1
|
Khalid M, Fouassier G, Apell HJ, Cornelius F, Clarke RJ. Interaction of ATP with the phosphoenzyme of the Na+,K+-ATPase. Biochemistry 2010; 49:1248-58. [PMID: 20063899 DOI: 10.1021/bi9019548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of ATP with the phosphoenzyme of Na(+),K(+)-ATPase from pig kidney, rabbit kidney, and shark rectal gland was investigated using the voltage-sensitive fluorescent probe RH421. In each case, ATP concentrations >or=100 microM caused a drop in fluorescence intensity, which, because RH421 is sensitive to the formation of enzyme in the E2P state, can be attributed to ATP binding to the E2P phosphoenzyme. Simulations of the experimental behavior using kinetic models based on either a monomeric or a dimeric enzyme mechanism yielded a K(d) for ATP binding in the range 140-500 muM. Steady-state activity measurements and independent measurements of the phosphoenzyme level via a radioactive assay indicated that ATP binding to E2P causes a deceleration in its dephosphorylation when acting in the Na(+)-ATPase mode, i.e., in the absence of K(+) ions. Both the ATP-induced drop in RH421 fluorescence and the effect on the dephosphorylation reaction could be attributed to an inhibition of dissociation from the E2P(Na(+))(3) state of the one Na(+) ion necessary to allow dephosphorylation. Stopped-flow studies on the shark enzyme indicated that the ATP-induced inhibition of dephosphorylation is abolished in the presence of 1 mM KCl. A possible physiological role of allosteric binding of ATP to the phosphoenzyme could be to stabilize the E2P state and stop the enzyme running backward, which would cause dissipation of the Na(+) electrochemical potential gradient and the resynthesis of ATP from ADP. ATP binding to E2P could also fix ATP within the enzyme ready to phosphorylate it in the subsequent turnover.
Collapse
Affiliation(s)
- Mohammed Khalid
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
2
|
Pilotelle-Bunner A, Matthews JM, Cornelius F, Apell HJ, Sebban P, Clarke RJ. ATP binding equilibria of the Na(+),K(+)-ATPase. Biochemistry 2009; 47:13103-14. [PMID: 19006328 DOI: 10.1021/bi801593g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported values of the dissociation constant, K(d), of ATP with the E1 conformation of the Na(+),K(+)-ATPase fall in two distinct ranges depending on how it is measured. Equilibrium binding studies yield values of 0.1-0.6 microM, whereas presteady-state kinetic studies yield values of 3-14 microM. It is unacceptable that K(d) varies with the experimental method of its determination. Using simulations of the expected equilibrium behavior for different binding models based on thermodynamic data obtained from isothermal titration calorimetry we show that this apparent discrepancy can be explained in part by the presence in presteady-state kinetic studies of excess Mg(2+) ions, which compete with the enzyme for the available ATP. Another important contributing factor is an inaccurate assumption in the majority of presteady-state kinetic studies of a rapid relaxation of the ATP binding reaction on the time scale of the subsequent phosphorylation. However, these two factors alone are insufficient to explain the previously observed presteady-state kinetic behavior. In addition one must assume that there are two E1-ATP binding equilibria. Because crystal structures of P-type ATPases indicate only a single bound ATP per alpha-subunit, the only explanation consistent with both crystal structural and kinetic data is that the enzyme exists as an (alphabeta)(2) diprotomer, with protein-protein interactions between adjacent alpha-subunits producing two ATP affinities. We propose that in equilibrium measurements the measured K(d) is due to binding of ATP to one alpha-subunit, whereas in presteady-state kinetic studies, the measured apparent K(d) is due to the binding of ATP to both alpha-subunits within the diprotomer.
Collapse
|
3
|
Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:3-17. [PMID: 19225774 DOI: 10.1007/s00249-009-0407-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/14/2008] [Accepted: 12/14/2008] [Indexed: 10/21/2022]
Abstract
The roles of allosteric effects of ATP and protein oligomerisation in the mechanisms of P-type ATPases belong to the most controversial and least well understood topics in the field. Recent crystal structural and kinetic data, however, now allow certain hypotheses to be definitely excluded and consistent hypotheses to be developed. The aim of this review is to critically discuss recent results and, in the light of them, to present a set of conclusions which could form the basis of future research. The major conclusions are: (1) at saturating ATP concentrations P-type ATPases function as monomeric enzymes, (2) the catalytic units of P-type ATPases only possess a single ATP binding site, (3) at non-saturating ATP concentrations P-type ATPases exist as diprotomeric (or higher oligomeric) complexes, (4) protein-protein interactions within a diprotomeric complex enhances the enzymes' ATP binding affinity, (5) ATP binding to both protomers within a diprotomeric complex causes it to dissociate into two separate monomers. The physiological role of protein-protein interactions within a diprotomer may be to enhance ATP binding affinity so as to scavenge ATP and maximize the ion pumping rate under hypoxic or anoxic conditions. For the first time a structural basis for the well-known ATP allosteric acceleration of the E2 --> E1 transition is presented. This is considered to be due to a minimization of steric hindrance between neighbouring protomers because of the ability of ATP to induce a compact conformation of the enzymes' cytoplasmic domains.
