1
|
Giri D, Raja K, Mugesh G. A Simple Substitution on Thyroid Hormones Remarkably Alters the Regioselectivity of Deiodination by a Deiodinase Mimic. Chemistry 2023; 29:e202203111. [PMID: 36380701 DOI: 10.1002/chem.202203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
The regioselective deiodinations of L-thyroxine (T4) play key roles in the thyroid hormone homeostasis. These reactions are catalyzed by three isoforms of the selenoenzymes, iodothyronine deiodinases (Dio1, Dio2 and Dio3), which are highly homologous in nature. Dio1 mediates 5'- or 5-deiodinations of T4 to produce T3 and rT3, respectively. In contrast, Dio2 and Dio3 are selective to 5'- or 5-deiodination to produce T3 and rT3, respectively. Understanding of the regioselectivity of deiodination at the molecular level is important as abnormal levels of thyroid hormone have been implicated in various clinical conditions, such as hypoxia, myocardial infarction, neuronal ischemia and cancer. In this paper, we report that the electronic properties of the iodine atoms in thyroxine (T4) can be modulated through a simple substitution in the 4'-phenolic moiety. This leads to the change in the regioselectivity of deiodination by different small molecule mimics of Dio enzymes. By using this chemical approach, we also show that the substitution of a strong electron withdrawing group facilitates the removal of all four iodine atoms in the T4 derivative. Theoretical investigations on the hydrogen bonded adducts of T4 with imidazole indicate that the charge on the iodine atoms depend on the nature of hydrogen bond between the -OH group of T4 and the imidazole moiety. While the imidazole can act as either hydrogen bond acceptor (HBA) or hydrogen bond donor (HBD), the protonated imidazole acts exclusively as HBD in T4-imidazole complex. These studies support the earlier observations that the histidine residue at the active sites of the deiodinases play an important role not only in the substrate binding, but also in altering the regioselectivity of the deiodination reactions.
Collapse
Affiliation(s)
- Debasish Giri
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Arai K, Toba H, Yamamoto N, Ito M, Mikami R. Modeling Type-1 Iodothyronine Deiodinase with Peptide-Based Aliphatic Diselenides: Potential Role of Highly Conserved His and Cys Residues as a General Acid Catalyst. Chemistry 2023; 29:e202202387. [PMID: 36254793 DOI: 10.1002/chem.202202387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Type-1 iodothyronine deiodinase (ID-1) catalyzes the reductive elimination of 5'-I and 5-I on the phenolic and tyrosyl rings of thyroxine (T4), respectively. Chemically verifying whether I atoms with different chemical properties undergo deiodination through a common mechanism is challenging. Herein, we report the modeling of ID-1 using aliphatic diselenide (Se-Se) and selenenylsulfide (Se-S) compounds. Mechanistic investigations of deiodination using the ID-1-like reagents suggested that the 5'-I and 5-I deiodinations proceed via the same mechanism through an unstable intermediate containing a Se⋅⋅⋅I halogen bond between a selenolate anion, reductively produced from Se-Se (or Se-S) in the compound, and an I atom in T4. Moreover, imidazolium and thiol groups, which may act as general acid catalysts, promoted the heterolytic cleavage of the C-I bond in the Se⋅⋅⋅I intermediate, which is the rate-determining step, by donating a proton to the C atom.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.,Institute of Advanced Biosciences, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Haruka Toba
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Nozomi Yamamoto
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Mao Ito
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Rumi Mikami
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
3
|
Rodriguez-Ruiz A, Braun D, Pflug S, Brol A, Sylvester M, Steegborn C, Schweizer U. Insights into the Mechanism of Human Deiodinase 1. Int J Mol Sci 2022; 23:5361. [PMID: 35628173 PMCID: PMC9141512 DOI: 10.3390/ijms23105361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The three isoenzymes of iodothyronine deiodinases (DIO1-3) are membrane-anchored homo-dimeric selenoproteins which share the thioredoxin-fold structure. Several questions regarding their catalytic mechanisms still remain open. Here, we addressed the roles of several cysteines which are conserved among deiodinase isoenzymes and asked whether they may contribute to dimerization and reduction of the oxidized enzyme with physiological reductants. We also asked whether amino acids previously identified in DIO3 play the same role in DIO1. Human DIO1 and 2 were recombinantly expressed in insect cells with selenocysteine replaced with cysteine (DIO1U126C) or in COS7 cells as selenoprotein. Enzyme activities were studied by radioactive deiodination assays with physiological reducing agents and recombinant proteins were characterized by mass spectrometry. Mutation of Cys124 in DIO1 prevented reduction by glutathione, while 20 mM dithiothreitol still regenerated the enzyme. Protein thiol reductants, thioredoxin and glutaredoxin, did not reduce DIO1U126C. Mass spectrometry demonstrated the formation of an intracellular disulfide between the side-chains of Cys124 and Cys(Sec)126. We conclude that the proximal Cys124 forms a selenenyl-sulfide with the catalytic Sec126 during catalysis, which is the substrate of the physiological reductant glutathione. Mutagenesis studies support the idea of a proton-relay pathway from solvent to substrate that is shared between DIO1 and DIO3.
Collapse
Affiliation(s)
- Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; (A.R.-R.); (D.B.); (S.P.); (A.B.)
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; (A.R.-R.); (D.B.); (S.P.); (A.B.)
| | - Simon Pflug
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; (A.R.-R.); (D.B.); (S.P.); (A.B.)
| | - Alexander Brol
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; (A.R.-R.); (D.B.); (S.P.); (A.B.)
| | - Marc Sylvester
- Core Facility Mass Spectrometry, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany;
| | | | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany; (A.R.-R.); (D.B.); (S.P.); (A.B.)
| |
Collapse
|
4
|
Abstract
Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.
