1
|
Kim YK, Kim S, Shin YJ, Hur YS, Kim WY, Lee MS, Cheon CI, Verma DPS. Ribosomal protein S6, a target of rapamycin, is involved in the regulation of rRNA genes by possible epigenetic changes in Arabidopsis. J Biol Chem 2014; 289:3901-12. [PMID: 24302738 PMCID: PMC3924259 DOI: 10.1074/jbc.m113.515015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/14/2013] [Indexed: 12/24/2022] Open
Abstract
The target of rapamycin (TOR) kinase pathway regulates various biological processes, including translation, synthesis of ribosomal proteins, and transcription of rRNA. The ribosomal protein S6 (RPS6) is one of the well known downstream components of the TOR pathway. Ribosomal proteins have been known to have diverse functions in regulating cellular metabolism as well as protein synthesis. So far, however, little is known about other possible role(s) of RPS6 in plants, besides being a component of the 40 S ribosomal subunit and acting as a target of TOR. Here, we report that RPS6 may have a novel function via interaction with histone deacetylase 2B (AtHD2B) that belongs to the plant-specific histone deacetylase HD2 family. RPS6 and AtHD2B were localized to the nucleolus. Co-expression of RPS6 and AtHD2B caused a change in the location of both RPS6 and AtHD2B to one or several nucleolar spots. ChIP analysis suggests that RPS6 directly interacts with the rRNA gene promoter. Protoplasts overexpressing both AtHD2B and RPS6 exhibited down-regulation of pre-18 S rRNA synthesis with a concomitant decrease in transcription of some of the ribosomal proteins, suggesting their direct role in ribosome biogenesis and plant development. This is consistent with the mutation in rps6b that results in reduction in 18 S rRNA transcription and decreased root growth. We propose that the interaction between RPS6 and AtHD2B brings about a change in the chromatin structure of rDNA and thus plays an important role in linking TOR signaling to rDNA transcription and ribosome biogenesis in plants.
Collapse
MESH Headings
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Nucleolus/genetics
- Cell Nucleolus/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epigenesis, Genetic/physiology
- Genes, Plant/physiology
- Genes, rRNA/physiology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic/physiology
- Protoplasts/cytology
- Protoplasts/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
| | - Sunghan Kim
- the Department of Plant Science, Seoul National University, Seoul 151-742, Korea, and
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | | | | | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | - Desh Pal S. Verma
- the Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
2
|
Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, Xiang D, Wang J, Alexander D, Chalivendra S, Logan D, Mattoo A, Selvaraj G, Datla R. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. THE PLANT CELL 2012; 24:4850-74. [PMID: 23275579 PMCID: PMC3556962 DOI: 10.1105/tpc.112.107144] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Target of Rapamycin (TOR) is a major nutrition and energy sensor that regulates growth and life span in yeast and animals. In plants, growth and life span are intertwined not only with nutrient acquisition from the soil and nutrition generation via photosynthesis but also with their unique modes of development and differentiation. How TOR functions in these processes has not yet been determined. To gain further insights, rapamycin-sensitive transgenic Arabidopsis thaliana lines (BP12) expressing yeast FK506 Binding Protein12 were developed. Inhibition of TOR in BP12 plants by rapamycin resulted in slower overall root, leaf, and shoot growth and development leading to poor nutrient uptake and light energy utilization. Experimental limitation of nutrient availability and light energy supply in wild-type Arabidopsis produced phenotypes observed with TOR knockdown plants, indicating a link between TOR signaling and nutrition/light energy status. Genetic and physiological studies together with RNA sequencing and metabolite analysis of TOR-suppressed lines revealed that TOR regulates development and life span in Arabidopsis by restructuring cell growth, carbon and nitrogen metabolism, gene expression, and rRNA and protein synthesis. Gain- and loss-of-function Ribosomal Protein S6 (RPS6) mutants additionally show that TOR function involves RPS6-mediated nutrition and light-dependent growth and life span in Arabidopsis.
Collapse
Affiliation(s)
- Maozhi Ren
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Prakash Venglat
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Shuqing Qiu
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Li Feng
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yongguo Cao
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Edwin Wang
- Computational Chemistry and Bioinformatics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | - Daoquan Xiang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Jinghe Wang
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | | | | | - David Logan
- Université d’Angers, Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, LUNAM Université, Angers cedex 1, France
| | - Autar Mattoo
- Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture–Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, Maryland 20705-2350
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
- Address correspondence to
| |
Collapse
|
3
|
Hartmann B. p70S6 kinase phosphorylation for pharmacodynamic monitoring. Clin Chim Acta 2012; 413:1387-90. [PMID: 22531277 DOI: 10.1016/j.cca.2012.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022]
Abstract
Inhibitors of the mammalian target of rapamycin (mTOR) are administered as immunosuppressant as well as antineoplastic agents. Because of the narrow therapeutic index of mTOR inhibitors, drug monitoring is required, and this is usually done by measuring blood drug levels. Increasing knowledge of the signaling pathways of the mTOR protein kinase provides an opportunity for pharmacodynamic drug monitoring. With the different laboratory methods it is becoming possible to measure new biomarkers to control the influence of mTOR activity. One of these biomarkers is phospho-S6 kinase, with its isoform p70S6K.
