1
|
Bonel-Pérez GC, Pérez-Jiménez A, Gris-Cárdenas I, Parra-Pérez AM, Lupiáñez JA, Reyes-Zurita FJ, Siles E, Csuk R, Peragón J, Rufino-Palomares EE. Antiproliferative and Pro-Apoptotic Effect of Uvaol in Human Hepatocarcinoma HepG2 Cells by Affecting G0/G1 Cell Cycle Arrest, ROS Production and AKT/PI3K Signaling Pathway. Molecules 2020; 25:molecules25184254. [PMID: 32947962 PMCID: PMC7571068 DOI: 10.3390/molecules25184254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.
Collapse
Affiliation(s)
- Gloria C. Bonel-Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain;
| | - Isabel Gris-Cárdenas
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Alberto M. Parra-Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
| | - Eva Siles
- Department of Experimental Biology, University of Jaen, Campus Las Lagunillas s/n. 23071 Jaén, Spain;
| | - René Csuk
- Berreich Organische Chemie, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany;
| | - Juan Peragón
- Department of Experimental Biology, University of Jaen, Campus Las Lagunillas s/n. 23071 Jaén, Spain;
- Correspondence: (J.P.); (E.E.R.-P.); Tel.: +34-953-212523 (J.P.); +34-958-243252 (E.E.R.-P.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 1, 18071 Granada, Spain; (G.C.B.-P.); (I.G.-C.); (A.M.P.-P.); (J.A.L.); (F.J.R.-Z.)
- Correspondence: (J.P.); (E.E.R.-P.); Tel.: +34-953-212523 (J.P.); +34-958-243252 (E.E.R.-P.)
| |
Collapse
|
2
|
Öztürk S, Cerit İ, Mutlu S, Demirkol O. Enrichment of cookies with glutathione by inactive yeast cells ( Saccharomyces cerevisiae ): Physicochemical and functional properties. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Rufino-Palomares EE, Reyes-Zurita FJ, García-Salguero L, Peragón J, de la Higuera M, Lupiáñez JA. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:32-42. [PMID: 27178358 DOI: 10.1016/j.cbpc.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/24/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
NADPH plays a central role in reductive biosynthesis of membrane lipids, maintenance of cell integrity, protein synthesis and redox balance maintenance. Hence, NADPH is involved in the growth and proliferation processes. In addition, it has been shown that changes in nutritional conditions produced changes in NADPH levels and growth rate. Maslinic acid (MA), a pentacyclic triterpene of natural origin, is able to stimulate NADPH production, through regulation of the two oxidative phase dehydrogenases of the pentose phosphate pathway. Our main objective was to study the effects of MA on the kinetic behaviour and on the molecular expression of two NADPH-generating systems, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme (ME), in the liver and white muscle of gilthead sea bream (Sparus aurata). Four groups of 12g of a mean body mass were fed for 210days in a fish farm, with diets containing 0 (control), and 0.1g of MA per kg of diet. Two groups were fed ad libitum (C-AL and MA-AL) and another's two, with restricted diet of 1% of fish weight (C-R and MA-R). Results showed that MA significantly increased the main kinetic parameter of the NADPH-forming enzymes (NADP-IDH and ME). In this sense, specific activity, maximum velocity, catalytic efficiency and activity ratio values were higher in MA conditions than control groups. Moreover, these changes were observed in both feeding regimen, AL and R. Meanwhile, the Michaelis constant changed mainly in groups fed with the MA and restricted diet, these changes are related to the best substrate affinity by enzyme. Moreover, in the Western-blot result, we found that MA increased both protein levels studied, this behaviour being consistent with the regulation of the number of enzyme molecules. All results, indicate that MA, independently of the fed regimen, could potentially be a nutritional additive for fish as it improved the metabolic state of fish, as consequence of increased activity and expression of NADP-IDH and ME enzymes.
