1
|
Ali S, Rivera M, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. Serum-free lentiviral vector production is compatible with medium-resident nuclease activity arising from adherent HEK293T host cells engineered with a nuclease-encoding transgene. Heliyon 2023; 9:e17067. [PMID: 37484388 PMCID: PMC10361239 DOI: 10.1016/j.heliyon.2023.e17067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05 × 105 TU/mL (±3.34 × 104 TU/mL). Sufficient nuclease activity was present in 10 μL of this unconcentrated lentivirus material to degrade 1.5 μg DNA within 2 h at 37 °C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.
Collapse
|
2
|
Waghela IN, Mallory KL, Taylor JA, Schneider CG, Savransky T, Janse CJ, Lin PJC, Tam YK, Weissman D, Angov E. Exploring in vitro expression and immune potency in mice using mRNA encoding the Plasmodium falciparum malaria antigen, CelTOS. Front Immunol 2022; 13:1026052. [PMID: 36591298 PMCID: PMC9798330 DOI: 10.3389/fimmu.2022.1026052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
The secreted malarial protein, Cell-Traversal protein for Ookinetes and Sporozoites (CelTOS), is highly conserved among Plasmodium species, and plays a role in the invasion of mosquito midgut cells and hepatocytes in the vertebrate host. CelTOS was identified as a potential protective antigen based on a proteomic analysis, which showed that CelTOS stimulated significant effector T cells producing IFN-γ in peripheral blood mononuclear cells (PBMCs) from radiation attenuated sporozoite-immunized, malaria-naïve human subjects. In a rodent malaria model, recombinant full-length CelTOS protein/adjuvant combinations induced sterile protection, and in several studies, functional antibodies were produced that had hepatocyte invasion inhibition and transmission-blocking activities. Despite some encouraging results, vaccine approaches using CelTOS will require improvement before it can be considered as an effective vaccine candidate. Here, we report on the use of mRNA vaccine technology to induce humoral and cell-mediated immune responses using this antigen. Several pfceltos encoding mRNA transcripts were assessed for the impact on protein translation levels in vitro. Protein coding sequences included those to evaluate the effects of signal sequence, N-glycosylation on translation, and of nucleoside substitutions. Using in vitro transfection experiments as a pre-screen, we assessed the quality of the expressed CelTOS target relative to the homogeneity, cellular localization, and durability of expression levels. Optimized mRNA transcripts, which demonstrated highest protein expression levels in vitro were selected for encapsulation in lipid nanoparticles (LNP) and used to immunize mice to assess for both humoral and cellular cytokine responses. Our findings indicate that mRNA transcripts encoding pfceltos while potent for inducing antigen-specific cellular cytokine responses in mice, were less able to mount PfCelTOS-specific antibody responses using a two-dose regimen. An additional booster dose was needed to overcome low seroconversion rates in mice. With respect to antibody fine specificities, N-glycosylation site mutated immunogens yielded lower immune responses, particularly to the N-terminus of the molecule. While it remains unclear the impact on CelTOS antigen as immunogen, this study highlights the need to optimize antigen design for vaccine development.
Collapse
Affiliation(s)
- Ishita N. Waghela
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Parsons Corporation, Centreville, VA, United States
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,The Geneva Foundation, Tacoma, WA, United States
| | - Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Tatyana Savransky
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,General Dynamics Information Technology, Falls Church, VA, United States
| | - Chris J. Janse
- Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ying K. Tam
- Acuitas Therapeutics Inc., Vancouver, BC, Canada
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States,*Correspondence: Evelina Angov,
| |
Collapse
|
3
|
Effect of prepropeptide replacement on γ-carboxylation and activity of recombinant coagulation factor IX. Biotechnol Lett 2022; 44:975-984. [PMID: 35731352 DOI: 10.1007/s10529-022-03269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Based on observations indicating that the γ-carboxylase enzyme has a lower affinity for the protein C (PC) propeptide and that the γ-carboxylase region in the PC propeptide has a higher net charge, expression of recombinant chimeric factor IX (FIX) equipped with the PC propeptide was studied. The prepropeptide of FIX was replaced with that of PC by SOEing PCR and after cloning, recombinant pMT-prepro PC/FIX was transfected into insect Drosophila S2 cells. The expression and activity of expressed FIX were analyzed employing antigen and activity analyses 72 h of post-induction with copper. Higher secretion (1.2 fold) and activity (1.6 fold) levels were observed for chimeric prepro- PC/FIX in relation to wild-type FIX. Furthermore, after barium citrate precipitation, the evaluation of fully γ-carboxylated FIX indicated that more than 51% of the total FIX produced with the PC prepropeptide was fully γ-carboxylated, representing a substantial improvement (twofold) over a system employing the native FIX propeptide in which 25% of the protein is fully γ-carboxylated. The data illustrated that the expression of FIX using the PC propeptide led to much higher fully γ-carboxylated material, which is preferred to FIX constructs tolerating the sequence for the native FIX propeptide expressed in heterologous S2 systems.
