Brady FO. Tryptophan 2,3-dioxygenase: a review of the roles of the heme and copper cofactors in catalysis.
BIOINORGANIC CHEMISTRY 1975;
5:167-82. [PMID:
178384 DOI:
10.1016/s0006-3061(00)80058-7]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
L-Tryptophan, 2,3-dioxygenase (EC 1.13.11.11) has been purified to homogenity from L-tryptophan induced Pseudomonas acidovorans (ATCC 11299b) and from L-tryptophan and cortisone induced rat liver. The enzyme from both sources is composed of four subunits and contains two g-atoms copper and two moles heme per mole tetramer. The proteins from the two sources are not identical. Three oxidation states of tryptophan oxygenase have been isolated: (1) fully oxidized, [Cu(II)]2[Ferriheme]2; (2) half reduced, [Cu(i)]2[ferriheme]2; and (3) fully reduced, [Cu(I)]2[ferroheme]2. Catalytic activity is dependent solely on the presence of Cu(I) in the enzyme, the heme may be either ferro or ferri. The presence of Cu(II) in the enzyme results in a requirement for an exogenous reductant, such as ascorbate, in order to elicit enzymic activity. Ligands, such as cyanide and carbon monoxide, can inhibit catalysis by binding to either or to both the copper and heme moieties. Metal complexing agents, such as bathocuproinesulfonate and bathophenanthrolinesulfonate, can inhibit catalysis by binding to Cu(I) resent only in catalytically active enzyme molecules. During catalysis by the fully reduced form of the enzyme, molecular oxygen binds to the heme moieties, while during catalysis by the half reduced form of the enzyme it does not, presumably binding instead to the Cu(I) moieties. Enzymes that catalyze similar reactions have been purified from other sources. Indoleamine 2,3-dioxygenase appears to be a heme protein, but its copper content is unknown. Pyrrolooxygenases appear to be completely different enzymes, although they have not yet been purified to homegeneity.
Collapse