Collapse
|
4
|
Zolotarjova N, Periyasamy SM, Huang WH, Askari A. Functional coupling of phosphorylation and nucleotide binding sites in the proteolytic fragments of Na+/K(+)-ATPase. J Biol Chem 1995; 270:3989-95. [PMID: 7876146 DOI: 10.1074/jbc.270.8.3989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cleavage of the alpha-subunit of Na+/K(+)-ATPase by trypsin at Arg438-Ala439 causes enzyme inhibition which has been suggested to be due to altered alignment of phosphorylation site on the 48-kDa N-terminal fragment with nucleotide binding site on the 64-kDa C-terminal fragment. Our aims were to test this hypothesis and to assess the effect of the cleavage on the enzyme's two ATP sites. Na(+)-dependent phosphorylation of the partially cleaved enzyme by ATP showed that K0.5 values of ATP for phosphorylations of intact alpha and 48-kDa peptide were the same (0.4 microM). Unchanged interactions among the residues across the cleavage site were also indicated by data showing that reaction of fluorescein isothiocyanate with the 64-kDa peptide blocked phosphorylation of the 48-kDa peptide by ATP. ATP is known to block the reaction of fluorescein isothiocyanate with the enzyme. Experiments on the partially cleaved enzyme showed that K0.5 of ATP for protection of alpha was 30-60 microM, and the value for the protection of interacting 48-kDa and 64-kDa peptides was 1-3 mM. Evidently, while the cleavage does not affect the high affinity catalytic site, it disrupts the allosteric low affinity ATP site. Experiments on reconstituted preparations showed that the cleavage abolished ATP-dependent Na+/K+ exchange, Pi+ATP-dependent Rb+/Rb+ exchange, ATP-dependent Na+/Na+ exchange, and ADP+ATP-dependent Na+/Na+ exchange activities. Selective disruption of the low affinity ATP site accounts for the inhibitions of all functions involving K+(Rb+), based on the established role of this site in the control of K+ access channels. Cleavage-induced inhibitions of other activities, however, suggest additional roles of the low affinity ATP site in the reaction cycle.
Collapse
Affiliation(s)
- N Zolotarjova
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008
| | | | | | | |
Collapse
|
5
|
Repke KR, Schön R. Role of protein conformation changes and transphosphorylations in the function of Na+/K(+)-transporting adenosine triphosphatase: an attempt at an integration into the Na+/K+ pump mechanism. Biol Rev Camb Philos Soc 1992; 67:31-78. [PMID: 1318758 DOI: 10.1111/j.1469-185x.1992.tb01658.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The particular aim of the review on some basic facets of the mechanism of Na+/K(+)-transporting ATPase (Na/K-ATPase) has been to integrate the experimental findings concerning the Na(+)- and K(+)-elicited protein conformation changes and transphosphorylations into the perspective of an allosterically regulated, phosphoryl energy transferring enzyme. This has led the authors to the following summarizing evaluations. 1. The currently dominating hypothesis on a link between protein conformation changes ('E1 in equilibrium with E2') and Na+/K+ transport (the 'Albers-Post scheme') has been constructed from a variety of partial reactions and elementary steps, which, however, do not all unequivocally support the hypothesis. 2. The Na(+)- and K(+)-elicited protein conformation changes are inducible by a variety of other ligands and modulatory factors and therefore cannot be accepted as evidence for their direct participation in effecting cation translocation. 3. There is no evidence that the 'E1 in equilibrium with E2' protein conformation changes are moving Na+ and K+ across the plasma membrane. 4. The allosterically caused ER in equilibrium with ET ('E1 in equilibrium with E2') conformer transitions and the associated cation 'occlusion' in equilibrium with 'de-occlusion' processes regulate the actual catalytic power of an enzyme ensemble. 5. A host of experimental variables determines the proportion of functionally competent ER enzyme conformers and incompetent ET conformers so that any enzyme population, even at the start of a reaction, consists of an unknown mixture of these conformers. These circumstances account for the occurrence of contradictory observations and apparent failures in their comparability. 6. The modelling of the mechanism of the Na/K-ATPase and Na+/K+ pump from the results of reductionistically designed experiments requires the careful consideration of the physiological boundary conditions. 7. Na+ and K+ ligandation of Na/K-ATPase controls the geometry and chemical reactivity of the catalytic centre in the cycle of E1 in equilibrium with E2 state conversions. This is possibly effected by hinge-bending, concerted motions of three adjacent, intracellularly exposed peptide sequences, which shape open and closed forms of the catalytic centre in lock-and-key responses. 8. The Na(+)-dependent enzyme phosphorylation with ATP and the K(+)-dependent hydrolysis of the phosphoenzyme formed are integral steps in the transport mechanism of Na/K-ATPase, but the translocations of Na+ and K+ do not occur via a phosphate-cation symport mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K R Repke