Collapse
|
4
|
Upadhyay C, Rao PG, Feyznezhad R. Dual Role of HIV-1 Envelope Signal Peptide in Immune Evasion. Viruses 2022; 14:v14040808. [PMID: 35458538 PMCID: PMC9030904 DOI: 10.3390/v14040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
HIV-1 Env signal peptide (SP) is an important contributor to Env functions. Env is generated from Vpu/Env encoded bicistronic mRNA such that the 5′ end of Env-N-terminus, that encodes for Env-SP overlaps with 3′ end of Vpu. Env SP displays high sequence diversity, which translates into high variability in Vpu sequence. This study aimed to understand the effect of sequence polymorphism in the Vpu-Env overlapping region (VEOR) on the functions of two vital viral proteins: Vpu and Env. We used infectious molecular clone pNL4.3-CMU06 and swapped its SP (or VEOR) with that from other HIV-1 isolates. Swapping VEOR did not affect virus production in the absence of tetherin however, presence of tetherin significantly altered the release of virus progeny. VEOR also altered Vpu’s ability to downregulate CD4 and tetherin. We next tested the effect of these swaps on Env functions. Analyzing the binding of monoclonal antibodies to membrane embedded Env revealed changes in the antigenic landscape of swapped Envs. These swaps affected the oligosaccharide composition of Env-N-glycans as shown by changes in DC-SIGN-mediated virus transmission. Our study suggests that genetic diversity in VEOR plays an important role in the differential pathogenesis and also assist in immune evasion by altering Env epitope exposure.
Collapse
|
5
|
Figueiredo Neto M, Figueiredo ML. Skeletal muscle signal peptide optimization for enhancing propeptide or cytokine secretion. J Theor Biol 2016; 409:11-17. [PMID: 27576355 DOI: 10.1016/j.jtbi.2016.08.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/28/2022]
Abstract
We have utilized hidden Markov models using HMMER software to predict and generate putative strong secretory signal peptide sequences for directing efficient secretion of cytokines from skeletal muscle for therapeutic applications. The results show that this approach can analyze signal sequences of a skeletal muscle secretome dataset and classify them, emitting new sequences that are strong candidate skeletal muscle-enriched signal peptides. The emitted signal peptides also were analyzed for their hydropathy and secondary structure profiles as compared to native signal peptides. The emitted signal peptides had a higher degree of hydropathy and helical composition relative to native sequences, which may suggest that these new sequences may hold promize for promoting enhanced secretion of proteins including cytokines or propeptides from skeletal muscle.
Collapse
Affiliation(s)
- Manoel Figueiredo Neto
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St, West Lafayette, IN 47904, United States
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison St, West Lafayette, IN 47904, United States.
| |
Collapse
|
6
|
Khorshidi S, Zomorodipour A, Behmanesh M, Vatandoost J, Bos MHA. Functional expression of the human coagulation factor IX using heterologous signal peptide and propeptide sequences in mammalian cell line. Biotechnol Lett 2015; 37:1773-81. [PMID: 26105559 DOI: 10.1007/s10529-015-1868-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To study the functions of pre-pro leader peptides of the human and porcine prothrombins on the human FIX (hFIX) expression. RESULTS In silico analysis predicted higher secretion efficiencies for the prothrombins-derived signal peptides, in comparison with the native hFIX signal peptide. Replacements of the hFIX pre-pro sequence with those of the two prothrombins, led to increased levels of transcription of the chimeric transgenes, as compared to the native clone. This was in consistent with the lower minimum free energies, calculated for the recombinant transcripts, based on their secondary structures. Evaluation of secretion efficiency revealed that the highest and lowest FIX secretions belong to signal peptides derived from porcine' prothrombin and hFIX, respectively. Coagulation activities of the FIX expressed from chimeric variants could be increased up to tenfold, relative to the native clone. CONCLUSION The feasibility of a leader-peptide replacement for the improvement of both transcription and post-transcriptional processes is described that can be relevant for production the vitamin-K dependent proteins.