Collapse
|
5
|
Mondal S, Mugesh G. Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol 2017; 458:91-104. [PMID: 28408161 DOI: 10.1016/j.mce.2017.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (THs) play key roles in modulating the overall metabolism of the body, protein synthesis, fat metabolism, neuronal and bone growth, and cardiovascular as well as renal functions. In this review, we discuss on the thyroid hormone synthesis and activation, thyroid hormone receptors (TRs) and mechanism of action, applications of thyroid hormone analogues, particularly the compounds that are selective ligands for TRβ receptors, or enzyme inhibitors for the treatment of thyroidal disorders with a specific focus on thyroid peroxidase and iodothyronine deiodinases. We also discuss on the development of small-molecule deiodinase mimetics and their mechanism of deiodination, as these compounds have the potential to regulate the thyroid hormone levels.
Collapse
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
6
|
Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C. Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol 2017; 458:57-67. [PMID: 28131741 DOI: 10.1016/j.mce.2017.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormones and their metabolites constitute a vast class of related iodothyronine compounds that contribute to the regulation of metabolic activity and cell differentiation. They are in turn transported, transformed and recognized as signaling molecules through binding to a variety of proteins from a wide range of evolutionary unrelated protein families, which renders these proteins and their iodothyronine binding sites an example for extensive convergent evolution. In this review, we will briefly summarize what is known about iodothyronine binding sites in proteins, the modes of protein/iodothyronine interaction, and the ligand conformations. We will then discuss physiological and synthetic compounds, including popular drugs and food components, that can interfere with iodothyronine binding and recognition by these proteins. The discussion also includes compounds persisting in the environment and acting as endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Holly Towell
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Allegra Vit
- Lehrstuhl für Biochemie, Universität Bayreuth, Bayreuth, Germany
| | - Alfonso Rodriguez-Ruiz
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Manna D, Mondal S, Mugesh G. Halogen Bonding Controls the Regioselectivity of the Deiodination of Thyroid Hormones and their Sulfate Analogues. Chemistry 2014; 21:2409-16. [DOI: 10.1002/chem.201405442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 11/11/2022]
|
8
|
Mondal S, Mugesh G. Regioselective Deiodination of Iodothyronamines, Endogenous Thyroid Hormone Derivatives, by Deiodinase Mimics. Chemistry 2014; 20:11120-8. [DOI: 10.1002/chem.201403248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 11/08/2022]
|
9
|
Schweizer U, Schlicker C, Braun D, Köhrle J, Steegborn C. Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc Natl Acad Sci U S A 2014; 111:10526-31. [PMID: 25002520 PMCID: PMC4115520 DOI: 10.1073/pnas.1323873111] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Local levels of active thyroid hormone (3,3',5-triiodothyronine) are controlled by the action of activating and inactivating iodothyronine deiodinase enzymes. Deiodinases are selenocysteine-dependent membrane proteins catalyzing the reductive elimination of iodide from iodothyronines through a poorly understood mechanism. We solved the crystal structure of the catalytic domain of mouse deiodinase 3 (Dio3), which reveals a close structural similarity to atypical 2-Cys peroxiredoxin(s) (Prx). The structure suggests a route for proton transfer to the substrate during deiodination and a Prx-related mechanism for subsequent recycling of the transiently oxidized enzyme. The proposed mechanism is supported by biochemical experiments and is consistent with the effects of mutations of conserved amino acids on Dio3 activity. Thioredoxin and glutaredoxin reduce the oxidized Dio3 at physiological concentrations, and dimerization appears to activate the enzyme by displacing an autoinhibitory loop from the iodothyronine binding site. Deiodinases apparently evolved from the ubiquitous Prx scaffold, and their structure and catalytic mechanism reconcile a plethora of partly conflicting data reported for these enzymes.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich Wilhelms-Universität Bonn, 53115 Bonn, Germany;
| | - Christine Schlicker
- Department of Physiological Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; and
| | - Clemens Steegborn
- Department of Biochemistry and Research Center for Bio-Macromolecules, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
10
|
Manna D, Mugesh G. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: an unusual mechanistic pathway involving cooperative chalcogen and halogen bonding. J Am Chem Soc 2012; 134:4269-79. [PMID: 22352472 DOI: 10.1021/ja210478k] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that catalyze the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) by the outer- and inner-ring deiodination pathways, respectively. These enzymes also catalyze further deiodination of T3 and rT3 to produce a variety of di- and monoiodo derivatives. In this paper, the deiodinase activity of a series of peri-substituted naphthalenes having different amino groups is described. These compounds remove iodine selectively from the inner-ring of T4 and T3 to produce rT3 and 3,3'-diiodothyronine (3,3'-T2), respectively. The naphthyl-based compounds having two selenols in the peri-positions exhibit much higher deiodinase activity than those having two thiols or a thiol-selenol pair. Mechanistic investigations reveal that the formation of a halogen bond between the iodine and chalcogen (S or Se) and the peri-interaction between two chalcogen atoms (chalcogen bond) are important for the deiodination reactions. Although the formation of a halogen bond leads to elongation of the C-I bond, the chalcogen bond facilitates the transfer of more electron density to the C-I σ* orbitals, leading to a complete cleavage of the C-I bond. The higher activity of amino-substituted selenium compounds can be ascribed to the deprotonation of thiol/selenol moiety by the amino group, which not only increases the strength of halogen bond but also facilitates the chalcogen-chalcogen interactions.
