1
|
Leaver DJ, Patkar P, Singha UK, Miller MB, Haubrich BA, Chaudhuri M, Nes WD. Fluorinated Sterols Are Suicide Inhibitors of Ergosterol Biosynthesis and Growth in Trypanosoma brucei. ACTA ACUST UNITED AC 2016; 22:1374-83. [PMID: 26496686 DOI: 10.1016/j.chembiol.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei, the causal agent for sleeping sickness, depends on ergosterol for growth. Here, we describe the effects of a mechanism-based inhibitor, 26-fluorolanosterol (26FL), which converts in vivo to a fluorinated substrate of the sterol C24-methyltransferase essential for sterol methylation and function of ergosterol, and missing from the human host. 26FL showed potent inhibition of ergosterol biosynthesis and growth of procyclic and bloodstream forms while having no effect on cholesterol biosynthesis or growth of human epithelial kidney cells. During exposure of cloned TbSMT to 26-fluorocholesta-5,7,24-trienol, the enzyme is gradually killed as a consequence of the covalent binding of the intermediate C25 cation to the active site (kcat/kinact = 0.26 min(-1)/0.24 min(-1); partition ratio of 1.08), whereas 26FL is non-productively bound. These results demonstrate that poisoning of ergosterol biosynthesis by a 26-fluorinated Δ(24)-sterol is a promising strategy for developing a new treatment for trypanosomiasis.
Collapse
Affiliation(s)
- David J Leaver
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA; Institute of Chemistry and Biomedical Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, P.R. China
| | - Presheet Patkar
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Ujjal K Singha
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Minu Chaudhuri
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Doctor D. B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Azam SS, Abro A, Raza S. Binding pattern analysis and structural insight into the inhibition mechanism of Sterol 24-C methyltransferase by docking and molecular dynamics approach. J Biomol Struct Dyn 2015; 33:2563-77. [DOI: 10.1080/07391102.2014.1002423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Blosser SJ, Merriman B, Grahl N, Chung D, Cramer RA. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:2492-2506. [PMID: 25107308 DOI: 10.1099/mic.0.080440-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human pathogen Aspergillus fumigatus adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including erg25A and erg25B, and ΔsrbA accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in Aspergillus fumigatus revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δerg25A accumulates more C4-methyl sterol intermediates than Δerg25B. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δerg25A strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of erg25A partially restored the hypoxia growth defect of ΔsrbA. These findings implicated Aspergillus fumigatus SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response.
Collapse
Affiliation(s)
- Sara J Blosser
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Brittney Merriman
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Nora Grahl
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Dawoon Chung
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Robert A Cramer
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
4
|
Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based inactivators for the disruption of ergosterol biosynthesis. Mol Biol Rep 2014; 41:4279-93. [DOI: 10.1007/s11033-014-3299-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
5
|
Patkar P, Haubrich BA, Qi M, Nguyen TTM, Thomas CD, Nes WD. C-24-methylation of 26-fluorocycloartenols by recombinant sterol C-24-methyltransferase from soybean: evidence for channel switching and its phylogenetic implications. Biochem J 2013; 456:253-62. [PMID: 23984880 DOI: 10.1042/bj20121818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tightly coupled nature of the electrophilic alkylation reaction sequence catalysed by 24-SMT (sterol C-24-methyltransferase) of land plants and algae can be distinguished by the formation of cationic intermediates that yield phyla-specific product profiles. C-24-methylation of the cycloartenol substrate by the recombinant Glycine max (soybean) 24-SMT proceeds to a single product 24(28)-methylenecycloartanol, whereas the 24-SMT from green algae converts cycloartenol into two products cyclolaudenol [∆(25(27))-olefin] and 24(28)-methylenecycloartanol [(∆24(28))-olefin]. Substrate analogues that differed in the steric-electronic features at either end of the molecule, 26-homocycloartenol or 3β-fluorolanostadiene, were converted by G. max SMT into a single 24(28)-methylene product. Alternatively, incubation of the allylic 26-fluoro cyclosteroid with G. max SMT afforded a bound intermediate that converted in favour of the ∆(25(27))-olefin product via the cyclolaudenol cation formed initially during the C-24-methylation reaction. A portion of the 26-fluorocycloartenol substrate was also intercepted by the enzyme and the corresponding hydrolysis product identified by GC-MS as 26-fluoro-25-hydroxy-24-methylcycloartanol. Finally, the 26-fluorocycloartenols are competitive inhibitors for the methylation of cycloartenol and 26-monofluorocycloartenol generated timedependent inactivation kinetics exhibiting a kinact value of 0.12 min(-1). The ability of soybean 24-SMT to generate a 25-hydroxy alkylated sterol and fluorinated ∆(25(27))-olefins is consistent with our hypothesis that (i) achieving the cyclolaudenyl cation intermediate by electrophilic alkylation of cycloartenol is significant to the overall reaction rate, and (ii) the evolution of variant sterol C-24-methylation patterns is driven by competing reaction channels that have switched in algae from formation of primarily ∆(25(27)) products that convert into ergosterol to, in land plants, formation of ∆(24(28)) products that convert into sitosterol.