Collapse
Affiliation(s)
- Shohreh Khorshidi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
7
|
Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Aspects Med 2014; 42:3-18. [PMID: 25542748 DOI: 10.1016/j.mam.2014.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
A growing list of insulin gene mutations causing a new form of monogenic diabetes has drawn increasing attention over the past seven years. The mutations have been identified in the untranslated regions of the insulin gene as well as the coding sequence of preproinsulin including within the signal peptide, insulin B-chain, C-peptide, insulin A-chain, and the proteolytic cleavage sites both for signal peptidase and the prohormone convertases. These mutations affect a variety of different steps of insulin biosynthesis in pancreatic beta cells. Importantly, although many of these mutations cause proinsulin misfolding with early onset autosomal dominant diabetes, some of the mutant alleles appear to engage different cellular and molecular mechanisms that underlie beta cell failure and diabetes. In this article, we review the most recent advances in the field and discuss challenges as well as potential strategies to prevent/delay the development and progression of autosomal dominant diabetes caused by INS-gene mutations. It is worth noting that although diabetes caused by INS gene mutations is rare, increasing evidence suggests that defects in the pathway of insulin biosynthesis may also be involved in the progression of more common types of diabetes. Collectively, the (pre)proinsulin mutants provide insightful molecular models to better understand the pathogenesis of all forms of diabetes in which preproinsulin processing defects, proinsulin misfolding, and ER stress are involved.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China; Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| | - Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Jinqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wei Chen
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Huan Guo
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Fabrizio Barbetti
- Department of Experimental Medicine, University of Tor Vergata, Rome and Bambino Gesù Children's Hospital, Rome, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
8
|
Dou D, da Silva DV, Nordholm J, Wang H, Daniels R. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion. Mol Biol Cell 2014; 25:3363-74. [PMID: 25165139 PMCID: PMC4214783 DOI: 10.1091/mbc.e14-04-0874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular hydrophobicity threshold for the inversion of Sec-dependent Nin-Cout (type II) transmembrane domains is dictated by whether their membrane integration occurs cotranslationally or posttranslationally. Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion.
Collapse
Affiliation(s)
- Dan Dou
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Diogo V da Silva
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Johan Nordholm
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Hao Wang
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Robert Daniels
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Nilsson I, Lara P, Hessa T, Johnson AE, von Heijne G, Karamyshev AL. The code for directing proteins for translocation across ER membrane: SRP cotranslationally recognizes specific features of a signal sequence. J Mol Biol 2014; 427:1191-201. [PMID: 24979680 DOI: 10.1016/j.jmb.2014.06.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
The signal recognition particle (SRP) cotranslationally recognizes signal sequences of secretory proteins and targets ribosome-nascent chain complexes to the SRP receptor in the endoplasmic reticulum membrane, initiating translocation of the nascent chain through the Sec61 translocon. Although signal sequences do not have homology, they have similar structural regions: a positively charged N-terminus, a hydrophobic core and a more polar C-terminal region that contains the cleavage site for the signal peptidase. Here, we have used site-specific photocrosslinking to study SRP-signal sequence interactions. A photoreactive probe was incorporated into the middle of wild-type or mutated signal sequences of the secretory protein preprolactin by in vitro translation of mRNAs containing an amber-stop codon in the signal peptide in the presence of the N(ε)-(5-azido-2 nitrobenzoyl)-Lys-tRNA(amb) amber suppressor. A homogeneous population of SRP-ribosome-nascent chain complexes was obtained by the use of truncated mRNAs in translations performed in the presence of purified canine SRP. Quantitative analysis of the photoadducts revealed that charged residues at the N-terminus of the signal sequence or in the early part of the mature protein have only a mild effect on the SRP-signal sequence association. However, deletions of amino acid residues in the hydrophobic portion of the signal sequence severely affect SRP binding. The photocrosslinking data correlate with targeting efficiency and translocation across the membrane. Thus, the hydrophobic core of the signal sequence is primarily responsible for its recognition and binding by SRP, while positive charges fine-tune the SRP-signal sequence affinity and targeting to the translocon.