Collapse
Affiliation(s)
- Debasish Manna
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
11
|
Manna D, Mugesh G. Deiodination of Thyroid Hormones by Iodothyronine Deiodinase Mimics: Does an Increase in the Reactivity Alter the Regioselectivity? J Am Chem Soc 2011; 133:9980-3. [DOI: 10.1021/ja201657s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasish Manna
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
12
|
Manna D, Mugesh G. A Chemical Model for the Inner-Ring Deiodination of Thyroxine by Iodothyronine Deiodinase. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201005235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Manna D, Mugesh G. A Chemical Model for the Inner-Ring Deiodination of Thyroxine by Iodothyronine Deiodinase. Angew Chem Int Ed Engl 2010; 49:9246-9. [DOI: 10.1002/anie.201005235] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Bayse CA, Rafferty ER. Is halogen bonding the basis for iodothyronine deiodinase activity? Inorg Chem 2010; 49:5365-7. [PMID: 20504030 DOI: 10.1021/ic100711n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory studies of S...X and Se...X (X = Br, I) halogen-bonding interactions are used to interpret the selection of selenium and iodine for thyroid hormone signaling. A new mechanism for dehalogenation in terms of halogen bonding is proposed. The activation barriers for deiodination of an aromatic iodide by MeSeH and MeSH (17.6 and 19.8 kcal/mol) are consistent with the relative rates of deiodination by iodothyronine deiodinase and its cysteine mutant.
Collapse
Affiliation(s)
- Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
| | | |
Collapse
|
15
|
Goto K, Sonoda D, Shimada K, Sase S, Kawashima T. Modeling of the 5'-deiodination of thyroxine by iodothyronine deiodinase: chemical corroboration of a selenenyl iodide intermediate. Angew Chem Int Ed Engl 2010; 49:545-7. [PMID: 19998295 DOI: 10.1002/anie.200905796] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kei Goto
- Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | | | | | | | | |
Collapse
|
16
|
Goto K, Sonoda D, Shimada K, Sase S, Kawashima T. Modeling of the 5â²-Deiodination of Thyroxine by Iodothyronine Deiodinase: Chemical Corroboration of a Selenenyl Iodide Intermediate. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Sarma BK, Mugesh G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org Biomol Chem 2008; 6:965-74. [DOI: 10.1039/b716239a] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Mugesh G, Roy G. Chemistry in Thyroid Gland: Iodothyronine Deiodinases and Anti-Thyroid Drugs. PHOSPHORUS SULFUR 2007. [DOI: 10.1080/10426500590906391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- G. Mugesh
- a Department of Inorganic & Physical Chemistry, Indian Institute of Science , Bangalore , India
| | - Gouriprasanna Roy
- a Department of Inorganic & Physical Chemistry, Indian Institute of Science , Bangalore , India
| |
Collapse
|
19
|
Simpson GIC, Leonard DM, Leonard JL. Identification of the key residues responsible for the assembly of selenodeiodinases. J Biol Chem 2006; 281:14615-21. [PMID: 16565517 DOI: 10.1074/jbc.m600783200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I deiodinase is the best characterized member of a small family of selenoenzymes catalyzing the bioactivation and disposal of thyroid hormone. This enzyme is an integral membrane protein composed of two 27-kDa subunits that assemble into a functional enzyme after translation using a highly conserved sequence of 16 amino acids in the C-terminal half of the polypeptide, (148)DFLXXYIXEAHXXDGW(163). In this study, we used alanine scanning mutagenesis to identify the key residues in this domain required for holoenzyme assembly. Overexpression of sequential alanine-substituted mutants of a dimerization domain-green fluorescent protein fusion showed that sequence (152)IYI(154) was required for type I enzyme assembly and that a catalytically active monomer was generated by a single I152A substitution. Overexpression of the sequential alanine-substituted dimerization domain mutants in type II selenodeiodinase-expressing cells showed that five residues ((153)FLIVY(157)) at the beginning and three residues ((164)SDG(166)) at the end of this region were required for the assembly of the type II enzyme. In vitro binding analysis revealed a free energy of association of -60 +/- 5 kJ/mol for the noncovalent interaction between dimerization domain monomers. These data identify and characterize the essential residues in the dimerization domain that are responsible for the post-translational assembly of selenodeiodinases.
Collapse
Affiliation(s)
- Gregory I C Simpson
- Department of Cell and Molecular Physiology, University of Massachusetts Medical School, 55 Lake Avenue N., Worcester, MA 01655, USA
| | | | | |
Collapse
|
20
|
Abstract
Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T(4)) is activated by outer ring deiodination (ORD) to 3,3',5-triiodothyronine (T(3)), whereas both T(4) and T(3) are inactivated by inner ring deiodination (IRD) to 3,3',5-triiodothyronine and 3,3'-diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness. In this review we will briefly discuss recent developments in these different areas. These have resulted in the emerging view that the biological activity of thyroid hormone is regulated locally by tissue-specific regulation of the different deiodinases.
Collapse
Affiliation(s)
- George G J M Kuiper
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
Abstract
We review the experimental evidence accumulated within the past decade regarding the physiologic, biochemical, and molecular characterization of iodothyronine deiodinases (IDs) in piscine species. Agnathans, chondrichthyes, and teleosts express the three isotypes of IDs: ID1, ID2, and ID3, which are responsible for the peripheral fine-tuning of thyroid hormone (TH) bioactivity. At the molecular and operational level, fish IDs share properties with their corresponding vertebrate counterparts. However, fish IDs also exhibit discrete features that seem to be distinctive for piscine species. Indeed, teleostean ID1 is conspicuously resistant to propylthiouracil (PTU) inhibition, and its response to thyroidal status differs from that exhibited by other ID1s. Moreover, both the high level of ID2 activity and its expression in the liver of teleosts are unique among vertebrates. The physiologic role of iodothyronine deiodination in functions regulated by TH in fish is not entirely clear. Nevertheless, current experimental evidence suggests that IDs may coordinate and facilitate, in a tissue-specific fashion, the action of iodothyronines and other hormones involved in such processes.