Collapse
Affiliation(s)
- Presheet Patkar
- *Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, U.S.A
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Pneumocystis can transiently colonize healthy individuals without causing adverse symptoms, and most people test positive for exposure to this organism early in life. However, it can cause Pneumocystis pneumonia (PcP) in people with impaired immune systems and is a major cause of death in HIV/AIDS. Although it has close affinities to the Ascomycetes, Pneumocystis has features unlike those of any single group of fungi. For example, Pneumocystis does not synthesize ergosterol, which is consistent with the inefficacy of amphotericin B and some triazoles in clearing PcP. Pneumocystis sterols include distinct delta7 24-alkylsterols. Metabolic radiolabeling experiments demonstrated that P. carinii synthesizes sterols de novo. Cholesterol is the most abundant sterol in Pneumocystis; most, if not all, is scavenged from the mammalian host lung by the pathogen. The P. carinii erg7, erg6, and erg11 genes have been cloned, sequenced, and expressed in heterologous systems. The recombinant P. carinii S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT) has a preference for lanosterol over zymosterol as substrate, and the enzyme can catalyze the transfer of either one or two methyl groups to the C-24 position of the sterol side chain. Two different sterol compositions were detected among human-derived P. jirovecii; one was dominated by C28 and C29 sterols, and the other had high proportions of higher molecular mass components, notably the C32 sterol pneumocysterol. The latter phenotype apparently represents organisms blocked at 14alpha-demethylation of the sterol nucleus. These studies suggest that SAM:SMT is an attractive drug target for developing new chemotherapy for PcP.
Collapse
Affiliation(s)
- Edna S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
7
|
Docampo R, Schmuñis GA. Sterol biosynthesis inhibitors: potential chemotherapeutics against Chagas disease. ACTA ACUST UNITED AC 2005; 13:129-30. [PMID: 15275097 DOI: 10.1016/s0169-4758(97)01021-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- R Docampo
- Laboratory of Molecular Parasitology, Department of Pothobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | |
Collapse
|
8
|
Kanagasabai R, Zhou W, Liu J, Nguyen TTM, Veeramachaneni P, Nes WD. Disruption of ergosterol biosynthesis, growth, and the morphological transition inCandida albicansby sterol methyltransferase inhibitors containing sulfur at C-25 in the sterol side chain. Lipids 2004; 39:737-46. [PMID: 15638241 DOI: 10.1007/s11745-004-1290-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The sterol substrate analog 25-thialanosterol and its corresponding sulfonium salt were evaluated for their ability to serve as antifungal agents and to inhibit sterol methyltransferase (SMT) activity in Candida albicans. Both compounds inhibited cell proliferation, were fungistatic, interrupted the yeast-like-form to germ-tube-form transition, and resulted in the accumulation of zymosterol and related delta24-sterols concurrent with a decrease in ergosterol, as was expected for the specific inhibition of SMT activity. Feedback on sterol synthesis was evidenced by elevated levels of cellular sterols in treated vs. control cultures. However, neither farnesol nor squalene accumulated in significant amounts in treated cultures, suggesting that carbon flux is channeled from the isoprenoid pathway to the sterol pathway with minor interruption or redirection until blockage at the C-methylation step. Activity assays using solubilized C. albicans SMT confirmed the inhibitors impair SMT action. Kinetic analysis indicated that 25-thialanosterol inhibited SMT with the properties of a time-dependent mechanism-based inactivator Ki of 5 microM and apparent kinact of 0.013 min(-1), whereas the corresponding sulfonium salt was a reversible-type transition state analog exhibiting a Ki of 20 nM. The results are interpreted to imply changes in ergosterol homeostasis as influenced by SMT activity can control growth and the morphological transition in C. albicans, possibly affecting disease development.