Collapse
Affiliation(s)
- Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Juan Peragón
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel de la Higuera
- Department of Animal Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José A Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
4
|
Huang X, Li Y, Zhang X, Zuo J, Yang S. The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death. THE NEW PHYTOLOGIST 2010; 187:301-312. [PMID: 20456049 DOI: 10.1111/j.1469-8137.2010.03275.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. *Two chilling-sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. *The CHS4 gene, identified by map-based cloning, was found to be identical to lesion simulating disease resistance 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H(2)O(2) and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. *These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.
Collapse
Affiliation(s)
- Xiaozhen Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yansha Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Ciftci M, Turkoglu V, Coban TA. Effects of some drugs on hepatic glucose 6-phosphate dehydrogenase activity in Lake Van fish (Chalcalburnus tarischii Pallas, 1811). JOURNAL OF HAZARDOUS MATERIALS 2007; 143:415-8. [PMID: 17049736 DOI: 10.1016/j.jhazmat.2006.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/15/2006] [Accepted: 09/18/2006] [Indexed: 05/12/2023]
Abstract
Inhibitory effects of some drugs on hepatic glucose 6-phosphate dehydrogenase from Lake Van fish (chalcalburnus tarischii pallas, 1811) were investigated. For this purpose, initially liver glucose 6-phosphate dehydrogenase was purified 899-fold in a yield of 46.24% by using 2',5'-ADP Sepharose 4B affinity gel. In order to control the purification of enzyme was done SDS polyacrylamide gel electrophoresis. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (+4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were used as drugs. These drugs exhibited inhibitory effects on the enzyme. IC(50) values of vankomycine, sulfanylamide, sulfanylacetamide, nidazole, ciprofloxacin, amoxicillin and KMnO(4) were 1.88, 0.037, 0.032, 1.178, 2.26, 643.5 and 0.0002 mM, and the K(i) constants 1.18+/-0.148, 0.119+/-0.021, 0.075+/-0.015, 1.15+/-0.21, 7.69+/-0.67, 1007+/-69, and 0.001+/-0.00022 mM, respectively. While vankomycine and nidazole showed competitive inhibition, others displayed noncompetitive inhibition. K(i) constants and IC(50) values for drugs were determined by Lineweaver-Burk graphs and plotting activity percentage versus [I], respectively.
Collapse
Affiliation(s)
- Mehmet Ciftci
- Ataturk University, Arts and Science Faculty, Department of Chemistry, 25240 Erzurum, Turkey.
| | | | | |
Collapse
|
6
|
Ciftci M. Effects of some drugs on the activity of glucose 6-phosphate dehydrogenase from rainbow trout (Oncorhynchus mykiss) erythrocytes in vitro. J Enzyme Inhib Med Chem 2006; 20:485-9. [PMID: 16335057 DOI: 10.1080/14756360500213256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Inhibitory effects of some drugs on glucose 6-phosphate dehydrogenase from the erythrocytes of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) were investigated. The enzyme was purified 2488-fold in a yield of 76.8% using ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity gel at 4 degrees C. The drugs pental sodium, MgSO4, vancomycin, metamizol, marcaine, and prilocaine all exhibited inhibitory effects on the enzyme. While MgSO4 (K(i) = 12.119 mM), vancomycin (K(i) = 1.466 mM) and metamizol (K(i) = 0.392 mM) showed competitive inhibition, pental sodium (K(i) = 0.748 mM) and marcaine (K(i) = 0.0446 mM) displayed noncompetitive inhibition.
Collapse
Affiliation(s)
- Mehmet Ciftci
- Department of Chemistry, Arts and Science Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Abstract
A reduced form of glutathione (GSH) is considered to protect the cell from oxidative damage, based on its redox buffering action and abundance in the cell. However, in plants, the high redox potential molecule ascorbate exists at comparable or higher concentrations and is used for scavenging hydrogen peroxide as an electron donor. Recently, examples that cannot be explained simply by the antioxidant activity of GSH have been increasing in number. This article summarizes the recent findings on the glutathione-associated events in plants, in particular, growth and development including cell differentiation, cell death and senescence, pathogen resistance, and enzymatic regulation.