- Energy Conversion Unit, Central Institute of Molecular Biology, Berlin-Buch, Germany
| | | |
Collapse
|
6
|
Yoda A, Yoda S. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75895-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
|
8
|
Taniguchi K, Suzuki K, Kai D, Matsuoka I, Tomita K, Iida S. Conformational change of sodium- and potassium-dependent adenosine triphosphatase. Conformational evidence for the Post-Albers mechanism in Na+- and K+-dependent hydrolysis of ATP. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42539-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
White B, Blostein R. Comparison of red cell and kidney (Na+ +K+)-ATPase at 0 degrees C. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 688:685-90. [PMID: 6288089 DOI: 10.1016/0005-2736(82)90280-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human red cell and guinea pig kidney (Na+ +K+)-ATPase were phosphorylated at 0 degrees C. Using concentrations of ATP ranging from 10(-6) to 10(-8) M, ATP-dependent regulation of reactivity is observed with red cell but not kidney (Na+ +K+)-ATPase at 0 degrees C. In particular, with the red cell enzyme only, the following are observed: (i) the ratio of enzyme-bound ATP (E.ATP, measured by the pulse-chase method of Post, R.L., Kume, S., Tobin, T., Orcutt, B. and Sen, A.K. (1969) J. Gen. Physiol. 54, 306s-326s) to steady-state level of total phosphoenzyme (EP) decreases with decrease in ATP concentration and (ii) the apparent turnover of phosphoenzyme (ratio of Na+-stimulated ATP hydrolysis to level of total EP at steady state) also varies as a function of ATP concentration. In addition, when EP is formed at very low ATP (0.02 microM), and then EDTA is added, rapid disappearance of a fraction of EP occurs, presumably due to ATP resynthesis, only with the red cell enzyme. These differences in behaviour of the red cell and kidney enzymes are explained on the basis of the observed predominance of K+-insensitive EP in red cell, but K+-sensitive EP in kidney (Na+ +K+)-ATPase at 0 degrees C.
Collapse
|
10
|
Askari A, Huang W. Na+, K+-ATPase: evidence for the binding of ATP to the phosphoenzyme. Biochem Biophys Res Commun 1982; 104:1447-53. [PMID: 6280713 DOI: 10.1016/0006-291x(82)91412-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Transient state in the phosphorylation of sodium- and potassium- transport adenosine triphosphatase by adenosine triphosphate. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)52519-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Drapeau P, Blostein R. Sodium and potassium interactions with Na+-ATPase of inside-out membrane vesicles from high-K+ and low-K+ sheep red cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1980. [DOI: 10.1016/0005-2736(80)90124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Taugner G, Wunderlich I. Partial characterization of a phosphoryl group transferring enzyme in the membrane of catecholamine storage vesicles. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1979; 309:45-58. [PMID: 160508 DOI: 10.1007/bf00498755] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoryl group transfer from ATP to ADP occurred in the isolated membrane of catecholamine storage vesicles. The reaction was accelerated by extraction of the membranes with 50% (v/v) acetone and by treatment with 1% (v/v) Triton X-100. The phosphoryl group transfer reaction was activated by Mg2+ and by Mn2+. The activation profile differed from that obtained for the ATPase activity. The Michaelis-Menten kinetics of the phosphoryl transfer reaction were not entirely linear. From the linear parts of the double reciprocal plots KmATP approximately equal to 1 mM and KmADP approximately equal to 0.4 mM was obtained. All lines of the double reciprocal plots intersected indicating a sequential reaction mechanism. The reaction exhibited a narrow specificity for nucleoside diphospate and a broader one for nucleoside triphosphate indicating that ADP was the true substrate. The transfer reaction was slightly inhibited by AMP, orthophosphate and P1, P5-di(adenosine-5')pentaphosphate. The thiol reagents, N-ethylmaleimide and para-chloromercuribenzoate (PCMB), affected the ATPase activity and the phosphoryl transfer activity differently: with the blockade of 2.4 essential thiol equivalents by N-ethylmaleimide the ATPase was inhibited 50% and net uptake of catecholamine ceased, while the phosphoryl transfer remained unimpaired. PCMB affected both, the ATPase activity and phosphoryl transfer reaction. Treatment of the membranes with dithioerythritol prevented the PCMB-induced inhibition of the phosphoryl transfer, but was ineffective in protecting the ATPase activity, indicating that different thiol groups must be involved in the both enzymatic activities.