Collapse
Affiliation(s)
- IngMarie Nilsson
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Patricia Lara
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Tara Hessa
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Arthur E Johnson
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, Box 1031, 171 21 Solna, Sweden
| | - Andrey L Karamyshev
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA.
| |
Collapse
|
10
|
Avadhani NG, Sangar MC, Bansal S, Bajpai P. Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J 2011; 278:4218-29. [PMID: 21929726 DOI: 10.1111/j.1742-4658.2011.08356.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Targeting signals are critical for proteins to find their specific cellular destination. Signals for protein targeting to the endoplasmic reticulum (ER), mitochondria, peroxisome and nucleus are distinct and the mechanisms of protein translocation across these membrane compartments also vary markedly. Recently, however, a number of proteins have been shown to be present in multiple cellular sites such as mitochondria and ER, cytosol and mitochondria, plasma membrane and mitochondria, and peroxisome and mitochondria suggesting the occurrence of multimodal targeting signals in some cases. Cytochrome P450 monooxygenases (CYPs), which play crucial roles in pharmacokinetics and pharmacodynamics of drugs and toxins, are the prototype of bimodally targeted proteins. Several members of family 1, 2 and 3 CYPs have now been reported to be associated with mitochondria and plasma membrane in addition to the ER. This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and ER. The bimodal targeting of these proteins is driven by their N-terminal signals which carry essential elements of both ER targeting and mitochondria targeting signals. These multimodal signals have been termed chimeric signals appropriately to describe their dual targeting property. The cryptic mitochondrial targeting signals of CYP2B1, 2D6, 2E1 require activation by protein kinase A or protein kinase C mediated phosphorylation at sites immediately flanking the targeting signal and/or membrane anchoring regions. The cryptic mitochondria targeting signal of CYP1A1 requires activation by endoproteolytic cleavage by a cytosolic endoprotease, which exposes the mitochondrial signal. This review discusses both mechanisms of bimodal targeting and toxicological consequences of mitochondria targeted CYP proteins.
Collapse
Affiliation(s)
- Narayan G Avadhani
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
11
|
Sangar MC, Bansal S, Avadhani NG. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2010; 6:1231-51. [PMID: 20629582 PMCID: PMC2940958 DOI: 10.1517/17425255.2010.503955] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Microsomal CYPs are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. AREAS COVERED IN THIS REVIEW This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. WHAT THE READERS WILL GAIN A comprehensive review of the literature on drug metabolism in the mitochondrial compartment and their potential for inducing mitochondrial dysfunction. TAKE HOME MESSAGE Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity.
Collapse
Affiliation(s)
- Michelle C Sangar
- University of Pennsylvania, School of Veterinary Medicine, Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
12
|
Abstract
N-terminal signal peptides direct secretory proteins into the ER (endoplasmic reticulum) of eukaryotes or the periplasmic space of prokaryotes. A hydrophobic core (h-region) is important for signal sequence function; however, the mechanism of h-region action is not resolved. To gain new insight into signal sequences, bioinformatic analysis of h-regions from humans, Saccharomyces cerevisiae, Trypanosoma brucei and Escherichia coli was performed. Each species contains a unique set of peptide motifs (h-motifs) characterized by identity components (i.e. sequence of conserved amino acids) joined by spacers. Human h-motifs have four identity components, whereas those from the other species utilize three identity components. Example of h-motifs are human Hs3 {L-x(2)-[AGILPV]-L-x(0,2)-L}, S. cerevisiae Sc1 [L-x(0,2)-S-x(0,3)-A], T. brucei Tb2 {L-x(1,2)-L-[AILV]} and E. coli Ec1 [A-x(0,2)-L-x(0,3)-A]. The physiological relevance of h-motifs was tested with a T. brucei microsomal system for translocation of a VSG (variant surface glycoprotein)-117 signal peptide. Disruption of h-motifs by scrambling of sequences in h-regions produced defective signal peptides, although the hydrophobicity of the peptide was not altered. We conclude that: (i) h-regions harbour h-motifs, and are not random hydrophobic amino acids; (ii) h-regions from different species contain unique sets of h-motifs; and (iii) h-motifs contribute to the biological activity of ER signal peptides. h-Regions are ‘scaffolds’ in which functional h-motifs are embedded. A hypothetical model for h-motif interactions with a Sec61p protein translocon is presented.