Collapse
Affiliation(s)
- Ken'ichi Ogawa
- Research Institute for Biological Sciences Okayama, Okayama, Japan.
| |
Collapse
|
8
|
Senda K, Ogawa K. Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione. PLANT & CELL PHYSIOLOGY 2004; 45:1578-1585. [PMID: 15574833 DOI: 10.1093/pcp/pch179] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The lesions simulating disease (lsd) mutants of Arabidopsis spontaneously develop hypersensitive-response-like lesions in the absence of pathogens. To address the function of the redox regulator glutathione in disease resistance, we examined the relationship between endogenous glutathione and PR-1 accumulation using one of these mutants, lsd1, as a disease resistance model. Lesion formation on lsd1 was suppressed by weak light and initiated by the subsequent transition to normal light. The application of buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis, suppressed conditionally induced runaway cell death and expression of the PR-1 gene, suggesting that glutathione regulates the conditional cell death and PR-1 gene expression. The application of reduced (GSH) or oxidized (GSSG) glutathione to lsd1 upregulated the level of total glutathione ([GSH]+[GSSG]) accompanied by hastened accumulation of PR-1, and the basal level of total glutathione in lsd1 was higher than that in wild-type plants. The glutathione redox state defined as [GSH]/([GSH]+[GSSG]) decreased following the conditional transition, but the suppression of this decrease by the application of GSH did not inhibit the accumulation of PR-1. Taken together, conditional PR-1 accumulation in lsd1 is regulated not by the redox state but by the endogenous level of glutathione.
Collapse
Affiliation(s)
- Kaori Senda
- Research Institute for Biological Sciences, Okayama (RIBS Okayama), 7549-1 Yoshikawa, Kayou-cho, Okayama, 716-1241 Japan
| | | |
Collapse
|
9
|
Lu L, Han AP, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 2001; 21:7971-80. [PMID: 11689689 PMCID: PMC99965 DOI: 10.1128/mcb.21.23.7971-7980.2001] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic stresses, including heat shock, osmotic stress, and oxidative stress, cause rapid inhibition of protein synthesis in cells through phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) by eIF2alpha kinases. We have investigated the role of heme-regulated inhibitor (HRI), a heme-regulated eIF2alpha kinase, in stress responses of erythroid cells. We have demonstrated that HRI in reticulocytes and fetal liver nucleated erythroid progenitors is activated by oxidative stress induced by arsenite, heat shock, and osmotic stress but not by endoplasmic reticulum stress or nutrient starvation. While autophosphorylation is essential for the activation of HRI, the phosphorylation status of HRI activated by different stresses is different. The contributions of HRI in various stress responses were assessed with the aid of HRI-null reticulocytes and fetal liver erythroid cells. HRI is the only eIF2alpha kinase activated by arsenite in erythroid cells, since HRI-null cells do not induce eIF2alpha phosphorylation upon arsenite treatment. HRI is also the major eIF2alpha kinase responsible for the increased eIF2alpha phosphorylation upon heat shock in erythroid cells. Activation of HRI by these stresses is independent of heme and requires the presence of intact cells. Both hsp90 and hsc70 are necessary for all stress-induced HRI activation. However, reactive oxygen species are involved only in HRI activation by arsenite. Our results provide evidence for a novel function of HRI in stress responses other than heme deficiency.