Collapse
|
14
|
Side-specific effects of sodium on (Na,K)-ATPase. Studies with inside-out red cell membrane vesicles. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50421-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Karlish SJ, Yates DW, Glynn IM. Elementary steps of the (Na+ + K+)-ATPase mechanism, studied with formycin nucleotides. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 525:230-51. [PMID: 210811 DOI: 10.1016/0005-2744(78)90218-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Formycin triphosphate (FTP), a fluorescent analogue of ATP, is a substrate for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3), with properties similar to those of ATP. 2. FTP and formycin diphosphate (FDP) bind to the enzyme with high affinity and, on binding, the nucleotide fluorescence is enhanced 3-4-fold. It is therefore possible, with a stopped-flow fluorimeter, to measure the rates of binding and release of FTP and FDP under conditions in which turnover does not occur. 3. When the enzyme-FTP complex is exposed to conditions permitting turnover (Mg2+, Na+ +/- K+), changes in fluorescence occur which can be explained by supposing that they reflect the interconversion of states with or without bound nucleotides. A rapid fall in fluorescence, that we attribute to the rapid release of FDP from newly phosphorylated enzyme, is followed by a steady state in which low fluorescence suggests that little nucleotide is bound. Eventually, exhaustion of FTP allows rebinding of FDP to the enzyme, which is signalled by a rise in fluorescence. 4. The estimated rate of FDP release from newly formed phosphoenzyme is unaffected by the presence of K+ (0-2 mM) or the concentration of FTP (1-20 micron). 5. Experiments with [gamma-32P]FTP show that about 1 mol of 32P is incorporated per mol of enzyme. The rate of phosphorylation of the enzyme by [gamma-32P]FTP has been measured with a rapid-mixing-and-quenching apparatus. 6. Kinetic data from the fluorescence and phosphorylation experiments show that the behaviour of the enzyme, at least at the low nucleotide concentrations employed, is consistent with the Albers-Post model, and is difficult to reconcile with models in which K+ acts at or before the step in which FDP is released during turnover.
Collapse
|
16
|
Sidedness of (sodium, potassium)-adenosine triphosphate of inside-out red cell membrane vesicles. Interactions with potassium. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40468-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40484-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
METZLER DAVIDE. Membranes and Cell Coats. Biochemistry 1977. [DOI: 10.1016/b978-0-12-492550-2.50010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Robinson JD. Substrate sites for the (Na+ + K+)-dependent ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 429:1006-19. [PMID: 131580 DOI: 10.1016/0005-2744(76)90345-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kinetic studies on a rat brain (Na+ + K+)-dependent ATPase (EC 3.6.1.3) preparation demonstrated high-affinity sites for ATP, with a Km near 1 mum, and low affinity sites for ATP, with a Km near 0.5 mM. In addition, the dissociation constant for ATP at the low affinity sites was approached through the ability of ATP to modify the rate of photo-oxidation of the enzyme in the presence of methylene blue; a value of 0.4 mM was obtained. The temperature dependence of the Km values in these two concentration ranges also differed markedly, and the estimated entropy of binding was +27 cal/degree per mol at the high affinity sites, whereas it was -20 cal/degree per mol at the low affinity sites. Moreover, the relative affinities of various congeners of ATP as of the K+ -dependent phosphatase reaction of the enzyme indicated an interaction at the low-affinity sites for ATP: ATP, ADP, CTP, and the [beta-gamma] -imido analog of ATP all competed with Ki values near those for the ATPase reaction at the low affinity sites. Conversely, the Km for nitrophenyl phosphate as a substrate for the phosphatase reaction was near its Ki as a competitor at the low-affinity sites of the ATPase reaction. These observations are incorporated into a reaction scheme with two classes of substrate sites on a dimeric enzyme, manifesting idverse enzymatic and transport characteristics.
Collapse
|