Collapse
Affiliation(s)
- Aurea Orozco
- Laboratorio de Fisiología Evolutiva, Instituto de Neurobiología, Campus UNAM-UAQ, Juriquilla, Querétaro, México.
| | | |
Collapse
|
22
|
Valverde C, Orozco A, Becerra A, Jeziorski MC, Villalobos P, Solís JC. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. ACTA ACUST UNITED AC 2004; 234:143-99. [PMID: 15066375 DOI: 10.1016/s0074-7696(04)34004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We review the role of iodothyronine deiodinases (IDs) in the evolution of vertebrate thyroidal systems within the larger context of biological metabolism of halogens. Since the beginning of life, the ubiquity of organohalogens in the biosphere has provided a major selective pressure for the evolution and conservation of cellular mechanisms specialized in halogen metabolism. Among naturally available halogens, iodine emerged as a critical component of unique developmental and metabolic messengers. Metabolism of iodinated compounds occurs in the three major domains of life, and invertebrate deuterostomes possess several biochemical traits and molecular homologs of vertebrate thyroidal systems, including ancestral homologs of IDs identified in urochordates. The finely tuned cellular regulation of iodometabolite uptake and disposal is a remarkable event in evolution and might have been decisive for the explosive diversification of ontogenetic strategies in vertebrates.
Collapse
Affiliation(s)
- Carlos Valverde
- Instituto de Neurobiologia, Campus UNAM-UAQ Juriquilla, Querétaro 76230 Mexico
| | | | | | | | | | | |
Collapse
|
23
|
Sutija M, Longhurst TJ, Joss JMP. Deiodinase type III in the Australian lungfish, Neoceratodus forsteri. Gen Comp Endocrinol 2004; 136:152-61. [PMID: 15028518 DOI: 10.1016/j.ygcen.2003.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
This work presents characterisation of deiodinase type III (D3) mRNA as cDNA and the tissue distribution of D3 mRNA in the Australian lungfish, Neoceratodus forsteri. We have identified the full length of a approximately 1.4 kb D3 mRNA in the liver, which has a single in-frame UGA codon and a selenocysteine insertion sequence (SECIS) form 2 in the 3'-UTR. Lungfish D3 mRNA was expressed in all tested tissues (liver, lung, kidney, brain, heart, and gills) as demonstrated by Northern blot analyses. PCR conducted on genomic DNA indicated that the lungfish D3 is a single exon gene. Also, we present enzymatic characteristics of this exclusively IRD enzyme, have determined its substrate preference, DTT cofactor requirements, PTU inhibition, and kinetic properties. These results indicate that lungfish D3 has the typical enzymatic characteristics of vertebrate D3 enzymes.
Collapse
Affiliation(s)
- Margareta Sutija
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | | | | |
Collapse
|
24
|
Callebaut I, Curcio-Morelli C, Mornon JP, Gereben B, Buettner C, Huang S, Castro B, Fonseca TL, Harney JW, Larsen PR, Bianco AC. The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. J Biol Chem 2003; 278:36887-96. [PMID: 12847093 DOI: 10.1074/jbc.m305725200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three iodothyronine selenodeiodinases catalyze the initiation and termination of thyroid hormone effects in vertebrates. Structural analyses of these proteins have been hindered by their integral membrane nature and the inefficient eukaryotic-specific pathway for selenoprotein synthesis. Hydrophobic cluster analysis used in combination with Position-specific Iterated BLAST reveals that their extramembrane portion belongs to the thioredoxin-fold superfamily for which experimental structure information exists. Moreover, a large deiodinase region imbedded in the thioredoxin fold shares strong similarities with the active site of iduronidase, a member of the clan GH-A-fold of glycoside hydrolases. This model can explain a number of results from previous mutagenesis analyses and permits new verifiable insights into the structural and functional properties of these enzymes.
Collapse
Affiliation(s)
- Isabelle Callebaut
- Poôle Bio, Laboratoive de Minéralogie-Cristallographie de Paris, CNRS UMR7590, Universities Paris 6 and Paris 7, Paris 75252 Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kuiper GGJM, Klootwijk W, Visser TJ. Substitution of cysteine for selenocysteine in the catalytic center of type III iodothyronine deiodinase reduces catalytic efficiency and alters substrate preference. Endocrinology 2003; 144:2505-13. [PMID: 12746313 DOI: 10.1210/en.2003-0084] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human type III iodothyronine deiodinase (D3) catalyzes the conversion of T(4) to rT(3) and of T(3) to 3, 3'-diiodothyronine (T2) by inner-ring deiodination. Like types I and II iodothyronine deiodinases, D3 protein contains selenocysteine (SeC) in the highly conserved core catalytic center at amino acid position 144. To evaluate the contribution of SeC144 to the catalytic properties of D3 enzyme, we generated mutants in which cysteine (D3Cys) or alanine (D3Ala) replaces SeC144 (D3wt). COS cells were transfected with expression vectors encoding D3wt, D3Cys, or D3Ala protein. Kinetic analysis was performed on homogenates with dithiothreitol as reducing cofactor. The Michaelis constant of T(3) was 5-fold higher for D3Cys than for D3wt protein. In contrast, the Michaelis constant of T(4) increased 100-fold. The D3Ala protein was enzymatically inactive. Semiquantitative immunoblotting of homogenates with a D3 antiserum revealed that about 50-fold higher amounts of D3Cys and D3Ala protein are expressed relative to D3wt protein. The relative substrate turnover number of D3Cys is 2-fold reduced for T(3) and 6-fold reduced for T(4) deiodination, compared with D3wt enzyme. Studies in intact COS cells expressing D3wt or D3Cys showed that the D3Cys enzyme is also active under in situ conditions. In conclusion, the SeC residue in the catalytic center of D3 is essential for efficient inner-ring deiodination of T(3) and in particular T(4) at physiological substrate concentrations.