Collapse
Affiliation(s)
- L Lu
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
10
|
Alirezaei M, Marin P, Nairn AC, Glowinski J, Prémont J. Inhibition of protein synthesis in cortical neurons during exposure to hydrogen peroxide. J Neurochem 2001; 76:1080-8. [PMID: 11181828 DOI: 10.1046/j.1471-4159.2001.00105.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient cerebral ischemia, which is accompanied by a sustained release of glutamate and zinc, as well as H(2)O(2) formation during the reperfusion period, strongly depresses protein synthesis. We have previously demonstrated that the glutamate-induced increase in cytosolic Ca(2+) is likely responsible for blockade of the elongation step of protein synthesis, whereas Zn(2+) preferentially inhibits the initiation step. In this study, we provide evidence indicating that H(2)O(2) and thapsigargin mobilized a common intracellular Ca(2+) pool. H(2)O(2) treatment stimulated a slow increase in intracellular Ca(2+), and precluded the effect of thapsigargin on Ca(2+) mobilization. H(2)O(2) stimulated the phosphorylation of both eIF-2alpha and eEF-2, in a time- and dose-dependent manner, suggesting that both the blockade of the elongation and of the initiation step are responsible for the H(2)O(2)-induced inhibition of protein synthesis. However, kinetic data indicated that, at least during the first 15 min of H(2)O(2) treatment, the inhibition of protein synthesis resulted mainly from the phosphorylation of eEF-2. In conclusion, H(2)O(2) inhibits protein translation in cortical neurons by a process that involves the phosphorylation of both eIF-2alpha and eEF-2 and the relative contribution of these two events depends on the duration of H(2)O(2) treatment.
Collapse
Affiliation(s)
- M Alirezaei
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris, France
| | | | | | | | | |
Collapse
|
11
|
Malmezat T, Breuillé D, Capitan P, Mirand PP, Obled C. Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr 2000; 130:1239-46. [PMID: 10801925 DOI: 10.1093/jn/130.5.1239] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glutathione metabolism during infection has been poorly documented. Glutathione concentrations and synthesis rates were studied in infected rats (2 d after infection) and in pair-fed controls. Glutathione synthesis rates were determined in liver, spleen, lung, small and large intestine, skeletal muscle, heart and blood by a 4-h or 6-h (15)N cysteine infusion. The activities of four hepatic enzymes involved in glutathione metabolism were also determined. Glutathione synthesis rates were significantly greater in liver (+465%), spleen (+388%), large intestine (+109%), lung (+100%), muscle (+91%) and heart (+80%) of infected rats compared with pair-fed controls. Glutathione concentrations were also greater in these tissues but were unaffected in small intestine and lower in blood. In keeping with the stimulation of liver glutathione synthesis, the activities of liver gamma-glutamyl-cysteine synthetase and glutathione reductase were significantly greater in liver of infected rats than of pair-fed rats. From the present study, we estimate that glutathione synthesis accounts for at least 40% of the enhanced cysteine utilization during infection. This increased utilization may be the primary cause of an enhanced cysteine requirement in infection.
Collapse
Affiliation(s)
- T Malmezat
- Laboratoire d'Etude du Métabolisme Azoté, INRA, Clermont-Ferrand Theix, 63122 Saint Genès Champanelle, France
| | | | | | | | | |
Collapse
|
12
|
Barroso JB, Peragón J, Garcı́a-Salguero L, de la Higuera M, Lupiáñez JA. Variations in the kinetic behaviour of the NADPH-production systems in different tissues of the trout when fed on an amino-acid-based diet at different frequencies1Publication No. 184 from the `Drugs, Environmental Toxics and Cellular Metabolism Research Group', Department of Biochemistry and Molecular Biology, Centre of Biological Sciences, University of Granada, Granada, Spain.1. Int J Biochem Cell Biol 1999. [DOI: 10.1016/s1357-2725(98)00114-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Barroso JB, Peragon J, Contreras-Jurado C, Garcia-Salguero L, Corpas FJ, Esteban FJ, Peinado MA, De La Higuera M, Lupianez JA. Impact of starvation-refeeding on kinetics and protein expression of trout liver NADPH-production systems. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R1578-87. [PMID: 9608011 DOI: 10.1152/ajpregu.1998.274.6.r1578] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein we report on the kinetic and protein expression of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase, and malic enzyme (ME) in the liver of the trout (Oncorhynchus mykiss) during a long-term starvation-refeeding cycle. Starvation significantly depressed the activity of these enzymes by almost 60%, without changing the Michaelis constant. The time response to this nutritional stimulus increased with fish weight. The sharp decline in G6PDH and ME activities was due to a specific protein-repression phenomenon, as demonstrated by molecular and immunohistochemical analyses. Also, the dimeric banding pattern of liver G6PDH shifted from the fully reduced and partially oxidized forms, predominant in control, to a fully oxidized form, more sensitive to proteolytic inactivation. Refeeding caused opposite effects in both protein concentration and enzyme activities of about twice the control values in the first stages, later reaching the normal enzyme activity levels. Additionally, the partially oxidized form of G6PDH increased. The kinetics of these enzymes were examined in relation to the various metabolic roles of NADPH. These results clearly indicate that trout liver undergoes protein repression-induction processes under these two contrasting nutritional conditions.
