purified proteins displayed anomalous electrophoretic properties in the presence of sodium dodecyl sulfate, behaving as if they were 4-kDa larger than the true mass. Agarose gel shift analysis was used to monitor the formation of complexes composed of single-stranded DNA plus gpI3L protein. These experiments detected two different DNA binding modes whose formation was dependent upon the protein density. The transition between the two binding modes occurred at a nucleotide to protein ratio of about 31 nucleotides per gpI3L monomer. S1 nuclease protection assay revealed that at saturating protein densities, each gpI3L monomer occludes 9.5 +/- 2.5 nucleotides. In the presence of magnesium, gpI3L promoted the formation of large DNA aggregates from which double-stranded DNA was excluded. Electron microscopy showed that, in the absence of magnesium and at low protein densities, gpI3L forms beaded structures on DNA. At high protein density the complexes display a smoother and less compacted morphology. In the presence of magnesium the complexes contained long fibrous and tangled arrays. These results suggest that gpI3L can form octameric complexes on DNA much like those formed by Escherichia coli single-stranded DNA protein. Moreover, the capacity to aggregate DNA may provide an environment in which hybrid DNA formation could occur during DNA replication.
Collapse
Affiliation(s)
- M Tseng
- Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
11
|
Lapointe G, Mori T, Evans DH. Tobacco plants expressing T4 endonuclease V show enhanced sensitivity to ultraviolet light and DNA alkylating agents. Mutat Res 1996; 351:19-31. [PMID: 8602170 DOI: 10.1016/0027-5107(95)00193-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA repair processes and UV-filtering pigments protect organisms from the cytotoxicity of UV light and endow plants with a high degree of natural UV resistance. In an attempt to further enhance this UV resistance we have constructed transgenic tobacco lines that express a DNA repair enzyme encoded by the bacteriophage T4 denV gene. The denV gene encodes endonuclease V, an enzyme which initiates base excision repair of cyclobutane pyrimidine dimers. Its presence is expected to provide transgenotes with a repair pathway complementary to, but likely distinct from, the repair pathways found in tobacco. The denV gene, flanked by a CaMV 35S promoter and poly(A) addition site, was introduced into tobacco and mature plants regenerated. The transgenotes expressed high levels of a UV-specific endonuclease and no such activity was found in control plants. Curiously, assays which detected several different biological endpoints showed that the denV+ transgenotes were also hypersensitive to UV-C light. This hypersensitivity segregated with the denV gene and was not caused by altered concentrations of UV-filtering pigments. Moreover, the denV+ transgenotes were also hypersensitive to high levels of baseless lesions that would be generated by a transgenically expressed beta-eliminating lyase such as endonuclease V.
Collapse
Affiliation(s)
- G Lapointe
- Department of Molecular Biology & Genetics, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
12
|
Wang Z, Wu X, Friedberg E. Nucleotide excision repair of DNA by human cell extracts is suppressed in reconstituted nucleosomes. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54596-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Zhang WD, Evans DH. Detection and identification of human influenza viruses by the polymerase chain reaction. J Virol Methods 1991; 33:165-89. [PMID: 1939505 DOI: 10.1016/0166-0934(91)90017-t] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of oligonucleotide primers are described which hybridize to conserved regions of influenza virus cDNA and prime DNA synthesis in Taq polymerase catalyzed amplification reactions (PCR). Primers were designed to hybridize as nested pairs and, following a two-step amplification, produce uniquely sized DNA fragments diagnostic for viral type and subtype. Influenza A and B matrix-protein genes and the influenza C haemagglutinin gene were targets for the type-specific primers. Subtype-specific primers targeted conserved sequences within the three haemagglutinin or two neuraminidase subtypes of different human influenza isolates. The utility of this method was demonstrated using computer search methods and by accurately amplifying DNA from a variety of influenza A, B, and C strains. Type-specific primer sets showed a broad type specificity and amplified DNA from viral strains of unknown sequence. Restriction mapping and DNA sequencing showed that fragments amplified in this manner derived from the input template, confirming the accuracy of the method and demonstrating how PCR can be used to quickly derive sufficient sequence information for analysis of viral relatedness. Subtyping primers were able to distinguish accurately between the three haemagglutinin (H1, H2, H3) and two neuraminidase (N1, N2) alleles of human influenza A isolates. Again DNA was amplified from viruses of unknown sequence confirming that most of these primer sets may prove useful as broad range subtyping reagents. In order to simplify the work associated with analysis of many samples, we have also devised a rapid method for the isolation of viral RNA and synthesis of cDNA. Using this 'mini-prep' technique, it is possible to detect, amplify, and identify picogram quantities of influenza virus in a single day, confirming that PCR provides a useful alternative to existing methods of influenza detection.