Collapse
|
13
|
Holden P, Keene DR, Lunstrum GP, Bächinger HP, Horton WA. Secretion of Cartilage Oligomeric Matrix Protein Is Affected by the Signal Peptide. J Biol Chem 2005; 280:17172-9. [PMID: 15749701 DOI: 10.1074/jbc.m411716200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is a secreted glycoprotein found in the extracellular matrices of skeletal tissues. Mutations associated with two human skeletal dysplasias, pseudoachondroplasia and multiple epiphyseal dysplasia, disturb COMP secretion leading to intracellular accumulation of mutant COMP, especially in chondrocytes. Here we show that the manifestation of this secretory defect is dramatically influenced by the signal peptide that targets COMP for secretion. The comparison of wild type and mutant COMP secretion directed by the COMP or BM40 signal peptide in HEK-293 cells and rat chondrosarcoma cells revealed that the BM40 signal peptide substantially enhances secretion of mutant COMP that accumulates in endoplasmic reticulum-like structures when targeted by its own signal peptide. Additionally, we demonstrate that mutant COMP forms mixed pentamers with wild type COMP. Our findings suggest that the secretory defect in pseudoachondroplasia and multiple epiphyseal dysplasia is not specific for chondrocytes, nor does it require interaction of mutant COMP with other matrix proteins prior to transport from the cell. They also imply a previously unappreciated role for the signal peptide in the regulation of protein secretion beyond targeting to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Holden
- Research Center, Shriners Hospitals for Children, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
14
|
Arnold CE, Parekh RN, Yang W, Wittrup KD. Leader peptide efficiency correlates with signal recognition particle dependence inSaccharomyces cerevisiae. Biotechnol Bioeng 1998. [DOI: 10.1002/(sici)1097-0290(19980805)59:3<286::aid-bit4>3.0.co;2-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Matoba S, Ogrydziak DM. Another factor besides hydrophobicity can affect signal peptide interaction with signal recognition particle. J Biol Chem 1998; 273:18841-7. [PMID: 9668059 DOI: 10.1074/jbc.273.30.18841] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocation of alkaline extracellular protease (AEP) into the endoplasmic reticulum of Yarrowia lipolytica is cotranslational and signal recognition particle (SRP)-dependent, whereas translocation of P17M AEP (proline to methionine at position 17, second amino acid in the pro-region) is posttranslational and SRP-independent. P17M signal peptide mutations that resulted in more rapid SRP-dependent translocation of AEP precursor were isolated. Most of these mutations significantly increased hydrophobicity, but the A12P/P17M mutation did not. The switch from SRP-dependent to SRP-independent translocation without a decrease in hydrophobicity (wild type to P17M) and restoration of SRP-dependent translocation without an increase in hydrophobicity (P17M to A12P/P17M) indicate that some factor(s) in addition to hydrophobicity determines selection of targeting pathway. Models of extended forms of wild type and A12P/P17M signal peptides are kinked, whereas the P17M signal peptide is relatively straight. Possibly the conformation/orientation of signal peptides at the ribosomal surface affects SRP binding and consequently the targeting route to the endoplasmic reticulum. Kinked signal peptides might approach SRP more closely more often. Most likely, these effects were only detectable because of the short length and low average hydrophobicity of the AEP signal peptide.
Collapse
Affiliation(s)
- S Matoba
- Institute of Marine Resources, University of California, Davis, California 95616, USA
| | | |
Collapse
|
16
|
Du C, Yao S, Rojas M, Lin YZ. Conformational and topological requirements of cell-permeable peptide function. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:235-43. [PMID: 9531427 DOI: 10.1111/j.1399-3011.1998.tb01221.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-permeable peptide import recently was developed to deliver synthetic peptides into living cells for studying intracellular protein functions. This import process is mediated by an N-terminal carrier sequence which is the hydrophobic region of a signal peptide. In this study, the conformational consequence of the interaction of cell-permeable peptides with different mimetic membrane environments was investigated by circular dichroism analysis. We showed that cell-permeable peptides adopted alpha-helical structures in sodium dodecyl sulfate (SDS) micelles or aqueous trifluoroethanol (TFE). The potency of these peptides in forming helical structures is higher in an amphiphilic environment (SDS) than in a hydrophobic environment (TFE), suggesting that some hydrophilic molecules associated with the cell membrane may be involved in peptide import. We also studied topological requirements of cell-permeable peptide function. We demonstrated that peptides containing the carrier sequence in their C-termini can also be imported into cells efficiently. This important discovery can avoid repetitious synthesis of the membrane-translocating sequence for peptides with different functional cargoes and is potentially useful for developing a cell-permeable peptide library. Finally, we showed that, when a retro version of the carrier sequence was used, the peptide lost its translocating ability despite retaining a high content of alpha-helical structure in mimetic membrane environments. This suggests that the propensity of peptides to adopt a helical conformation is required but not sufficient for cellular import and that other structural factors such as the side-chain topology of the carrier sequence are also important. Our studies together contribute to the more rational design of useful cell-permeable peptides.