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lorente SO, Rodrigues JCF, Jiménez Jiménez C, Joyce-Menekse M, Rodrigues C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Pérez LM, Urbina J, de Souza W, González Pacanowska D, Gilbert IH. Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 2004; 48:2937-50. [PMID: 15273104 PMCID: PMC478520 DOI: 10.1128/aac.48.8.2937-2950.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/29/2003] [Accepted: 03/29/2004] [Indexed: 11/20/2022] Open
Abstract
This paper describes the design and evaluation of novel azasterols as potential compounds for the treatment of leishmaniasis and other diseases caused by trypanosomatid parasites. Azasterols are a known class of (S)-adenosyl-L-methionine: Delta24-sterol methyltransferase(24-SMT) inhibitors in fungi, plants, and some parasitic protozoa. The compounds prepared showed activity at micromolar and nanomolar concentrations when tested against Leishmania spp. and Trypanosoma spp. The enzymatic and sterol composition studies indicated that the most active compounds acted by inhibiting 24-SMT. The role of the free hydroxyl group at position 3 of the sterol nucleus was also probed. When an acetate was attached to the 3beta-OH, the compounds did not inhibit the enzyme but had an effect on parasite growth and the levels of sterols in the parasite, suggesting that the acetate group was removed in the organism. Thus, an acetate group on the 3beta-OH may have application as a prodrug. However, there may be an additional mode(s) of action for these acetate derivatives. These compounds were shown to have ultrastructural effects on Leishmania amazonensis promastigote membranes, including the plasma membrane, the mitochondrial membrane, and the endoplasmic reticulum. The compounds were also found to be active against the bloodstream form (trypomastigotes) of Trypanosoma brucei rhodesiense, a causative agent of African trypanosomiasis.
Collapse
|
10
|
Mechanism-based enzyme inactivators of phytosterol biosynthesis. Molecules 2004; 9:185-203. [PMID: 18007423 DOI: 10.3390/90400185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 03/08/2004] [Indexed: 11/16/2022] Open
Abstract
Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT), the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal) or post-cycloartenol (plant) pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.
Collapse
|
11
|
24-Thiacycloartanol, a potent mechanism-based inactivator of plant sterol methyltransferase. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2003.10.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Abstract
Pneumocystis lacks ergosterol, and several antimycotics that bind ergosterol in fungal membranes or inhibit its synthesis are ineffective against Pneumocystis pneumonia. The organism synthesizes C(28) and C(29) Delta(7) 24-alkylsterols, 24-alkyllanosterol derivatives, and Delta(5) 24-alkylsterols, which may be produced by modifying scavenged Delta(5) sterols. Mammals cannot desaturate C-22 and alkylate C-24 of sterols, thus, these processes are particularly attractive targets for antifungal drug development. Recent data indicate that C-22 desaturation is not, but C-24 alkylation is an attractive target in P. carinii. The P. carinii S-adenosyl-L-methionine:sterol C-24 methyl transferase (SAM:SMT) has unique properties; it prefers lanosterol as its sterol substrate.