Collapse
Affiliation(s)
- George G J M Kuiper
- Department of Internal Medicine, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | | | | |
Collapse
|
26
|
Orozco A, Villalobos P, Jeziorski MC, Valverde-R C. The liver of Fundulus heteroclitus expresses deiodinase type 1 mRNA. Gen Comp Endocrinol 2003; 130:84-91. [PMID: 12535629 DOI: 10.1016/s0016-6480(02)00570-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of a type 1 deiodinase (D1) in the liver of teleosts has been a controversial issue. Recently we characterized the deiodinase activity in rainbow trout and killifish liver and found that the liver of both species co-expresses the two enzymes (D1 and D2) that catalyze the outer ring-deiodinating pathway. We here report the cloning and characterization of an mRNA from the liver of the killifish Fundulus heteroclitus that encodes a D1 (FhD1). The cDNA amplified by RT-PCR from F. heteroclitus liver is 1314 nt long and encodes a protein of 248 aa. It contains a TGA codon in its open reading frame and a selenocysteine insertion sequence in its 3(') untranslated region, consistent with the structure of a selenoenzyme mRNA. The deduced peptide sequence is 73% identical to that encoded by the tilapia D1 cDNA cloned from kidney and 46% identical to the D1s reported in other vertebrates. Northern blot analysis shows that FhD1 mRNA is expressed in F. heteroclitus liver, consistent with prior biochemical evidence for hepatic D1 activity. Furthermore, heterologous expression of the FhD1 cDNA resulted in a protein with properties similar to the D1-like activity in F. heteroclitus liver. The cloned enzyme, like the native species, is relatively insensitive to inhibition by PTU, but mutation of Ser-159 in FhD1 to the Pro residue found in D2 and D3 isoforms increased the sensitivity to PTU. Our results show that, under basal conditions, killifish liver indeed expresses a D1 enzyme that is homologous to mammalian D1s, establishing this as a useful model in which to study the regulation of D1 and D2 concurrently.
Collapse
Affiliation(s)
- Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-UAQ-Juriquilla, Querétaro 76230, Qro., Mexico.
| | | | | | | |
Collapse
|
27
|
Rogatcheva M, Hayashi Y, Oda S, Seo H, Cua K, Refetoff S, Murakami M, Mori M, Murata Y. Type 1 iodothyronine deiodinase in the house musk shrew (Suncus murinus, Insectivora: Soricidae): cloning and characterization of complementary DNA, unique tissue distribution and regulation by T(3). Gen Comp Endocrinol 2002; 127:48-58. [PMID: 12161201 DOI: 10.1016/s0016-6480(02)00021-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The house musk shrew Suncus murinus (Insectivora: Soricidae) has been reported as having low thyroxine to 3,3'5-triiodothyronine (T(3)) converting activity in liver and kidney homogenates and was assumed to be type 1 iodothyronine deiodinase (D1)-deficient. To study whether this is due to structural abnormality of shrew D1, we cloned the cDNA and characterized the enzyme. The deduced amino acid sequence of shrew D1 was found to be highly homologous to other known D1s and the enzyme itself to have similar catalytic activity. However, unlike in other species, the D1 activity was detected only in liver. Moreover, the D1 activity in liver of the shrew was less than half of that in rat liver and its expression was not up-regulated by T(3). In contrast, a very high activity of D2 was demonstrated in brain and brown adipose tissue. The present study also revealed that the serum level of T(3) in the shrew was in the same range as these in other mammals. These results suggest that D2 contributes to the production and maintenance of T(3) levels in the house musk shrew.
Collapse
Affiliation(s)
- Margarita Rogatcheva
- Department of Teratology and Genetics, Division of Molecular and Cellular Adaptation, Research Institute of Environmental Medicine, Nagoya University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 2002; 23:38-89. [PMID: 11844744 DOI: 10.1210/edrv.23.1.0455] [Citation(s) in RCA: 1005] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of this review is to place the exciting advances that have occurred in our understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context. We review new data regarding the mechanism of selenoprotein synthesis, the molecular and cellular biological properties of the individual deiodinases, including gene structure, mRNA and protein characteristics, tissue distribution, subcellular localization and topology, enzymatic properties, structure-activity relationships, and regulation of synthesis, inactivation, and degradation. These provide the background for a discussion of their role in thyroid physiology in humans and other vertebrates, including evidence that D2 plays a significant role in human plasma T(3) production. We discuss the pathological role of D3 overexpression causing "consumptive hypothyroidism" as well as our current understanding of the pathophysiology of iodothyronine deiodination during illness and amiodarone therapy. Finally, we review the new insights from analysis of mice with targeted disruption of the Dio2 gene and overexpression of D2 in the myocardium.
Collapse
Affiliation(s)
- Antonio C Bianco
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Leonard JL, Visser TJ, Leonard DM. Characterization of the subunit structure of the catalytically active type I iodothyronine deiodinase. J Biol Chem 2001; 276:2600-7. [PMID: 11044448 DOI: 10.1074/jbc.m006973200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I iodothyronine deiodinase is a approximately 50-kDa, integral membrane protein that catalyzes the outer ring deiodination of thyroxine. Despite the identification and cloning of a 27-kDa selenoprotein with the catalytic properties of the type I enzyme, the composition and the physical nature of the active deiodinase are unknown. In this report, we use a molecular approach to determine holoenzyme composition, the role of the membrane anchor on enzyme assembly, and the contribution of individual 27-kDa subunits to catalysis. Overexpression of an immunologically unique rat 27-kDa protein in LLC-PK1 cells that contain abundant catalytically active 27-kDa selenoprotein decreased deiodination by approximately 50%, and > 95% of the LLC-PK1 derived 27-kDa selenoprotein was specifically immune precipitated by the anti-rat enzyme antibody. The hybrid enzyme had a molecular mass of 54 kDa and an s(20,w) of approximately 3.5 S indicating that every native 27-kDa selenoprotein partnered with an inert rat 27-kDa subunit in a homodimer. Enzyme assembly did not depend on the presence of the N-terminal membrane anchor of the 27-kDa subunit. Direct visualization of the deiodinase dimer showed that the holoenzyme was sorted to the basolateral plasma membrane of the renal epithelial cell.