Collapse
Affiliation(s)
- B Hartmann
- Zentrum für Innere Medizin, Klinik für Innere Medizin I, Sektion Nephrologie, Ulm, Germany.
| |
Collapse
|
4
|
Ribosomal protein S6 interacts with the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 2011; 85:9495-505. [PMID: 21734034 DOI: 10.1128/jvi.02620-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) is central to the maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) and to the survival of KSHV-carrying tumor cells. In an effort to identify interaction partners of LANA, we purified authentic high-molecular-weight complexes of LANA by conventional chromatography followed by immunoprecipitation from the BC-3 cell line. This is the first analysis of LANA-interacting partners that is not based on forced ectopic expression of LANA. Subsequent tandem mass spectrometry (MS/MS) analysis identified many of the known LANA-interacting proteins. We confirmed LANA's interactions with histones. Three classes of proteins survived our stringent four-step purification procedure (size, heparin, anion, and immunoaffinity chromatography): two heat shock proteins (Hsp70 and Hsp96 precursor), signal recognition particle 72 (SRP72), and 10 different ribosomal proteins. These proteins are likely involved in structural interactions within LANA high-molecular-weight complexes. Here, we show that ribosomal protein S6 (RPS6) interacts with LANA. This interaction is mediated by the N-terminal domain of LANA and does not require DNA or RNA. Depletion of RPS6 from primary effusion lymphoma (PEL) cells dramatically decreases the half-life of full-length LANA. The fact that RPS6 has a well-established nuclear function beyond its role in ribosome assembly suggests that RPS6 (and by extension other ribosomal proteins) contributes to the extraordinary stability of LANA.
Collapse
|
5
|
Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5' terminal oligopyrimidine tract. Oncogene 2010; 30:1531-41. [PMID: 21102526 DOI: 10.1038/onc.2010.533] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular mechanism(s) linking tumorigenesis and morphological alterations in the nucleolus are presently coming into focus. The nucleolus is the cellular organelle in which the formation of ribosomal subunits occurs. Ribosomal biogenesis occurs through the transcription of ribosomal RNA (rRNA), rRNA processing and production of ribosomal proteins. An error in any of these processes may lead to deregulated cellular translation, evident in multiple cancers and 'ribosomopathies'. Deregulated protein synthesis may be achieved through the overexpression of ribosomal proteins as seen in primary leukemic blasts with elevated levels of ribosomal proteins S11 and S14. In this study, we demonstrate that ribosomal protein S6 (RPS6) is highly expressed in primary diffuse large B-cell lymphoma (DLBCL) samples. Genetic modulation of RPS6 protein levels with specifically targeted short hairpin RNA (shRNA) lentiviruses led to a decrease in the actively proliferating population of cells compared with control shRNA. Low-dose rapamycin treatments have been shown to affect the translation of 5' terminal oligopyrimidine (5' TOP) tract mRNA, which encodes the translational machinery, implicating RPS6 in 5' TOP translation. Recently, it was shown that disruption of 40S ribosomal biogenesis through specific small inhibitory RNA knockdown of RPS6 defined RPS6 as a critical regulator of 5' TOP translation. For the first time, we show that RPS6 associates with multiple mRNAs containing a 5' TOP tract. These findings expand our understanding of the mechanism(s) involved in ribosomal biogenesis and deregulated protein synthesis in DLBCL.
Collapse
|
6
|
Targeting the translational machinery as a novel treatment strategy for hematologic malignancies. Blood 2010; 115:2127-35. [PMID: 20075156 DOI: 10.1182/blood-2009-09-220020] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The dysregulation of protein synthesis evident in the transformed phenotype has opened up a burgeoning field of research in cancer biology. Translation initiation has recently been shown to be a common downstream target of signal transduction pathways deregulated in cancer and initiated by mutated/overexpressed oncogenes and tumor suppressors. The overexpression and/or activation of proteins involved in translation initiation such as eIF4E, mTOR, and eIF4G have been shown to induce a malignant phenotype. Therefore, understanding the mechanisms that control protein synthesis is emerging as an exciting new research area with significant potential for developing innovative therapies. This review highlights molecules that are activated or dysregulated in hematologic malignancies, and promotes the transformed phenotype through the deregulation of protein synthesis. Targeting these proteins with small molecule inhibitors may constitute a novel therapeutic approach in the treatment of cancer.