Collapse
Affiliation(s)
- Edna S Kaneshiro
- Department of Biological Sciences, University of Cincinnati, OH 45221, USA.
| |
Collapse
|
13
|
Mangla AT, Nes WD. Sterol C-methyl transferase from Prototheca wickerhamii mechanism, sterol specificity and inhibition. Bioorg Med Chem 2000; 8:925-36. [PMID: 10882005 DOI: 10.1016/s0968-0896(00)00040-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The membrane-bound sterol methyl transferase (SMT) enzyme from Prototheca wickerhamii, a non-photosynthetic, yeast-like alga, was found to C-methylate appropriate delta24(25)-sterol acceptor molecules to delta25(27)-24beta-methyl products stereoselectively. Incubation with pairs of substrates--[2H3-methyl]AdoMet and cycloartenol, and AdoMet and [27-(13)C]lanosterol--followed by 1H and 13C NMR analysis of the isotopically labeled products demonstrated the si-face (beta-face attack) mechanism of C-methylation and the regiospecificity of delta25(27)-double bond formation from the pro-Z methyl group (C27) on lanosterol. The enzyme has a substrate preference for a sterol with a 3beta-hydroxyl group, a planar nucleus and a side chain oriented into a 'right-handed' structure (20R-chirality) characteristic of the native substrate, cycloartenol. The apparent native molecular weight of the SMT was determined to be approximately 154,000, as measured by Superose 6 FPLC. A series of sterol analogues which contain heteroatoms substituted for C24 and C25 or related structural modifications, including steroidal alkaloids, havs been used to probe further the active site and mechanism of action of the SMT enzyme. Sterol side chains containing isoelectronic modifications of a positively charged moiety in the form of an ammonium group substituted for carbon at C25, C24, C23 or C22 are particularly potent non-competitive inhibitors (Ki for the most potent inhibitor tested, 25-azacycloartanol, was ca. 2 nM, four orders of magnitude less than the Km for cycloartenol of 28 microM), supporting the intermediacy of the 24-methyl C24(25)-carbenium ion intermediate. Ergosterol, but neither cholesterol nor sitosterol, was found to inhibit SMT activity (Ki = 80 microM). The combination of results suggests that the interrelationships of substrate functional groups within the active center of a delta24(25) to delta25(27) 24beta-methyl-SMT could be approximated thereby allowing the rational design of C-methylation inhibitors to be formulated and tested.
Collapse
Affiliation(s)
- A T Mangla
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, USA
| | | |
Collapse
|
14
|
Nes WD, Guo D, Zhou W. Substrate-based inhibitors of the (S)-adenosyl-L-methionine:delta24(25)- to delta24(28)-sterol methyl transferase from Saccharomyces cerevisiae. Arch Biochem Biophys 1997; 342:68-81. [PMID: 9185615 DOI: 10.1006/abbi.1997.9984] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 31 side-chain-modified analogs of cholesterol, zymosterol, lanosterol, and cycloartenol and the steroidal alkaloids solasodine and solanidine were studied as inhibitors of (S)-adenosyl-L-methionine:delta24(25)-sterol methyl transferase (SMT) enzyme activity from Saccharomyces cerevisiae. Two classes of sterol methylation inhibitors were tested: substrate analogs, including mechanism-based inhibitors, and transition state analogs. Several novel sterol methylation inhibitors that contained an aza, aziridine, or ammonium group in the sterol side chain were prepared and tested for the first time. The degree and kinetic pattern of methylation inhibition were found to be influenced by the position and nature of the variant functional group introduced into the side chain. The most potent inhibitors of SMT enzyme activity were transition state analog inhibitors (Ki values of 5 to 10 nM) that mimicked the structure and conformation of the natural substrate presumed to form in the ternary complex generated in the transition state. Steroidal alkaloids were potent competitive inhibitors with Ki values ranging from 2 to 30 microM, which is about the Kmapp of zymosterol, ca. 27 microM. An isosteric analog of the natural substrate, zymosterol, in which the 26/27-gem-dimethyl groups were joined to form a cyclopropylidene function is shown to be a potent irreversible mechanism-based inactivator of SMT enzyme activity that exhibits competitive-type inhibition, Ki 48 microM with a K(inact) of 1.52 min(-1). Mechanistic implications of these results provide new insights into the topology of the ternary complex involving sterol-AdoMet-enzyme.