Collapse
Affiliation(s)
- J B Barroso
- Department of Biochemistry and Molecular Biology, Faculty of Experimental Sciences, University of Jaén, E23071 Jaén, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tritto I, Duilio C, Santoro G, Elia PP, Cirillo P, De Simone C, Chiariello M, Ambrosio G. A short burst of oxygen radicals at reflow induces sustained release of oxidized glutathione from postischemic hearts. Free Radic Biol Med 1998; 24:290-7. [PMID: 9433904 DOI: 10.1016/s0891-5849(97)00229-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxygen radical generation induced by postischemic reperfusion can overwhelm endogenous radical scavenging systems, resulting in "oxidative stress." Release of oxidized glutathione (GSSG) upon reflow has been taken as evidence for the occurrence of oxidative stress in postischemic hearts. However, demonstration that GSSG release is due to oxygen radicals and not to other consequences of ischemia/reperfusion is lacking. To address this issue, isolated rabbit hearts underwent 30 min of global ischemia at 37 degrees C. At reflow, control hearts were perfused with standard buffer for 45 min (n = 8); treated hearts received the oxygen radical scavenger superoxide dismutase (hSOD) for 15 min, followed by 30 min of standard perfusion (n = 8). During reperfusion control hearts showed a prominent release of GSSG, which peaked 5 min after reflow. Interestingly, GSSG release was still significantly elevated 45 min into reperfusion, at a time when oxygen radical generation has long ceased. In contrast, in hSOD-treated hearts GSSG release was negligible. Prevention of oxidative stress was also associated with significantly greater recovery of function. Thus, GSSG release occurs in postischemic hearts as a direct consequence of oxygen radical generation, and it may outlast the initial oxidant load.
Collapse
Affiliation(s)
- I Tritto
- Division of Cardiology, University of Perugia School of Medicine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Krishnamoorthy T, Sreedhara A, Rao CP, Ramaiah KV. Reducing agents mitigate protein synthesis inhibition mediated by vanadate and vanadyl compounds in reticulocyte lysates. Arch Biochem Biophys 1998; 349:122-8. [PMID: 9439590 DOI: 10.1006/abbi.1997.0394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, we synthesized and characterized vanadyl saccharides to evaluate the effects of various vanadate and vanadyl complexes, which differ in their oxidation states on various biomacromolecules and cellular activities (1, 2). Here, we report that both vanadate (+V oxidation state) and different vanadyl species (+IV oxidation state) such as vanadyl D-glucose, vanadyl diascorbate, and vanadyl sulfate, impair the formation of polysomes and inhibit the initiation of protein synthesis in hemin-supplemented rabbit reticulocyte lysates. Vanadate inhibits protein synthesis more severely than vanadyl species and is consistent with the idea that vanadate is reduced to vanadyl state intracellularly. The inhibition of protein synthesis caused by low concentrations (10-20 microM) of vanadate and vanadyl species is effectively mitigated by reducing agents such as dithiothreitol, reduced glutathione (GSH), or reduced pyridine dinucleotide. A significant decrease in the protein synthesis inhibition in vanadate-treated lysates by GSH suggests that the mechanism of protein synthesis inhibition by vanadate is different than the action of other oxidants such as heavy metal ions and oxidized glutathione. This suggestion is also consistent with the findings that vanadium compounds do not stimulate phosphorylation of the alpha (alpha) subunit of initiation factor 2 (eIF2) or decrease the guanine nucleotide exchange activity of eIF2B, which is required to exchange GDP for GTP in eIF2.GDP binary complex. The reduction of vanadate to vanadyl state and the subsequent complex formation of vanadyl species with the endogenous reducing compounds or with the -SH groups of certain proteins may be the cause for protein synthesis inhibition in lysates.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, India.