Collapse
Affiliation(s)
- W D Zhang
- Department of Molecular Biology & Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
14
|
Affiliation(s)
- F W Perrino
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | |
Collapse
|
15
|
Randahl H, Elliott GC, Linn S. DNA-repair reactions by purified HeLa DNA polymerases and exonucleases. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37744-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Ahnström G, Ljungman M. Effects of 3-aminobenzamide on the rejoining of DNA-strand breaks in mammalian cells exposed to methyl methanesulphonate; role of poly(ADP-ribose) polymerase. Mutat Res 1988; 194:17-22. [PMID: 3133560 DOI: 10.1016/0167-8817(88)90052-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase, on DNA-repair processes has been investigated after treating V79 hamster cells with methyl methanesulphonate (MMS). Repair activity was observed as changes in DNA-strand break levels. MMS induces transient strand breaks, the level of which slowly decreases with time. Addition of 3AB leads to a rapid increase in the number of breaks. The level of breaks increases linearly with time until it suddenly levels off. Increasing the concentration of 3AB does not change the slope of this curve, but the steady-state level of breaks increases. The incision-rejoining kinetics indicates that 3AB induces a delay in the strand-break rejoining process. In the absence of 3AB the breaks have a lifetime of 1-2 min and this is increased by a factor of 5 in the presence of 5 mM 3AB.
Collapse
Affiliation(s)
- G Ahnström
- University of Stockholm, Department of Radiobiology, Sweden
| | | |
Collapse
|
17
|
Wilson S, Abbotts J, Widen S. Progress toward molecular biology of DNA polymerase beta. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 949:149-57. [PMID: 3277667 DOI: 10.1016/0167-4781(88)90078-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- S Wilson
- Laboratory of Biochemistry, National Cancer Institute, Bethesda, MD 20892
| | | | | |
Collapse
|
18
|
Nishida C, Reinhard P, Linn S. DNA repair synthesis in human fibroblasts requires DNA polymerase delta. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57421-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Resnick MA, Westmoreland J, Amaya E, Bloom K. UV-induced damage and repair in centromere DNA of yeast. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:16-22. [PMID: 3323836 DOI: 10.1007/bf00337753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The centromere is the region within a chromosome that is required for proper segregation during mitosis and meiosis. Lesions in this sequence represent a unique type of damage, as loss of function could result in catastrophic loss of the genetic material of an entire chromosome. We have measured the induction by ultraviolet (UV) light of pyrimidine dimers in a 2550-bp restriction fragment that includes the centromere region of chromosome III in Saccharomyces cerevisiae. Yeast cells were exposed to ultraviolet light, cellular DNA was gently extracted, and subsequently treated with a UV-specific endonuclease to cleave all pyrimidine dimers. The sites of UV-specific nuclease scission within the centromere were determined by separating the DNA according to molecular weight, transferring the fragments to nitrocellulose, and hybridizing to a radiolabeled 624-bp fragment homologous to the centromere DNA from chromosome III. Several hotspots were identified in chromatin DNA from cells, as well as in irradiated deproteinized DNA. Double strand damage due to closely opposed pyrimidine dimers was also observed. At biological doses (35% survival) there are approximately 0.1 to 0.2 pyrimidine dimers per centromere. These dimers are efficiently repaired in the centromere and surrounding region.
Collapse
Affiliation(s)
- M A Resnick
- Cellular and Genetic Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
20
|
Harris PV, Boyd JB. Pyrimidine dimers in Drosophila chromatin become increasingly accessible after irradiation. Mutat Res 1987; 183:53-60. [PMID: 3796663 DOI: 10.1016/0167-8817(87)90045-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A prokaryotic DNA-repair enzyme has been utilized as a probe for changes in the accessibility of pyrimidine dimers in Drosophila chromatin following UV irradiation. The results demonstrate a rapid cellular response to physiologically relevant doses of radiation which results in at least a 40% increase in accessible dimers. This increase occurs in two incision-deficient mutants which indicates that the excision-repair process, at or beyond the incision step, is not required or responsible for the increase. In the absence of excision the increase in accessibility persists for at least 2 days following irradiation. The observed increase in accessibility is inhibited by both novobiocin and coumermycin. These inhibitors do not inhibit the initial rate of incision, but do reduce dimer excision measured over more extended periods. A pre-incision process is proposed which actively exposes DNA lesions to excision repair. A fraction of the genome is postulated to be accessible without the intervention of that process.