Collapse
|
7
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Jeon YJ, Kim IK, Hong SH, Nan H, Kim HJ, Lee HJ, Masuda ES, Meyuhas O, Oh BH, Jung YK. Ribosomal protein S6 is a selective mediator of TRAIL-apoptotic signaling. Oncogene 2008; 27:4344-52. [DOI: 10.1038/onc.2008.73] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Meyuhas O. Physiological roles of ribosomal protein S6: one of its kind. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:1-37. [PMID: 18703402 DOI: 10.1016/s1937-6448(08)00801-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The phosphorylation of ribosomal protein S6 (rpS6), which occurs in response to a wide variety of stimuli on five evolutionarily conserved serine residues, has attracted much attention since its discovery more than three decades ago. However, despite a large body of information on the respective kinases and the signal transduction pathways, the role of this phosphorylation remained obscure. It is only recent that targeting the genes encoding rpS6, the phosphorylatable serine residues or the respective kinases that the unique role of rpS6 and its posttranslational modification have started to be elucidated. This review focuses primarily on the critical role of rpS6 for mouse development, the pathways that transduce various signals into rpS6 phosphorylation, and the physiological functions of this modification. The mechanism(s) underlying the diverse effects of rpS6 phosphorylation on cellular and organismal physiology has yet to be determined. However, a model emerging from the currently available data suggests that rpS6 phosphorylation operates, at least partly, by counteracting positive signals simultaneously induced by rpS6 kinase, and thus might be involved in fine-tuning of the cellular response to these signals.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Carroll AJ, Heazlewood JL, Ito J, Millar AH. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification. Mol Cell Proteomics 2007; 7:347-69. [PMID: 17934214 DOI: 10.1074/mcp.m700052-mcp200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Finding gene-specific peptides by mass spectrometry analysis to pinpoint gene loci responsible for particular protein products is a major challenge in proteomics especially in highly conserved gene families in higher eukaryotes. We used a combination of in silico approaches coupled to mass spectrometry analysis to advance the proteomics insight into Arabidopsis cytosolic ribosomal composition and its post-translational modifications. In silico digestion of all 409 ribosomal protein sequences in Arabidopsis defined the proportion of theoretical gene-specific peptides for each gene family and highlighted the need for low m/z cutoffs of MS ion selection for MS/MS to characterize low molecular weight, highly basic ribosomal proteins. We undertook an extensive MS/MS survey of the cytosolic ribosome using trypsin and, when required, chymotrypsin and pepsin. We then used custom software to extract and filter peptide match information from Mascot result files and implement high confidence criteria for calling gene-specific identifications based on the highest quality unambiguous spectra matching exclusively to certain in silico predicted gene- or gene family-specific peptides. This provided an in-depth analysis of the protein composition based on 1446 high quality MS/MS spectra matching to 795 peptide sequences from ribosomal proteins. These identified peptides from five gene families of ribosomal proteins not identified previously, providing experimental data on 79 of the 80 different types of ribosomal subunits. We provide strong evidence for gene-specific identification of 87 different ribosomal proteins from these 79 families. We also provide new information on 30 specific sites of co- and post-translational modification of ribosomal proteins in Arabidopsis by initiator methionine removal, N-terminal acetylation, N-terminal methylation, lysine N-methylation, and phosphorylation. These site-specific modification data provide a wealth of resources for further assessment of the role of ribosome modification in influencing translation in Arabidopsis.
Collapse
Affiliation(s)
- Adam J Carroll
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology and School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, M316, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
11
|
Montgomery SA, Berglund P, Beard CW, Johnston RE. Ribosomal protein S6 associates with alphavirus nonstructural protein 2 and mediates expression from alphavirus messages. J Virol 2006; 80:7729-39. [PMID: 16840351 PMCID: PMC1563697 DOI: 10.1128/jvi.00425-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although alphaviruses dramatically alter cellular function within hours of infection, interactions between alphaviruses and specific host cellular proteins are poorly understood. Although the alphavirus nonstructural protein 2 (nsP2) is an essential component of the viral replication complex, it also has critical auxiliary functions that determine the outcome of infection in the host. To gain a better understanding of nsP2 function, we sought to identify cellular proteins with which Venezuelan equine encephalitis virus nsP2 interacted. We demonstrate here that nsP2 associates with ribosomal protein S6 (RpS6) and that nsP2 is present in the ribosome-containing fractions of a polysome gradient, suggesting that nsP2 associates with RpS6 in the context of the whole ribosome. This result was noteworthy, since viral replicase proteins have seldom been described in direct association with components of the ribosome. The association of RpS6 with nsP2 was detected throughout the course of infection, and neither the synthesis of the viral structural proteins nor the presence of the other nonstructural proteins was required for RpS6 interaction with nsP2. nsP1 also was associated with RpS6, but other nonstructural proteins were not. RpS6 phosphorylation was dramatically diminished within hours after infection with alphaviruses. Furthermore, a reduction in the level of RpS6 protein expression led to diminished expression from alphavirus subgenomic messages, whereas no dramatic diminution in cellular translation was observed. Taken together, these data suggest that alphaviruses alter the ribosome during infection and that this alteration may contribute to differential translation of host and viral messages.
Collapse
Affiliation(s)
- Stephanie A Montgomery
- Department of Microbiology and Immunology, CB 7292, Mary Ellen Jones Bldg., University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
12
|
Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006; 31:342-8. [PMID: 16679021 DOI: 10.1016/j.tibs.2006.04.003] [Citation(s) in RCA: 601] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/14/2006] [Accepted: 04/21/2006] [Indexed: 11/20/2022]
Abstract
Recent studies are beginning to disclose a signaling network involved in regulating cell size. Although many links and effectors are still unknown, central components of this network include the mammalian target of rapamycin (mTOR) and its downstream effectors - the ribosomal protein S6 kinase (S6K) and the translational repressor eukaryotic initiation factor 4E-binding protein. Until recently, the role of S6K and its many substrates in cell-size control remained obscure; however, a knockin mouse carrying mutations at all phosphorylation sites in the primary S6K substrate, ribosomal protein S6 (rpS6), has provided insight into the physiological role of this protein phosphorylation event. In addition to its role in glucose homeostasis in the whole mouse, phosphorylation of rpS6 is essential for regulating the size of at least some cell types, but is dispensable for translational control of mRNAs with a 5' terminal oligopyrimidine tract (TOP mRNAs) - its previously assigned targets. It therefore seems that establishing the function of the phosphorylation of other effectors of mTOR or S6K will inevitably require genetic manipulation of the respective sites within these targets.