| | | | | | | |
Collapse
|
16
|
Asuru AI, Mellor H, Thomas NS, Yu L, Chen JJ, Crosby JS, Hartson SD, Kimball SR, Jefferson LS, Matts RL. Cloning and characterization of cDNAs encoding the epsilon-subunit of eukaryotic initiation factor-2B from rabbit and human. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:309-17. [PMID: 8688466 DOI: 10.1016/0167-4781(96)00054-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A rabbit reticulocyte lysate cDNA library was screened with a polyclonal antiserum directed against eukaryotic initiation factor eIF-2B (eIF-2B). A 2508 base pair cDNA (pA1) was isolated and determined to encode the epsilon-subunit of eIF-2B based on the immunoreactivity of the fusion protein expressed from the cDNA in Escherichia coli and the presence of two peptide sequences obtained from two V8 fragments of purified nonrecombinant eIF-2B epsilon in the deduced amino acid sequence of the cDNA. The open reading frame of the cDNA began with the third nucleotide of the cDNA with the first AUG codon at nucleotide 522. Mutational analysis of pA1 indicated that the cDNA did not code for full-length eIF-2B epsilon. Seven missing codons of the reading-frame and the 71 nucleotide 5' non-coding region of the eIF-2B epsilon mRNA were obtained by 5' RACE. A human eIF-2B epsilon cDNA fragment, which corresponded to a similar 2.3 kb fragment generated by digestion of the rabbit pA1 cDNA with EcoRI, was isolated from a human histiocytic lymphoma (U-937) cell cDNA library constructed in lambda gt10. The nucleotide and amino acid sequences were highly conserved between the rabbit and human cDNAs, showing approx. 90% sequence identity within the open reading frame. Northern and Western blot analyses of reticulocyte lysate and other rabbit tissue extracts indicated that the eIF-2B epsilon polypeptide has a similar apparent molecular weight in all tissues examined, and is coded for by a single approximately 2.8 kilobase mRNA species which is ubiquitously expressed.
Collapse
Affiliation(s)
- A I Asuru
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74078, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asensi M, Garcia-España A, Pallardó FV, Vina J, Estrela JM. Effect of nonprotein thiols on protein synthesis in isolated rat hepatocytes. EXPERIENTIA 1996; 52:111-4. [PMID: 8608810 DOI: 10.1007/bf01923353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of nonprotein thiols to modulate rates of protein synthesis was investigated in isolated rat hepatocytes. Addition of cysteine stimulates protein labelling by [14C]Leucine. Glutathione depletion, induced by in vivo administration of L-buthionine sulfoximine and diethylmaleate, did not alter the effect of cysteine, although it decreased the rate of protein synthesis by 32%. The effect of cysteine on protein synthesis does not seem to be related to a perturbation of the redox state of the NAD+/NADH system or to changes in the rate of gluconeogenic pathway. The following observations indicate that cysteine may stimulate protein synthesis by increasing intracellular levels of aspartate: 1. Amino-oxyacetate, an inhibitor of pyridoxal-dependent enzymes, inhibits protein labelling and decreases aspartate cellular content, whereas most amino acids accumulate or remain unchanged; 2. Cysteine, in the absence or in the presence of amino-oxyacetate, stimulates protein labelling and induces aspartate accumulation, although most amino acids diminish or remain unchanged.