Collapse
Affiliation(s)
- C Du
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | |
Collapse
|
17
|
Yan W, Shen F, Dillon B, Ratnam M. The hydrophobic domains in the carboxyl-terminal signal for GPI modification and in the amino-terminal leader peptide have similar structural requirements. J Mol Biol 1998; 275:25-33. [PMID: 9451436 DOI: 10.1006/jmbi.1997.1447] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteins having a glycosyl-phosphatidylinositol (GPI) membrane anchor are synthesized with a carboxyl-terminal signal that is cleaved in the endoplasmic reticulum prior to GPI modification. The signal is characterized by a moderately hydrophobic domain downstream from the cleavage/modification site. The essential features of this domain were characterized using a truncated version of folate receptor (FR) type beta (FR-beta delta 5) in which its five carboxyl-terminal amino acid residues were deleted without affecting the efficiency of GPI modification. The amino acids at various positions in the hydrophobic domain were systematically altered and the extent of GPI modification of the recombinant proteins was determined by measuring [3H]folic acid binding at the cell surface, by Western blot analysis and from the sensitivity of the proteins to phosphatidylinositol-specific phospholipase C (PI-PLC). The results indicate that a threshold level of hydrophobicity exists at a single position below which the efficiency of GPI modification decreases with increasing hydrophilicity. Further, the hydrophobic domain is characterized by a hydrophobicity profile and not merely a minimum overall hydrophobicity. Thus, a leucine-rich core hydrophobic segment of six to eight amino acid residues is more sensitive to relatively small hydrophilic substitutions compared to its flanking regions and such mutations could be compensated by a hydrophobic substitution elsewhere within this core segment. Such a hydrophobicity profile is characteristic of the amino-terminal leader peptide. When the entire hydrophobic domain of the leader peptide of FR-beta (12 amino acid residues) was substituted with the hydrophobic domain of the GPI signal (13 amino acids), it was possible to obtain expression of FR-beta on the cell surface. In this construct, point mutations in the core hydrophobic segment and in the flanking regions within the substituting peptide produced a similar pattern of effects on the cell surface receptor expression compared to the corresponding mutations in the GPI signal of FR-beta. The results suggest that common principles may govern interactions of the hydrophobic domains of the GPI signal and the leader peptide with the endoplasmic reticulum.
Collapse
Affiliation(s)
- W Yan
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The components responsible for protein translocation across the endoplasmic reticulum membrane have been identified and their functions have been clarified in vitro. The structural features of the signal peptide specify the factors and pathways of membrane translocation. Various chaperones and folding enzymes are involved in the folding and quality control of secretory proteins in the lumen.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
19
|
Affiliation(s)
- N Zheng
- Department of Chemistry, University of Massachusetts at Amherst, 01003, USA
| | | |
Collapse
|
20
|
Scotti PA, Praestegaard M, Chambert R, Petit‐Glatron M. The targeting of bacillus subtilis levansucrase in yeast is correlated to both the hydrophobicity of the signal peptide and the net charge of the N‐terminus mature part. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(199608)12:10<953::aid-yea998>3.0.co;2-#] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Pier A. Scotti
- Institut Jacques Monod, CNRS, Université Paris 7, Laboratoire Génétique et Membranes, Tour 43 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Morten Praestegaard
- Institut Jacques Monod, CNRS, Université Paris 7, Laboratoire Génétique et Membranes, Tour 43 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Régis Chambert
- Institut Jacques Monod, CNRS, Université Paris 7, Laboratoire Génétique et Membranes, Tour 43 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Marie‐françoise Petit‐Glatron
- Institut Jacques Monod, CNRS, Université Paris 7, Laboratoire Génétique et Membranes, Tour 43 2, place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
21
|
Ryan P, Edwards CO. Systematic introduction of proline in a eukaryotic signal sequence suggests asymmetry within the hydrophobic core. J Biol Chem 1995; 270:27876-9. [PMID: 7499261 DOI: 10.1074/jbc.270.46.27876] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The hydrophobic core or h region of both prokaryotic and eukaryotic signal sequences is the predominant structural domain that controls the efficiency of protein translocation across membranes. Characteristically, hydrophobic cores appear to assume alpha-helical conformations, and studies in prokaryotes have indicated that this conformation is necessary for efficient signal sequence function. To address the conformational constraints of a eukaryotic signal sequence, we have introduced a single proline in almost each position of the signal sequence hydrophobic core of glycoprotein C (gC) of the swine herpesvirus, pseudorabies virus. When the resulting mutant virus strains were used to infect cells, we found that substitution of proline at certain positions affected gC translocation greater than its introduction at other sites within the hydrophobic core. The observed positional effects did not completely correlate with reductions in overall hydrophobicity or linear position within the hydrophobic core. Rather, it appeared that one face of the gC signal sequence alpha-helix is far more sensitive to proline disruption than the other, potentially indicating a functional asymmetry.