Collapse
Affiliation(s)
- W D Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, USA
| | | | | |
Collapse
|
15
|
Guo DA, Mangla AT, Zhou W, Lopez M, Jia Z, Nichols SD, Nes WD. Antifungal sterol biosynthesis inhibitors. Subcell Biochem 1997; 28:89-116. [PMID: 9090292 DOI: 10.1007/978-1-4615-5901-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the course of the last decade, the development of SBIs, and particularly sterol biomethylation inhibitors, has been based on the rational design approach. Successful though this approach has been in elucidating sterol biomethylation enzymology, its limitations are becoming apparent from the findings that: (i) 24,25-double bond metabolism gives rise to cholesterol and ergosterol in a mechanistically similar manner, (ii) 25-azasterols are harmful to human physiology, and (iii) side-chain modified sterols designed to inhibit the SMT enzyme in S. cerevisiae may be ineffective or operate by another kinetic mechanism in a related organism, rendering it therapeutically nonuseful. Nevertheless, it may be possible to ultimately capitalize on the unique aspects of sterol biomethylation chemistry and enzymology to design taxa-specific inhibitors. With increased understanding of the structure and function of SMT enzymes in different fungi, it should be possible to prepare novel mechanism-based inactivators to control SMT activity uniquely and with high specific activity.
Collapse
Affiliation(s)
- D A Guo
- Department of Chemistry, Texas Tech University, Lubbock 79409, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Urbina JA, Vivas J, Visbal G, Contreras LM. Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by delta 24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole. Mol Biochem Parasitol 1995; 73:199-210. [PMID: 8577328 DOI: 10.1016/0166-6851(95)00117-j] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report a detailed analysis of the sterol composition of Trypanosoma cruzi epimastigotes grown in the absence or presence of two sterol analogs previously reported as inhibitors of delta 24(25) sterol methyltransferase (24(25)-SMT,E.C.2.1.1.43) in yeast and fungi, a cholestanol analog with a 6-membered aza ring as side chain (22,26-azasterol) and 24-(R,S),25-epiminolanosterol, as well as combinations of these compounds with the C14 demethylase inhibitor ketoconazole. Both sterol analogs produced a dose-dependent reduction in the incorporation of radioactivity from [methyl-14C]methionine with IC50 values of 640 nM and 70 nM for 22,26-azasterol and 24,25-(R,S)-epiminolanosterol, respectively, indicating a specific inhibition of 24(25)-SMT. Correspondingly, it was found that the sterols present in control cells (ergosterol, 24-ethylcholesta-5,7,22-trien-3 beta-ol and precursors) were almost completely replaced by zymosterol (cholesta-8,24-dien-3 beta-ol) or a mixture of zymosterol, cholesta-7,24-dien-3 beta-ol and cholesta-5,7,24-trien-3 beta-ol when the parasites were exposed to the minimal growth inhibitory concentrations of 22,26-azasterol and 24-(R,S),25-epiminolanosterol, respectively. At sub-optimal concentrations of the inhibitors a complete disappearance of the 24-ethyl sterols was observed and a concomitant increase in the proportion of 24-methyl sterols, particularly delta 24(24') sterols. This showed that in T. cruzi the second methenylation step (catalyzed by delta 24(24') sterol methyl transferase) was significantly more sensitive to these inhibitors than the first and that the sterol analogs were also powerful inhibitors of the delta 24(24') sterol reductase. In growth-arrested epimastigotes resulting from their treatment with low (1-3 microM) concentrations of either sterol analog combined with sub optimal (100-300 nM) levels of ketoconazole the main sterol was lanosterol with no evidence 24-methylenedihydrolanosterol, the main sterol found in cells treated with growth inhibitory concentrations of the azole alone. Taken together, these results indicated that 24-alkyl sterols are essential growth factors for T. cruzi and that the preferred substrate of the delta 24(25) sterol methyl transferase in this organism is zymosterol.
Collapse
Affiliation(s)
- J A Urbina
- Laboratorio de Quimica Biológica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
17
|
Abstract
A series of new derivatives of cholesterol bearing polar functional groups on carbon-19 were synthesized, including 19-oximino-, 19-amino-, 19-(methylamino)-, 19-mercapto-, and 19-(methylthio) cholesterol, and 3 beta-hydroxycholest-5-en-19-oic acid, as well as an unusual cyclosterol, 5,19-cyclocholest-6-en-3 beta-ol.
Collapse
Affiliation(s)
- M S Mathai
- Department of Chemistry, Princeton University, NJ 08544
| | | |
Collapse
|
18
|
|