Collapse
Affiliation(s)
- J L Leonard
- Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA. jack
| | | | | |
Collapse
|
30
|
Abstract
Tissue-specific activation and inactivation of ligands of nuclear receptors which belong to the steroid retinoid-thyroid hormone superfamily of transcription factors represents an important principle of development- and tissue-specific local modulation of hormone action. Recently, several enzyme families have been identified which act as 'guardians of the gate' of ligand-activated transcription modulation. Three monodeiodinase isoenzymes which are involved in activation the 'prohormone' L-thyroxine (T4), the main secretory product of the thyroid gland, have been identified, characterized, and cloned. Both, type I and type II 5'-deiodinase generate the thyromimetically active hormone 3,3',5-triiodothyronine (T3) by reductive deiodination of the phenolic ring of T4. Inactivation of T4 and its product T3 occurs by deiodination of iodothyronines at the tyrosyl ring. This reaction is catalyzed both the type III 5-deiodinase and also by the type I enzyme, which has a broader substrate specificity. The three deiodinases appear to constitute a newly discovered family of selenocysteine-containing proteins and the presence of selenocysteine in the protein is critical for enzyme activity. Whereas the selenoenzyme characteristics of the type I and type III deiodinases are definitively established some controversy still exists for the type II 5'-deiodinase in mammals. The mRNA probably encoding the type II 5'-deiodinase subunit is markedly longer than those of the two other deiodinases and its selenocysteine-insertion element is located more than 5 kB downstream of the UGA-codon in the 3'-untranslated region. The three deiodinase isoenzymes show a distinct development- and tissue-specific pattern of expression, operate at individual optimal substrate levels, are differently regulated and modulated by hormones, cytokines, signaling pathways, natural factors, and pharmaceuticals. Whereas circulating T3 mainly originates from hepatic production via the type I 5'-deiodinase, the local cellular thyroid hormone concentration in various tissues including the central nervous system is controlled by complex para-, auto-, and intracrine interactions of all three deiodinases. Local thyroid hormone availability is further modulated by conjugation reactions of the phenolic 4'-OH-group of iodothyronines, which also inactivate the thyroid hormones.
Collapse
Affiliation(s)
- J Köhrle
- Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik der Universität Würzburg, Germany.
| |
Collapse
|
31
|
Sun BC, Harney JW, Berry MJ, Larsen PR. The role of the active site cysteine in catalysis by type 1 iodothyronine deiodinase. Endocrinology 1997; 138:5452-8. [PMID: 9389531 DOI: 10.1210/endo.138.12.5623] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type 1 iodothyronine deiodinase (deiodinase 1) is a selenoenzyme that converts the prohormone T4 to the active thyroid hormone T3 by outer ring deiodination or to the inactive metabolite rT3 by inner ring deiodination. Although selenocysteine has been demonstrated to be essential for the biochemical profile of deiodinase 1, the role of a highly conserved, active site cysteine (C124 in rat deiodinase 1) has not been defined. The present studies examined the effects of a Cys124Ala mutation on rat deiodinase 1 enzymatic function and substrate affinity. At a constant 10-mM concentration of dithiothreitol (DTT), the C124A mutant demonstrated a 2-fold lower apparent maximal velocity (Vmax) and Km for rT3 (KmrT3) than the wild type for outer ring deiodination, whereas the Vmax/Km ratio was unchanged. Similarly, the apparent Vmax and KmT3 sulfate for inner ring deiodination were 2-fold lower in the C124A mutant relative to those in the wild type, with no change in the Vmax/Km ratio. The C124A mutant exhibited ping-pong kinetics in the presence of DTT, and substitution of the active site cysteine increased the KmDTT by 14-fold relative to that of the wild-type enzyme, with no significant effects on KmrT3 or Vmax. The C124A mutant was inhibited by propylthiouracil in an uncompetitive fashion and exhibited a 2-fold increase in K(i)propylthiouracil compared with that of the wild type. KmrT3 was also reduced for the C124A mutant when 5 mM reduced glutathione, a potential physiological monothiol cosubstrate, was used in outer ring deiodination assays. These results demonstrate that thiol cosubstrate interactions with C124 in type 1 deiodinase play an important role in enhancing catalytic efficiency for both outer and inner ring deiodination.
Collapse
Affiliation(s)
- B C Sun
- Thyroid Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
32
|
Sanders JP, Van der Geyten S, Kaptein E, Darras VM, Kühn ER, Leonard JL, Visser TJ. Characterization of a propylthiouracil-insensitive type I iodothyronine deiodinase. Endocrinology 1997; 138:5153-60. [PMID: 9389495 DOI: 10.1210/endo.138.12.5581] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mammalian type I iodothyronine deiodinase (D1) activates and inactivates thyroid hormone by outer ring deiodination (ORD) and inner ring deiodination (IRD), respectively, and is potently inhibited by propylthiouracil (PTU). Here we describe the cloning and characterization of a complementary DNA encoding a PTU-insensitive D1 from teleost fish (Oreochromis niloticus, tilapia). This complementary DNA codes for a protein of 248 amino acids, including a putative selenocysteine (Sec) residue, encoded by a TGA triplet, at position 126. The 3' untranslated region contains two putative Sec insertion sequence (SECIS) elements. Recombinant enzyme expressed in COS-1 cells catalyzes both ORD of T4 and rT3 and IRD of T3 and T3 sulfate with the same substrate specificity as native tilapia D1 (tD1), i.e. rT3 >> T4 > T3 sulfate > T3. Native and recombinant tD1 show equally low sensitivities to inhibition by PTU, iodoacetate, and gold thioglucose compared with the potent inhibitions observed with mammalian D1s. Because the residue 2 positions downstream from Sec is Pro in tD1 and in all (PTU-insensitive) type II and type III iodothyronine deiodinases but Ser in all PTU-sensitive D1s, we prepared the Pro128Ser mutant of tD1. The mutant enzyme showed strongly decreased ORD and somewhat increased IRD activity, but was still insensitive to PTU. These results provide new information about the structure-activity relationship of D1 concerning two characteristic properties, i.e. catalysis of both ORD and IRD, and inhibition by PTU.