Collapse
Affiliation(s)
- P Ryan
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
22
|
Schneider G, Schuchhardt J, Wrede P. Development of simple fitness landscapes for peptides by artificial neural filter systems. BIOLOGICAL CYBERNETICS 1995; 73:245-254. [PMID: 7548312 DOI: 10.1007/bf00201426] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The applicability of artificial neural filter systems as fitness functions for sequence-oriented peptide design was evaluated. Two example applications were selected: classification of dipeptides according to their hydrophobicity and classification of proteolytic cleavage-sites of protein precursor sequences according to their mean hydrophobicities and mean side-chain volumes. The cleavage-sites covered 12 residues. In the dipeptide experiments the objective was to separate a selected set of molecules from all other possible dipeptide sequences. Perceptrons, feedforward networks with one hidden layer, and a hybrid network were applied. The filters were trained by a (1, lambda) evolution strategy. Two types of network units employing either a sigmoidal or a unimodal transfer function were used in the feedforward filters, and their influence on classification was investigated. The two-layer hybrid network employed gaussian activation functions. To analyze classification of the different filter systems, their output was plotted in the two-dimensional sequence space. The diagrams were interpreted as fitness landscapes qualifying the markedness of a characteristic peptide feature which can be used as a guide through sequence space for rational peptide design. It is demonstrated that the applicability of neural filter systems as a heuristic method for sequence optimization depends on both the appropriate network architecture and selection of representative sequence data. The networks with unimodal activation functions and the hybrid networks both led to a number of local optima. However, the hybrid networks produced the best prediction results. In contrast, the filters with sigmoidal activation produced good reclassification results leading to fitness landscapes lacking unreasonable local optima. Similar results were obtained for classification of both dipeptides and cleavage-site sequences.
Collapse
Affiliation(s)
- G Schneider
- Freie Universität Berlin, Universitätsklinikum Benjamin Franklin, Institut für Medizinische/Technische Physik und Lasermedizin (WE 19), Germany
| | | | | |
Collapse
|
23
|
|
24
|
Kay RA, Snowden N, Hajeer AH, Boylston AW, Ollier WE. Genetic control of the human V beta 13.2 T cell repertoire: importance of allelic variation outside the coding regions of the TCRBV13S2 gene. Eur J Immunol 1994; 24:2863-7. [PMID: 7957577 DOI: 10.1002/eji.1830241142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In humans, the T cell repertoire is influenced by HLA, T cell receptor null alleles and antigen. Here, we describe a novel mechanism, independent of superantigen or T cell receptor structure which influences the T cell repertoire in a V beta-dependent manner. We have identified a biallelic locus, the TCRBV13S2 T cell receptor gene, where allelic differences predominate in the non-coding regions including transitions, transversions and frameshift deletions. The expressed protein is non-polymorphic at this locus. The TCRBV13S2 genotype profoundly influences the circulating levels of V beta 13.2 CD4 T cells but does not affect T cell receptor expression or function.
Collapse
Affiliation(s)
- R A Kay
- Department of Biological Sciences, University of Manchester
| | | | | | | | | |
Collapse
|
25
|
Rusch SL, Chen H, Izard JW, Kendall DA. Signal peptide hydrophobicity is finely tailored for function. J Cell Biochem 1994; 55:209-17. [PMID: 8089196 DOI: 10.1002/jcb.240550208] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to titrate the dependence of individual steps in protein transport on signal peptide hydrophobicity, we have examined a series of mutants which involve replacement of the hydrophobic core segment of the Escherichia coli alkaline phosphatase signal peptide. The core regions vary in composition from 10:0 to 0:10 in the ratio of alanine to leucine residues. Thus, a nonfunctional polyalanine-containing signal peptide is titrated with the more hydrophobic residue, leucine. Analysis of this series identified a midpoint for rapid precursor processing between alanine to leucine ratios of 6:4 and 5:5 [Doud et al. (1993): Biochemistry 32:1251-1256]. Examination of precursors that are processed more slowly indicates a lower limit of signal peptide hydrophobicity that permits membrane association and translocation. Analysis of precursors that are processed rapidly defines an intermediate range of hydrophobicity that is optimum; above this level precursors become insensitive to transport inhibitors such as sodium azide and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) in parallel with substantial inhibition of beta-lactamase processing. Our data indicate that there is a surprisingly narrow range of signal peptide hydrophobicity which both supports transport of the protein to which it is attached and which does not have such a high affinity for the transport pathway that it disrupts the appropriate balance of other secreted proteins.