Collapse
Affiliation(s)
- Igor Ruvinsky
- Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
13
|
Pian JP, Huang TL, Tsai PC, Shi JP, Cu H, Pan BT. A 32 kDa protein?whose phosphorylation correlates with oncogenic Ras-induced cell cycle arrest in activatedXenopus egg extracts?is identified as ribosomal protein S6. J Cell Physiol 2004; 201:305-19. [PMID: 15334665 DOI: 10.1002/jcp.20069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oncogenic Ras induces cell-cycle arrest in mammalian cells and in fertilized Xenopus eggs. How oncogenic Ras induces cell-cycle arrest remains unclear. We previously showed that oncogenic Ras induces cell-cycle arrest in activated Xenopus egg extracts (cycling extracts) and that the induced cell-cycle arrest correlates with hyperphosphorylation of a 32 kDa protein. However, the identity of the 32 kDa protein was not known. By using a sucrose density-gradient centrifugation, Triton X-100-acetic acid-urea (TAU)-gel electrophoresis, composite agarose-polyacrylamide gel electrophoresis (CAPAGE), SDS-PAGE, and partial tryptic peptide sequence analysis, the 32 kDa protein has now been identified as S6, a 40S subunit ribosomal protein. Hence, our results indicate that the oncogenic Ras-induced cell-cycle arrest is correlated with hyperphosphorylation of S6, suggesting that phosphorylation of S6 plays an important role in the induced cell-cycle arrest. It has been shown that conditional deletion of gene encoding S6 in mammalian cells prevents proliferation, demonstrating the importance of S6 in cell proliferation. The exact role S6 plays in cell proliferation is unclear. However, phosphorylation of S6 has been implicated in the regulation of protein synthesis. Thus, our results are consistent with the concept that oncogenic Ras induces S6 phosphorylation to influence protein synthesis, thereby contributing to the cell-cycle arrest. In addition, our results also demonstrate that composite agarose-polyacrylamide gel electrophoresis is suitable for the separation of large molecular complexes.
Collapse
Affiliation(s)
- Jerry Pinghwa Pian
- Graduate Center for Nutritional Sciences, University of Kentucky Medical Center, 800 Rose Street, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
14
|
Avruch J, Belham C, Weng Q, Hara K, Yonezawa K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:115-54. [PMID: 11575164 DOI: 10.1007/978-3-642-56688-2_5] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J Avruch
- Diabetes Unit and Medical Services, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
15
|
Zhang Y, Dong Z, Nomura M, Zhong S, Chen N, Bode AM, Dong Z. Signal transduction pathways involved in phosphorylation and activation of p70S6K following exposure to UVA irradiation. J Biol Chem 2001; 276:20913-23. [PMID: 11279232 DOI: 10.1074/jbc.m009047200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet light A (UVA) plays an important role in the etiology of human skin cancer, and UVA-induced signal transduction has a critical role in UVA-induced skin carcinogenesis. The upstream signaling pathways leading to p70(S6K) phosphorylation and activation are not well understood. Here, we observed that UVA induces phosphorylation and activation of p70(S6K). Further, UVA-stimulated p70(S6K) activity and phosphorylation at Thr(389) were blocked by wortmannin, rapamycin, PD98059, SB202190, and dominant negative mutants of phosphatidylinositol (PI) 3-kinase p85 subunit (DNM-Deltap85), ERK2 (DNM-ERK2), p38 kinase (DNM-p38), and JNK1 (DNM-JNK1) and were absent in Jnk1-/- or Jnk2-/- knockout cells. The p70(S6K) phosphorylation at Ser(411) and Thr(421)/Ser(424) was inhibited by rapamycin, PD98059, or DNM-ERK2 but not by wortmannin, SB202190, DNM-Deltap85, or DNM-p38. However, Ser(411), but not Thr(421)/Ser(424) phosphorylation, was suppressed in DNM-JNK1 and abrogated in Jnk1-/- or Jnk2-/- cells. In vitro assays indicated that Ser(411) on immunoprecipitated p70(S6K) proteins is phosphorylated by active JNKs and ERKs, but not p38 kinase, and Thr(421)/Ser(424) is phosphorylated by ERK1, but not ERK2, JNKs, or p38 kinase. Moreover, p70(S6K) co-immunoprecipitated with PI 3-kinase and possibly PDK1. The complex possibly possessed a partial basal level of phosphorylation, but not at MAPK sites, which was available for its activation by MAPKs in vitro. Thus, these results suggest that activation of MAPKs, like PI 3-kinase/mTOR, may be involved in UVA-induced phosphorylation and activation of p70(S6K).