Collapse
Affiliation(s)
- J P Sanders
- Department of Internal Medicine III, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The realization some forty years ago that several iodothyronine compounds are present in the circulation suggested that deiodination occurs in various tissues. Subsequently, deiodination was indeed documented in in vivo studies. Later, using in vitro assay techniques, three deiodinase processes, termed types 1, 2 and 3, were defined that differed in terms of tissue distribution, reaction kinetics, efficiency of substrate utilization and sensitivity to inhibitors. Although purification of the deiodinase enzymes has continued to be problematic, recent molecular cloning studies have identified cDNAs for these three deiodinase isoforms from multiple species. These cDNAs have provided important insights into the structural characteristics of this family of enzymes. Foremost among the structural features has been the demonstration that all three deiodinase isoforms contain at their active site the uncommon amino acid selenocysteine which is of critical importance to their catalytic activity. The availability of cDNAs for these enzymes provides important reagents for pursuing additional studies aimed at defining their biochemical features and roles in thyroid hormone economy.
Collapse
Affiliation(s)
- D L St Germain
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | |
Collapse
|
34
|
Arnault F, Etienne J, Noé L, Raisonnier A, Brault D, Harney JW, Berry MJ, Tse C, Fromental-Ramain C, Hamelin J, Galibert F. Human lipoprotein lipase last exon is not translated, in contrast to lower vertebrates. J Mol Evol 1996; 43:109-15. [PMID: 8660435 DOI: 10.1007/bf02337355] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have sequenced the first fish (zebrafish, Brachydanio rerio) lipoprotein lipase (LPL) cDNA clone. Similarities were found in mammalian LPL cDNA, but the codon spanning the last two exons (which is thus split by the last intron) is AGA (Arg) as opposed to TGA in mammals. Exon 10 is thus partially translated. These results were confirmed with rainbow trout (Oncorhynchus mykiss). We also investigated whether mammal TGA coded for selenocystein (SeCys), the 21st amino acid, but found that this was not the case: TGA does not encode SeCys but is a stop codon. It thus appears that the sense codon AGA (fish) has been transformed into a stop codon TGA (human) during the course of evolution. It remains to be determined if the "loss" of the C-terminal end of mammalian LPL protein has conferred an advantage in terms of LPL activity or, on the contrary, a disadvantage (e.g., susceptibility to diabetes or atherosclerosis).
Collapse
Affiliation(s)
- F Arnault
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté de Médecine St-Antoine-Tenon, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kreimer S, Andreesen JR. Glycine reductase of Clostridium litorale. Cloning, sequencing, and molecular analysis of the grdAB operon that contains two in-frame TGA codons for selenium incorporation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:192-9. [PMID: 8529640 DOI: 10.1111/j.1432-1033.1995.192_c.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A 2.8-kb HindIII fragment, containing three open reading frames, has been cloned and sequenced from Clostridium litorale. The first gene grdA encoded the selenocysteine-containing protein PA of the glycine reductase complex, a protein of 159 amino acids with a deduced molecular mass of 16.7 kDa. The second gene (grdB) encoded the 47-kDa subunit of the substrate-specific selenoprotein PB glycine that is composed of 437 amino acids. The third gene contained the 5'-region of the gene for thioredoxin reductase, trxB. All gene products shared high similarity with the corresponding proteins from Eubacterium acidaminophilum. In both genes grdA and grdB, the opal termination codon (TGA) was found inframe, indicating the presence of selenocysteine in both polypeptides. Northern-blot analysis showed that grdA and grdB are organized as one operon. Unlike Escherichia coli, no stable secondary structures of the corresponding mRNA were found immediately downstream of the UGA codons to direct an insertion of selenocysteine into the grdA and grdB transcripts of C. litorale. Instead, a secondary structure was identified in the 3'-untranslated region of grdB.
Collapse
Affiliation(s)
- S Kreimer
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
36
|
Davey JC, Becker KB, Schneider MJ, St Germain DL, Galton VA. Cloning of a cDNA for the type II iodothyronine deiodinase. J Biol Chem 1995; 270:26786-9. [PMID: 7592917 DOI: 10.1074/jbc.270.45.26786] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Three types of iodothyronine deiodinase have been identified in vertebrate tissues. cDNAs for the types I and III have been cloned and shown to contain an inframe TGA that codes for selenocysteine at the active site of the enzyme. We now report the cloning of a cDNA for a type II deiodinase using a reverse transcription/polymerase chain reaction strategy and RNA obtained from Rana catesbeiana tissues. This cDNA (RC5'DII) manifests limited but significant homology with other deiodinase cDNAs and contains a conserved in-frame TGA codon. Injection of capped in vitro synthesized transcripts of the cDNA into Xenopus laevis oocytes results in the induction of deiodinase activity with characteristics typical of a type II deiodinase. The levels of RC5'DII transcripts in R. catesbeiana tadpole tail and liver mRNA at stages XII and XXIII correspond well with that of type II deiodinase activity but not that of the type III activity in these tissues. These findings indicate that the amphibian type II 5'-deiodinase is a structurally unique member of the family of selenocysteine-containing deiodinases.