Collapse
Affiliation(s)
- S L Rusch
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269
| | | | | | | |
Collapse
|
26
|
Molecular cloning and the COOH-terminal processing of gp64, a putative cell-cell adhesion protein of the cellular slime mold Polysphondylium pallidum. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42381-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Doud SK, Chou MM, Kendall DA. Titration of protein transport activity by incremental changes in signal peptide hydrophobicity. Biochemistry 1993; 32:1251-6. [PMID: 8448135 DOI: 10.1021/bi00056a008] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A systematic series of mutants has been generated which provides a means for titrating the dependence of protein transport activity on signal peptide hydrophobicity. These mutants involve replacement of the hydrophobic core segment of the Escherichia coli alkaline phosphatase signal peptide while maintaining the natural amino- and carboxyl-terminal segments and the overall length. The new core regions vary in composition from 10:0 to 0:10 in the ratio of alanine to leucine residues. Thus, a nonfunctional polyalanine-containing signal peptide is titrated with the more hydrophobic residue, leucine. Using precursor processing to quantify transport activity, we observe a clear, nonlinear dependence on hydrophobicity. At ratios of alanine to leucine of less than or equal to 8:2, the signal peptide is essentially nonfunctional; at ratios greater than or equal to 3:7, the signal peptide functions efficiently. The midpoint is between alanine to leucine ratios of 6:4 and 5:5. Signal peptides with hydrophobicity just below the midpoint show substantial, additional precursor processing over time while the others do not. The data are consistent with a simple model involving a two-state equilibrium between the untransported and transported species and a change in the delta G of -0.85 kcal/mol for every alanine to leucine conversion.
Collapse
Affiliation(s)
- S K Doud
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269
| | | | | |
Collapse
|
28
|
Ryan P, Robbins A, Whealy M, Enquist LW. Overall signal sequence hydrophobicity determines the in vivo translocation efficiency of a herpesvirus glycoprotein. Virus Genes 1993; 7:5-21. [PMID: 8385840 DOI: 10.1007/bf01702345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have described three mutant strains of Pseudorabies virus that contain mutations in the signal sequence coding region of a nonessential envelope glycoprotein, gIII. The alterations disrupt, truncate, or eliminate the hydrophobic core domain of the signal sequence. Each mutant was assayed for its ability to promote the translocation of gIII across the endoplasmic reticulum membrane and the subsequent localization of the mature form of the glycoprotein to the infected cell surface or the virus envelope. Our results confirm and extend findings in other systems that the overall hydrophobicity of the signal sequence core region is a major determinant of translocation efficiency. We were unable to correlate simply the length of the core or the average hydrophobicity of core residues with export efficiency. Because our work involved the use of infectious virus mutants, we were able to identify a virus defect associated with a complete block in gIII export. This defect will facilitate a pseudo-reversion analysis of gIII signal sequence function.
Collapse
Affiliation(s)
- P Ryan
- Department of Microbiology and Immunology, University of Tennessee-Memphis 38163
| | | | | | | |
Collapse
|
29
|
Roy P, Chatellard C, Lemay G, Crine P, Boileau G. Transformation of the signal peptide/membrane anchor domain of a type II transmembrane protein into a cleavable signal peptide. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53830-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
A recombinant form of Pseudomonas exotoxin directed at the epidermal growth factor receptor that is cytotoxic without requiring proteolytic processing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41865-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
|
32
|
McKnight G, Reasoner J, Gilbert T, Sundquist K, Hokland B, McKernan P, Champagne J, Johnson C, Bailey M, Holly R. Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49815-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
|
34
|
McAndrew S, Chen N, Kelder B, Cioffi J, Kopchick J. Effects of a leucine analog on growth hormone processing and secretion by cultured cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Nothwehr SF, Gordon JI. Targeting of proteins into the eukaryotic secretory pathway: signal peptide structure/function relationships. Bioessays 1990; 12:479-84. [PMID: 2082938 DOI: 10.1002/bies.950121005] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Much progress has been made in recent years regarding the mechanisms of targeting of secretory proteins to, and across, the endoplasmic reticulum (ER) membrane. Many of the cellular components involved in mediating translocation across this bilayer have been identified and characterized. Polypeptide domains of secretory proteins, termed signal peptides, have been shown to be necessary, and in most cases sufficient, for entry of preproteins into the lumen of the ER. These NH2-terminal segments appear to serve multiple roles in targeting and translocation. The structural features which mediate their multiple functions are currently the subject of intense study.
Collapse
Affiliation(s)
- S F Nothwehr
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110
| | | |
Collapse
|