Collapse
Affiliation(s)
- Y Zhang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Volarević S, Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:101-27. [PMID: 11008486 DOI: 10.1016/s0079-6603(00)65003-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article reviews our current knowledge of the role of ribosomal protein S6 phosphorylation and the S6 kinase (S6K) signaling pathway in the regulation of cell growth and proliferation. Although 40S ribosomal protein S6 phosphorylation was first described 25 years ago, it only recently has been implicated in the translational up-regulation of mRNAs coding for the components of protein synthetic apparatus. These mRNAs contain an oligopyrimidine tract at their 5' transcriptional start site, termed a 5'TOP, which has been shown to be essential for their regulation at the translational level. In parallel, a great deal of information has accumulated concerning the identification of the signaling pathway and the regulatory phosphorylation sites involved in controlling S6K activation. Despite this knowledge we are only beginning to identify the direct upstream elements involved in growth factor-induced kinase activation. Use of the immunosupressant rapamycin, a bacterial macrolide, in conjunction with dominant interfering and activated forms of S6K1 has helped to establish the role of this signaling cascade in the regulation of growth and proliferation. In addition, current studies employing the mouse as well as Drosophila melanogaster have provided new insights into physiological function of S6K in the animal. Deletion of the S6K1 gene in mouse cells led to an animal of reduced size and the identification of the S6K1 homolog, S6K2, whereas loss of dS6K function in Drosophila demonstrated its paramount importance in development and growth control.
Collapse
Affiliation(s)
- S Volarević
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
17
|
Seidel B, Jiang1 L, Wolf G. Differentially displayed genes in neuroblastoma cells treated with a mitochondrial toxin: evidence for possible involvement of ICAM-1 in 3-nitropropionic acid-mediated neurodegeneration. Toxicol Lett 2000; 115:213-22. [PMID: 10814891 DOI: 10.1016/s0378-4274(00)00194-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mitochondrial toxin 3-nitropropionic acid (3-NPA) causes neurodegeneration in the basal ganglia and neurological symptoms resembling Huntington's disease (HD) when applied to primates or rodents, and therefore might be used as an animal model for this disorder. For that reason, the molecular mechanisms involved in 3-NPA-induced neurodegeneration are of considerable interest. In our model, murine neuroblastoma cells (Neuro-2a) were treated with different doses of 3-NPA, and changes in gene expression were analyzed by means of mRNA differential display (DDRT-PCR). Using 18 primer combinations, we have identified a set of 33 candidate cDNAs deriving from 29 excised DDRT bands whose expression appeared to be changed in response to the 3-NPA insult (mostly elevated). DNA sequencing revealed that novel, as well as previously described genes, are included in this panel. Amongst the known cDNAs, the differential mRNA expression of the ribosomal proteins S6 and L40, of the protein kinase A (PKA) catalytic beta subunit and of the intercellular adhesion molecule ICAM-1 could be verified using Northern hybridization and RT-PCR, respectively. Furthermore, ICAM-1 expression could also be shown to increase at the protein level, which points to a possible function for this molecule in neuronal cells in the course of neurodegeneration. The results may prove useful in elucidating the multiple processes causing neurodegeneration subsequent to lesions by mitochondrial toxins and excitotoxins as well.
Collapse
Affiliation(s)
- B Seidel
- Institute of Medical Neurobiology at the University of Magdeburg 'Otto von Guericke', Medical School, Magdeburg, Germany.
| | | | | |
Collapse
|
18
|
Abstract
The highly homologous 40S ribosomal protein S6 kinases (S6K1 and S6K2) play a key role in the regulation of cell growth by controlling the biosynthesis of translational components which make up the protein synthetic apparatus, most notably ribosomal proteins. In the case of S6K1, at least eight phosphorylation sites are believed to mediate kinase activation in a hierarchical fashion. Activation is initiated by phosphatidylinositide-3OH kinase (PI3K)-mediated phosphorylation of key residues in the carboxy-terminus of the kinase, allowing phosphorylation of a critical residue residing in the activation loop of the catalytic domain by phosphoinositide-dependent kinase 1 (PDK1). The kinases responsible for phosphorylating the carboxy-terminal sites have yet to be identified. Additionally, S6 kinases are under the control of the PI3K relative, mammalian Target Of Rapamycin (mTOR), which may serve an additional function as a checkpoint for amino acid availability. In this review we set out to discuss the present state of knowledge regarding upstream signaling components which have been implicated in the control of S6K1 activation and the role of the kinase in controlling cell growth through regulating ribosome biogenesis at the translational level.
Collapse
Affiliation(s)
- A Dufner
- Friedrich Miescher Institute, Maulbeerstrasse 66, Basel, CH-4058, Switzerland
| | | |
Collapse
|
19
|
Dennis PB, Pullen N, Pearson RB, Kozma SC, Thomas G. Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J Biol Chem 1998; 273:14845-52. [PMID: 9614086 DOI: 10.1074/jbc.273.24.14845] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we have employed p70(s6k) truncation and point mutants to elucidate the role played by the carboxyl-terminal autoinhibitory domain S/TP phosphorylation sites in kinase activation. Earlier studies showed that truncation of the p70(s6k) amino terminus severely impaired kinase activation but that this effect was reversed by deleting the carboxyl terminus, which in parallel led to deregulation of Thr229 phosphorylation in the activation loop (Dennis, P. B., Pullen, N., Kozma, S. C., and Thomas, G. (1996) Mol. Cell. Biol. 16, 6242-6251). In this study, substitution of acidic residues for the four autoinhibitory domain S/TP sites mimics the carboxyl-terminal deletion largely by rescuing kinase activation caused by the amino-terminal truncation. However, these mutations do not deregulate Thr229 phosphorylation, suggesting the involvement of another regulatory element in the intact kinase. This element appears to be Thr389 phosphorylation, because substitution of an acidic residue at this position in the p70(s6k) variant containing the S/TP mutations leads to a large increase in basal Thr229 phosphorylation and kinase activity. In contrast, an alanine substitution at Thr389 blocks both responses. Consistent with these data, we show that a mutant harboring the acidic S/TP and Thr389 substitutions is an excellent in vitro substrate for the newly identified Thr229 kinase, phosphoinositide-dependent kinase-1 (Pullen, N., Dennis, P. B., Andjelkovic, M., Dufner, A., Kozma, S., Hemmings, B. A., and Thomas, G. (1998) Science 279, 707-710), whereas phosphoinositide-dependent kinase-1 poorly utilizes the two p70(s6k) variants that have only one set of mutations. These findings indicate that phosphorylation of the S/TP sites, in cooperation with Thr389 phosphorylation, controls Thr229 phosphorylation through an intrasteric mechanism.