Collapse
|
21
|
Kaysen JH, Amari NM, Lambert MW. Enhancement of two apurinic/apyrimidinic endonuclease activities from normal but not xeroderma pigmentosum lymphoblastoid cells by nucleosome structure. Mutat Res 1986; 165:221-31. [PMID: 2422553 DOI: 10.1016/0167-8817(86)90057-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The influence of nucleosomes on the activity of two chromatin-associated apurinic/apyrimidinic (AP) DNA endonuclease activities, pIs 9.2 and 9.8, from normal and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined. These AP endonuclease activities were studied on non-nucleosomal and nucleosomal plasmid pWT830/pBR322 DNA which had been reconstituted with core (H2A, H2B, H3, H4) or total (core plus H1) histones from normal or XPA cells. Both nucleosomal and non-nucleosomal DNA was rendered partially AP by alkylation with 12.5 mM methyl methanesulfonate, followed by heating it at 70 degrees C, to produce approximately three AP sites per DNA molecule. The activities of both normal lymphoblastoid AP endonuclease activities on nucleosomal AP DNA, reconstituted with core histones, was approximately 2.5 times greater than that on non-nucleosomal AP DNA. When histone H1 was added to the system, this increase was reduced. XPA AP endonuclease activities, on the other hand, did not show any increase in activity on nucleosomal AP DNA reconstituted with core histones. These differences between normal and XPA endonuclease activities on AP nucleosomal DNA were the same regardless of whether histones from normal or XPA cells were used in the reconstituted system.
Collapse
|
22
|
Barnard J, La Belle M, Linn S. Levels of uracil DNA glycosylase and AP endonuclease in murine B- and T-lymphocytes do not change with age. Exp Cell Res 1986; 163:500-8. [PMID: 2420622 DOI: 10.1016/0014-4827(86)90080-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two DNA repair enzyme activities, uracil DNA glycosylase and AP endonuclease, were measured in extracts of T- and B-lymphocytes isolated from mice ranging in age from 3 to 24 months. T- and B-lymphocytes had roughly equal levels of AP endonuclease which did not change appreciably with age. T-lymphocytes had roughly twice as high a level of uracil DNA glycosylase as B-lymphocytes; these levels were not affected by age either. This constancy with age contrasts dramatically with increases in both enzymes--roughly 3-fold on a protein basis or 50-fold on a per cell basis--in a transformed line (MPC-11) derived from a carcinogen-induced lymphocytoma. These results are similar to those obtained with cultured murine fibroblasts, wherein a relative constancy was noted with passage of non-transformed cells, followed by dramatic changes upon transformation (La Belle, M & Linn, S, Mutat res 132 (1984) 51). Hence these enzyme assays do not support the notion of a drop in base excision DNA repair capacity as being a causative factor in aging, but suggest instead that DNA repair properties might differ dramatically in transformed vs non-transformed cells.
Collapse
|
23
|
Erixon K. Differential regulation of base and nucleotide excision repair in mammalian cells. BASIC LIFE SCIENCES 1986; 38:159-70. [PMID: 3741329 DOI: 10.1007/978-1-4615-9462-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Abstract
A number of enzymes thought to be involved in DNA replication have been identified in the brain. These include single-stranded DNA-binding proteins, topoisomerases I and II, DNA polymerase alpha, a protein that binds Ap4A and might be classified as a DNA polymerase alpha accessory protein, RNase H, DNA polymerase beta, DNA ligase, an endo- and an exonuclease of unknown function, DNA methyl transferase and poly(ADPR) synthase. In contrast, little is known about the enzymology of DNA repair in brain. The few enzymes identified comprise uracil-DNA glycosylase, DNA polymerase beta, DNA polymerase alpha (which in neurons is present only at immature stages), DNA ligase, poly(ADPR) synthase, and O6-alkylguanine-DNA alkyltransferase. In addition, an exonuclease acting on depurinated single-stranded DNA (tentatively listed here as 3'----5' exonuclease), an endonuclease of unknown function as well as ill-defined acid and alkaline deoxyribonucleases also occur in brain.
Collapse
|
25
|
Characterization of DNA polymerase I*, a form of DNA polymerase I found in Escherichia coli expressing SOS functions. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89489-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|