Collapse
Affiliation(s)
- M Asensi
- Departamento de Fisiología, Faculatad de Medicina, Universidad de Valencia, Spain
| | | | | | | | | |
Collapse
|
18
|
Avlicino AA, Newton CL. Proposal for experimental studies to evaluate sodium hypochlorite dialysate in retroviral treatment. Med Hypotheses 1994; 42:169-72. [PMID: 8057971 DOI: 10.1016/0306-9877(94)90094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sodium hypochlorite (NaOCl) is widely used to inactivate retroviruses topically and on environmental surfaces. This proposal establishes the thesis that sodium hypochlorite and its related oxygen free radicals can be administered in minute quantities in vivo to achieve a reduction in retroviral titer within the infected individual. Published reports of animal studies and accidental sodium hypochlorite infusion in much greater concentrations have indicated that the protein depletion and oxidation of sulfhydryl compounds is reversible and possibly preventable by administration of disulfide reducing agents. Various methods of infusion can include the ex vivo retroviral inactivation of plasma utilizing extracorporeal circulation through a continuous centrifugal plasma separator. The utilization of infusion of low-concentration sodium hypochlorite dialysate for retroviral inactivation merits immediate experimental study. Chlorinated tap-water and table salt ingestion must also be among the environmental factors studied for correlation to HIV infection.
Collapse
|
19
|
Rao MV, Dubey PS. Response of hydrogen peroxide scavenging system in two soybean cultivars exposed to SO2: experimental evidence for the detoxification of SO2 by enhanced H2O2 scavenging components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1993; 82:99-105. [PMID: 15091804 DOI: 10.1016/0269-7491(93)90167-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/1992] [Accepted: 02/22/1993] [Indexed: 05/24/2023]
Abstract
The impact of SO(2) on superoxide dismutase (SOD) and the ascorbate-glutathione cycle was investigated in a tolerant (cv. Punjab-1) and a sensitive (cv. JS 7244) cultivar of soybean (Glycine max (L.) Merr.). In spite of SO(2) stimulated SOD activities in both the cultivars, only cv. JS 7244 has significantly enhanced Malondialdehyde (MDA) contents. This differential response was attributed to the ability of cv. Punjab-1 to enhance glutathione reductase (GR) activity and to maintain high GSH/GSSG and ASA/DHA ratios. Post-fumigation analysis indicated the ability of cv. Punjab-1 to maintain SO(2)-enhanced antioxidants, whilst they declined in cv. JS 7244 the moment fumigation was terminated. Exposure of SO(2)-acclimated plants (cv. Punjab-1) with their enhanced antioxidants to 250 microg m(-3) SO(2) for 6 h exhibited no enhanced cellular injury (MDA content) when compared to that of control plants with their normal antioxidant levels. These results indicate a relation between the ability of a plant to maintain reduced glutathione (GSH) and ascorbate (ASA) and SO(2) tolerance, and they also present evidence for the ability of plants, with elevated antioxidants, to tolerate SO(2)-induced oxygen-free radical toxicity.
Collapse
Affiliation(s)
- M V Rao
- School of Studies in Botany, Vikram University, Ujjain 456 010, India
| | | |
Collapse
|
20
|
Increase in eukaryotic initiation factor 2B activity following fertilization reflects changes in redox potential. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54250-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Alcázar A, Martín ME, García A, Fando JL, Salinas M. Partial purification of a novel N-ethylmaleimide-activated translational inhibitor from adult rat brain. J Neurochem 1991; 57:1112-8. [PMID: 1680154 DOI: 10.1111/j.1471-4159.1991.tb08268.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A translational inhibitor that is activated by N-ethylmaleimide treatment can be found in the postmicrosomal fraction prepared from the brain of adult rats, but it is almost undetectable in the same fraction prepared from suckling animals. The inhibitor is thermolabile and remains in the supernatant fraction after precipitation at pH 5. During the purification procedure, the inhibitor in its unactivated state binds to the anion exchanger (diethylaminoethyl-cellulose) but not to the cation exchanger (phosphocellulose). Treatment with N-ethylmaleimide increases inhibitor affinity for the cation exchanger, and this chromatographic step purifies the inhibitor by 143-fold. Both the thermolabile nature and the behavior of the inhibitory activity during the different steps of the purification procedure suggest that this activity is most probably due to a protein. Although the addition of initiation factor 2 reverses the inhibition of protein synthesis in the presence of ATP and Mg2+, the inhibitor does not phosphorylate any of the initiation factor subunits "in vitro," which indicates that it does not contain any intrinsic protein kinase activity. However, its presence in both a crude and a purified preparation of a kinase of the alpha subunit of a brain eukaryotic initiation factor increases the phosphorylation of the alpha subunit of the initiation factor. The mechanism of action of this inhibitor is discussed.