Collapse
Affiliation(s)
- P B Dennis
- Friedrich Miescher-Institut, Department of Growth Control, P. O. Box 2543, CH-4002, Basel, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Pearson RB, Thomas G. Regulation of p70s6k/p85s6k and its role in the cell cycle. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:21-32. [PMID: 9552351 DOI: 10.1007/978-1-4615-1809-9_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two to three-fold increases in the rate of protein synthesis are required both to enter the G1 phase of the cell cycle from G0 and to proceed to S phase in response to growth factors and mitogens. This increase is in part regulated via multiple phosphorylation of the 40S ribosomal protein S6 by the mitogen-stimulated p70s6k/p85s6k. At the protein synthesis level this event appears to be involved in specifically increasing the efficiency of translation of a family of essential mRNAs containing a polypyrimidine tract at their 5' transcriptional start site. The activation of p70s6k/p85s6k and maintenance of its activity throughout G1 is controlled via multiple phosphorylation events mediated by a complex signalling network acting on distinct sets of phosphorylation sites.
Collapse
Affiliation(s)
- R B Pearson
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
21
|
Abstract
The activation of p70s6k is accompanied by a complex series of phosphorylation events. In this review we propose a model of activation which divides p70s6k into four functional modules that cooperate in leading to full enzyme activity. In the light of the model, we suggest how candidate effectors of p70s6k activation might function by directing the phosphorylation of specific sites.
Collapse
Affiliation(s)
- N Pullen
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
22
|
Abstract
The gene encoding mouse ribosomal protein (r-protein) S6 is 2.7 kb in length, and is composed of five exons. The intron positions of the mouse S6 (Rps6) coincide exactly to those of the homologous human S6 (RPS6), but the last intron present in the human is absent in the mouse gene. The latter displays higher G + C content than the RPS6, both in the overall sequenced region and at the 3rd codon position. The promoter area is highly conserved between mouse and human, and contains several putative cis-acting elements. Comparison of the intronic sequences of both genes revealed surprisingly a high degree of identity (63%) within 350 bp of the first intron. Besides the single-copy Rsp6 there are up to 15 S6 family members, most likely processed pseudogenes. Characterization of the Rps6 provides a basis to study the functions of the mammalian S6 by gene targeting.
Collapse
Affiliation(s)
- I Pata
- Institute of Molecular and Cell Biology, Tartu University, Estonian Biocentre, Estonia
| | | |
Collapse
|
23
|
Edelmann HM, Kühne C, Petritsch C, Ballou LM. Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts. J Biol Chem 1996; 271:963-71. [PMID: 8557712 DOI: 10.1074/jbc.271.2.963] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We show here using synchronized Swiss mouse 3T3 fibroblasts that p70 S6 kinase (p70S6k) and mitogen-activated protein kinases (p42mapk/p44mapk) are not only activated at the G0/G1 boundary, but also in cells progressing from M into G1. p70S6k activity increases 20-fold in G1 cells released from G0. Throughout G1, S, and G2 it decreases constantly, so that during M phase low kinase activity is measured. The kinase is reactivated 10-fold when cells released from a nocodazole-induced metaphase block enter G1 of the next cell cycle. p42mapk/p44mapk in G0 cells are activated transiently early in G1 and are reactivated late in mitosis after nocodazole release. p70S6k activity is dependent on permanent signaling from growth factors at all stages of the cell cycle. Immunofluorescence studies showed that p70S6k and its isoform p85S6k become concentrated in localized spots in the nucleus at certain stages in the cell cycle. Cell cycle-dependent changes in p70S6k activity are associated with alterations in the phosphorylation state of the protein. However, examination of the regulation of a p70S6k mutant in which the four carboxyl-terminal phosphorylation sites are changed to acidic amino acids suggests that a mechanism independent of these phosphorylation sites controls the activity of the enzyme during the cell cycle.
Collapse
Affiliation(s)
- H M Edelmann
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
24
|
Stewart MJ, Thomas G. Mitogenesis and protein synthesis: a role for ribosomal protein S6 phosphorylation? Bioessays 1994; 16:809-15. [PMID: 7840758 DOI: 10.1002/bies.950161107] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been known for 20 years that the ribosomal protein S6 is rapidly phosphorylated when cells are stimulated to grow or divide. Furthermore, numerous studies have documented that there is a strong correlation between increases in S6 phosphorylation and protein synthesis, leading to the idea that S6 phosphorylation is involved in up-regulating translation. In an attempt to define a mechanism by which S6 phosphorylation exerts translational control, other studies have focused on characterizing the sites of phosphorylation of this protein and its location within the ribosome. Recent data show that S6 is a protein which may have diverse cellular functions and is essential for normal development, and that it may be involved in the translational regulation of a specific class of messages.