Collapse
Affiliation(s)
- J C Davey
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | | | |
Collapse
|
37
|
Croteau W, Whittemore SL, Schneider MJ, St Germain DL. Cloning and expression of a cDNA for a mammalian type III iodothyronine deiodinase. J Biol Chem 1995; 270:16569-75. [PMID: 7622463 DOI: 10.1074/jbc.270.28.16569] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The type III iodothyronine deiodinase metabolizes the active thyroid hormones thyroxine and 3,5,3'-triiodothyronine to inactive compounds. Recently, we have characterized a Xenopus laevis cDNA (XL-15) that encodes a selenoprotein with type III deiodinase activity (St. Germain, D.L., Schwartzman, R., Croteau, W., Kanamori, A., Wang, Z., Brown, D.D., and Galton, V.A. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 7767-7771). Using the XL-15 as a probe, we screened a rat neonatal skin cDNA library. Among the clones isolated was one (rNS43-1) which contained a 2.1-kilobase pair cDNA insert that manifested significant homology to both the XL-15 and the G21 rat type I deiodinase cDNAs, including the presence of an in-frame TGA codon. Expression studies demonstrated that the rNS43-1 cDNA encodes a protein with 5-, but not 5'-, deiodinase activity that is resistant to inhibition by propylthiouracil and aurothioglucose. Northern analysis demonstrated a pattern of tissue expression in the rat consistent with that of the type III deiodinase and site directed mutagenesis confirmed that the TGA triplet codes for selenocysteine. We conclude that the rNS43-1 cDNA encodes the rat type III deiodinase and that the types I and III deiodinases present in amphibians and mammals constitute a family of conserved selenoproteins important in the metabolism of thyroid hormones.
Collapse
Affiliation(s)
- W Croteau
- Department of Medicine, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | | | |
Collapse
|
38
|
Toyoda N, Berry MJ, Harney JW, Larsen PR. Topological analysis of the integral membrane protein, type 1 iodothyronine deiodinase (D1). J Biol Chem 1995; 270:12310-8. [PMID: 7744884 DOI: 10.1074/jbc.270.20.12310] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Type 1 iodothyronine deiodinase (D1) is a microsomal selenoenzyme which catalyzes deiodination of thyroxine to 3,5,3'-triiodothyronine. Immunoblotting showed that endogenous hepatic, renal, and transiently expressed D1 remains in microsomes after pH 11.5 treatment. In vitro translation studies using pancreatic microsomes identified a single transmembrane domain with a cytosolic carboxyl-terminal catalytic portion. The transmembrane domain is located between conserved basic amino acids at positions 11 and 12 and a group of charged residues at positions 34-39. A transiently expressed D1 protein in which residues 2-25 were deleted was inactive and not integrated into membranes. Activity was not restored by replacing these residues with transmembrane domains from a cytochrome P450 or type 3 deiodinase enzyme despite their incorporation into membranes. Elimination of the positive charges at positions 11 and 12 reduced the amount of transiently expressed protein by 70%, but the enzyme formed was catalytically normal. Similar results were found after conversion of the Lys-27 in the transmembrane domain to Met or Glu. We conclude that the amino terminus of D1 contains uncleaved signal and stop transfer sequence properties. In addition, positively charged residues at positions 11, 12, and 27 are required for optimal formation of the protein but not for catalysis.
Collapse
Affiliation(s)
- N Toyoda
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
39
|
Identification of critical amino acids for 3,5,3'-triiodothyronine deiodination by human type 1 deiodinase based on comparative functional-structural analyses of the human, dog, and rat enzymes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31995-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Moreno M, Berry MJ, Horst C, Thoma R, Goglia F, Harney JW, Larsen PR, Visser TJ. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett 1994; 344:143-6. [PMID: 8187873 DOI: 10.1016/0014-5793(94)00365-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prohormone thyroxine (T4) is activated by outer ring deiodination (ORD) to 3,3',5-triiodothyronine (T3) and both hormones are degraded by inner ring deiodination (IRD) to 3,3',5'-triiodothyronine (rT3) and 3,3'-diiodothyronine, respectively. Indirect evidence suggests that the type I iodothyronine deiodinase (ID-I) in liver has both ORD and IRD activities, with preference for rT3 and sulfated iodothyronines as substrates. To establish this, we have compared the ORD of rT3 and IRD of T3 and T3 sulfate by homogenates of cells transfected with rat ID-I cDNA and by rat liver microsomes. In both preparations rT3 is the preferred substrate, while deiodination of T3 is markedly accelerated by its sulfation. Kinetic analysis provided similar Km and Vmax values in cell homogenates and liver microsomes. These data demonstrate unequivocally that ID-I is capable of both activating and inactivating thyroid hormone by ORD and IRD, respectively.
Collapse
Affiliation(s)
- M Moreno
- Department of Internal Medicine III, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Beckett GJ, Arthur JR. Hormone-nuclear receptor interactions in health and disease. The iodothyronine deiodinases and 5'-deiodination. BAILLIERE'S CLINICAL ENDOCRINOLOGY AND METABOLISM 1994; 8:285-304. [PMID: 8092974 DOI: 10.1016/s0950-351x(05)80253-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two types of iodothyronine deiodinase (ID-I and ID-II) catalyse the 5'-deiodination of thyroxine (T4) to produce the biologically active triiodothyronine (T3). Under normal circumstances ID-I in liver and kidney provides the main source of T3 to the circulation, whilst ID-II is largely responsible for local T3 production in the CNS, brown adipose tissue and pituitary. In some circumstances ID-II in brown adipose tissue and ID-I in the thyroid may provide a significant source of plasma T3, and ID-I in the pituitary may be important for local T3 production in this gland. The IDs thus play a pivotal role in controlling the supply of T3 to the nuclear receptors. ID-I is a selenoenzyme and, although ID-II activity is reduced in selenium deficiency, this is a consequence of increased plasma T4 concentration, rather than ID-II activity being directly dependent on selenium. Changes in 5'-deiodination occur in a number of situations such as poor nutrition, illness, iodine and selenium deficiency, and drug therapy. In iodine deficiency these changes appear to have evolved to ensure that the plasma T3 level is maintained and also to provide the brain with a degree of protection from hypothyroxinaemia. Relatively little is known about the importance of selenium deficiency on thyroid function in humans but, in combination with iodine deficiency, selenium deficiency may prove to be a contributing factor in the pathogenesis of myxodematous cretinism. The changes that occur in ID-I and ID-II in illness produce abnormalities in thyroid function tests which, although of no direct clinical significance, may lead to interpretative problems.
Collapse
Affiliation(s)
- G J Beckett
- University Department of Clinical Biochemistry, Royal Infirmary, Edinburgh, UK
| | | |
Collapse
|