Collapse
Affiliation(s)
- A Alcázar
- Departamento Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Madamanchi NR, Hausladen A, Alscher RG, Amundson RG, Fellows S. Seasonal changes in antioxidants in red spruce (Picea rubens Sarg.) from three field sites in the northeastern United States. THE NEW PHYTOLOGIST 1991; 118:331-338. [PMID: 33874180 DOI: 10.1111/j.1469-8137.1991.tb00985.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Changes in antioxidant levels were investigated in red spruce (Picea rubens Sarg.) from three field sites in the northeastern United States. Whiteface Mountain, NY at an elevation of 1090 m, represents a red spruce population in decline, while Millinocket and Howland, Maine are at 518 and 105 m above sea level, respectively, and have red spruce stands that show no symptoms of decline. The Millinocket site with saplings that are 15-20 yr old was compared with the Howland site with 60-yr-old trees to test the effect of age on antioxidant levels. The Howland site was compared with the Whiteface Mountain site, which has trees more than 100 yr old, to test the effects of air quality and elevation. Foliage developed in 1987 (87 needles) and in 1988 (88 needles) was sampled from May to November and from July to November, 1988, respectively. Quadratic polynomial and linear regressions were used to model the relationships through time of each variable measured. Regression coefficients were obtained by one-way analysis of variance. The means for total glutathione and oxidized glutathione were higher at Whiteface Mountain in 87 needles, and needles of both age classes sampled in November had significantly higher oxidized glutathione at Whiteface Mountain compared to those at Howland. No significant difference was observed in the mean ascorbate content of either needle class at all the three sites. The activity of superoxide dismutase declined with time in 87 needles at Whiteface Mountain and the mean activity was lower at Whiteface Mountain than at Howland. The effects of ozone concentration, site elevation and other environmental factors on seasonal changes in antioxidant levels and superoxide dismutase activity are discussed.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - A Hausladen
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Ruth G Alscher
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - R G Amundson
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - S Fellows
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| |
Collapse
|
23
|
Hausladen A, Madamanchi NR, Fellows S, Alscher RG, Amundson RG. Seasonal changes in antioxidants in red spruce as affected by ozone. THE NEW PHYTOLOGIST 1990; 115:447-458. [PMID: 33874275 DOI: 10.1111/j.1469-8137.1990.tb00470.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-year-old red spruce (Picea rubens Sarg.) seedlings were exposed to various levels of ozone, from 0.4 to 3 times ambient levels, in open-top chambers in Ithaca, NY, USA. Exposures, which varied with changes in day length, were from 30 May to 16 December 1987 and 1 June to 1 December, 1988. During the second exposure period, ascorbic acid, total and oxidized glutathione, α-tocopherol, and superoxide dismutase were measured in current and previous year's needles at monthly intervals from May to July, and at bi-weekly intervals from September to December. Orthogonalized polynomials were used to model the response through time of each variable measured. A one-way analysis of variance model was fitted to every regression coefficient in each polynomial model to test for ozone effects on seasonal patterns of antioxidant levels. Ozone influenced seasonal changes in total glutathione, the oxidized/total glutathione ratio, and α-tocopherol in previous years's needles and α-tocopherol and superoxide dismutase in current year's needles. Averaged over the whole growing season, the oxidized/total glutathione ratio and superoxide dismutase showed an ozone treatment effect in both age classes. Mean total glutathione content increased in previous year's needles, but was not influenced by ozone in current year's needles. Mean oxidized glutathione content was higher with ozone exposure in current year's needles, but not in previous year's needles. The role of antioxidants in cold hardiness and ozone detoxification is discussed.
Collapse
Affiliation(s)
- A Hausladen
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - N R Madamanchi
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - S Fellows
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - R G Alscher
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - R G Amundson
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| |
Collapse
|