Collapse
Affiliation(s)
- M J Stewart
- Friedrich Miescher Institut, Basel, Switzerland
| | | |
Collapse
|
25
|
de Groot RP, Ballou LM, Sassone-Corsi P. Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell 1994; 79:81-91. [PMID: 7923380 DOI: 10.1016/0092-8674(94)90402-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activation of the adenylyl cyclase signaling pathway elicits the induction of genes via activators binding to cAMP-responsive elements (CREs). Nuclear factor CRE modulator (CREM) is activated by PKA-mediated phosphorylation on a serine at position 117. We show that Ser-117 is also phosphorylated by the mitogen-activated p70 S6 kinase (p70S6K) in vitro. Activation of cellular p70S6K by serum factors enhances Ser-117 phosphorylation and CREM transactivation. Coexpression of p70S6K significantly increases transactivation by a GAL4-CREM fusion. The macrolide rapamycin, a potent and specific inhibitor of p70S6K in vivo, completely blocks CREM activation induced by serum and by p70S6K. Thus, CREM constitutes a target for mitogenic signaling through p70S6K and may acts as a nuclear effector in which transduction pathways may converge and cross-talk.
Collapse
Affiliation(s)
- R P de Groot
- Laboratoire de Génétique Moléculaire des Eucaryotes, Centre National de la Recherche Scientifique, Faculté de Médecine, Strasbourg, France
| | | | | |
Collapse
|
26
|
Abstract
Activation of cell growth leads to the multiple phosphorylation of 40S ribosomal protein S6. The kinase responsible for controling this event is termed p70s6k/p85s6k. Both isoforms of the kinase are derived from a common gene activated by a complex set of phosphorylation events; each resides in a unique cellular compartment: the p70s6k in the cytoplasm and the p85s6k in the nucleus. Although p70s6k/p85s6k represent the first mitogen-activated serine/threonine kinase described, the signaling pathway leading to activation of both isoforms remains obscure. Recent studies have shown that this pathway is distinct from that of p21ras and the p42mapk/p44mapk, and that bifurcation of these pathways takes place at the level of the receptor. Experiments with point mutants of the PDGF receptor and inhibitors of phosphatidyl-inositol-3-OH kinase have implicated the latter molecule in this signaling event, but more recent findings suggest an alternative route may be employed. The p70s6k signaling pathway can also be ablated by the immunosuppressant rapamycin, which blocks p70s6k activation and S6 phosphorylation without affecting the other kinases whose activation is triggered by mitogen treatment. In parallel, rapamycin suppresses the translation of a family of mRNAs that contain a polypyrimidine tract at their 5' transcriptional start site. The implication is that this event is mediated by the phosphorylated form of S6 that may either (1) directly interact with the polypyrimidine tract or (2) alter the affinity of the 40S ribosome mRNA binding site for polypyrimidine tract mRNAs, or (3) recognize proteins that directly bind to the polypyrimidine tract.
Collapse
Affiliation(s)
- S Ferrari
- Tumor Biology Center, Freiburg, Germany
| | | |
Collapse
|
27
|
Kim SJ, Kahn CR. Insulin induces rapid accumulation of insulin receptors and increases tyrosine kinase activity in the nucleus of cultured adipocytes. J Cell Physiol 1993; 157:217-28. [PMID: 8227156 DOI: 10.1002/jcp.1041570203] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To better understand the mechanism by which insulin exerts effects on events at the cell nucleus, we have studied insulin receptors and tyrosine kinase activity in nuclei isolated by sucrose density gradient centrifugation following insulin treatment of differentiated 3T3-F442A cells. Insulin stimulated nuclear accumulation of insulin receptors by approximately threefold at 5 min. The half-maximal effect was observed with 1-10 nM insulin. Following insulin treatment, phosphotyrosine content associated with the nuclear insulin receptor was also increased by twofold at 5 min with a similar insulin concentration dependency. These nuclear insulin receptors differ from the membrane-associated insulin receptors in that they were not efficiently solubilized with 1% Triton X-100. During the same period of time, insulin stimulated nuclear tyrosine kinase activity toward the exogenous substrate poly Glu4:Tyr1 tenfold in a time-dependent manner reaching a maximum at 30 min. The insulin receptor substrate protein 1 (IRS-1) could not be detected in the nucleus by immunoblotting. However, a nuclear protein with M(r) approximately 220 kDa was tyrosine phosphorylated, and insulin further stimulated this process threefold > 30 mins. Surface labeling was performed to determine if the nuclear insulin receptors would emerge from the plasma membrane fraction. Using 125I-BPA-insulin with intact cells, the intensity of nuclear insulin receptor labeling was negligible and not increased throughout 30 min incubation at 37 degrees C. In contrast, there was an increase in labeled receptors in the microsomal fraction following insulin treatment. Taken together, these results indicate that insulin rapidly increases nuclear insulin receptor appearance and activates nuclear tyrosine kinase activity. The insulin-induced accumulation of nuclear insulin receptors cannot be accounted for by internalization of surface membrane receptors. These effects of insulin may play an important role in action of the hormone at the nuclear level.
Collapse
Affiliation(s)
- S J Kim
- Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
28
|
Stephenson GM, Stephenson DG. Endogenous MLC2 phosphorylation and Ca(2+)-activated force in mechanically skinned skeletal muscle fibres of the rat. Pflugers Arch 1993; 424:30-8. [PMID: 8351204 DOI: 10.1007/bf00375099] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A method has been developed for measuring the level of phosphorylation of myosin regulatory light chains (MLC2) by the endogenous myosin light chain kinase in mechanically skinned skeletal muscle fibres. The method was used to characterize the endogeous MLC2 phosphorylation capacity of single fast-twitch fibres from the rat and to investigate the relationship between the endogenous MLC2 phosphorylation and the Ca(2+)-activated force. The results show that (1) about 50% of MLC2 were 32P-phosphorylated after activation of the skinned fibre preparation by 30 microM [Ca2+] for longer than 30 s, but that there was variability between fibres; (2) most of the endogenous phosphorylating system diffused out of the skinned fibre preparation after 5 min exposure to an aqueous solution; (3) the MLC2 phosphorylation by the endogenous phosphorylating system followed with a delay of the order of 1-2 s after the sudden rise in [Ca2+] from below 10 nM to 30 microM; and (4) the sensitivity of the contractile apparatus to Ca2+ was markedly increased when the MLC2 were phosphorylated by the endogenous phosphorylating system following a rise in [Ca2+]. The Kd for MgATP of the endogenous MLC2 phosphorylating system was estimated to be less than 300 microM. These results unequivocally demonstrate that prolonged activation of the fast-twitch muscle fibre leads to increased Ca2+ sensitivity of the contractile apparatus and that mechanically skinned fibres can be successfully used to study the regulation of the endogenous MLC2 phosphorylation capacity at single muscle fibre level.
Collapse
Affiliation(s)
- G M Stephenson
- Department of Zoology, La Trobe University, Bundoora, Vic, Australia
| | | |
Collapse
|
29
|
Abstract
An essential step in the pathway by which growth factors trigger cellular proliferation is the induction of high levels of protein synthesis. This appears in part to be controlled by multiple phosphorylation of the ribosomal protein S6 (refs 4, 5). The main kinase responsible, p70s6k (refs 6-8), is activated through the phosphorylation of four sites clustered in a putative autoinhibitory domain, which is mediated by a signalling pathway distinct from those used by other well characterized mitogen-activated serine/threonine kinases (such as p42/p44mapk or p90rsk; refs 10, 11). Here we investigate the role of p70s6k in the mitogenic response. Microinjection of quiescent rat embryo fibroblasts with any of three distinct polyclonal antibodies to p70s6k abolishes serum-induced entry into S phase of the cell cycle. This effect is preceded by almost complete abrogation of the activation of protein synthesis and the expression of an essential immediate early gene product, c-fos. The inhibitory effect on DNA synthesis is also elicited by microinjection of the antibodies late in G1 phase, consistent with the finding that p70s6k activity remains high throughout G1.
Collapse
Affiliation(s)
- H A Lane
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
30
|
Kozma S, McGlynn E, Siegmann M, Reinhard C, Ferrari S, Thomas G. Active baculovirus recombinant p70s6k and p85s6k produced as a function of the infectious response. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53156-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Bandi H, Ferrari S, Krieg J, Meyer H, Thomas G. Identification of 40 S ribosomal protein S6 phosphorylation sites in Swiss mouse 3T3 fibroblasts stimulated with serum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53642-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Amick GD, Reddy SA, Damuni Z. Purification and properties of a protamine kinase from bovine kidney microsomes. Arch Biochem Biophys 1992; 297:80-5. [PMID: 1322115 DOI: 10.1016/0003-9861(92)90643-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
About an eightfold increase in protamine kinase activity was detected following extraction of highly purified microsomes from bovine kidney with 1% Triton X-100. Relative to the soluble fraction, the microsomes contained about 30% protamine kinase activity. The microsomal protamine kinase was purified to apparent homogeneity. The purified enzyme exhibited an apparent M(r) approximately 45,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel permeation chromatography on Sephacryl S-200. Relative to protamine, the purified kinase exhibited about 100% activity with the synthetic peptide RRLSSLRA and about 5, 8, and less than 0.1% activity with casein, histone H2B, and histone H1, respectively. The purified kinase phosphorylated several 40 S ribosome polypeptides. One of these polypeptides was identified as ribosomal protein S6 by N-terminal sequencing. About 2.5 mol of phosphoryl groups was incorporated per mole of ribosomal protein S6 following incubation of the 40 S ribosomes with the purified kinase. Following incubation with protein phosphatase 2A2, purified preparations of the protamine kinase were inactivated. These properties were identical to those of purified preparations of a protamine kinase from extracts of bovine kidney cytosol (Z. Damuni, G.D. Amick, and T.R. Sneed, 1989, J. Biol. Chem. 264, 6412-6418). Near identical peptide patterns were obtained following incubation of purified preparations of the microsomal and cytosolic protamine kinases with Staphylococcus aureus V8 proteinase. The results indicate that a form of the cytosolic protamine kinase is present in microsomes.
Collapse
Affiliation(s)
- G D Amick
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
33
|
Goldstein R, Fine A, Farnsworth L, Poliks C, Polgar P. Phorbol ester-induced inhibition of collagen accumulation by human lung fibroblasts. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77394-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|