1
|
Effects of Magnesium, Pyrophosphate and Phosphonates on Pyrophosphorolytic Reaction of UDP-Glucose Pyrophosphorylase. PLANTS 2022; 11:plants11121611. [PMID: 35736762 PMCID: PMC9230926 DOI: 10.3390/plants11121611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
UDP-glucose pyrophosphorylase (UGPase) carries a freely reversible reaction, using glucose-1-P and UTP to produce UDP-glucose (UDPG) and pyrophosphate (PPi), with UDPG being essential for glycosylation reactions in all organisms including, e.g., synthesis of sucrose, cellulose and glycoproteins. In the present study, we found that free magnesium (Mg2+) had profound effects on the reverse reaction of purified barley UGPase, and was absolutely required for its activity, with an apparent Km of 0.13 mM. More detailed analyses with varied concentrations of MgPPi allowed us to conclude that it is the MgPPi complex which serves as true substrate for UGPase in its reverse reaction, with an apparent Km of 0.06 mM. Free PPi was an inhibitor in this reaction. Given the key role of PPi in the UGPase reaction, we have also tested possible effects of phosphonates, which are analogs of PPi and phosphate (Pi). Clodronate and etidronate (PPi analogs) had little or no effect on UGPase activity, whereas fosetyl-Al (Pi analog), a known fungicide, acted as effective near-competitive inhibitor versus PPi, with Ki of 0.15 mM. The data are discussed with respect to the role of magnesium in the UGPase reaction and elucidating the use of inhibitors in studies on cellular function of UGPase and related enzymes.
Collapse
|
2
|
Muchut RJ, Calloni RD, Arias DG, Arce AL, Iglesias AA, Guerrero SA. Elucidating carbohydrate metabolism in Euglena gracilis: Reverse genetics-based evaluation of genes coding for enzymes linked to paramylon accumulation. Biochimie 2021; 184:125-131. [PMID: 33675853 DOI: 10.1016/j.biochi.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Euglena gracilis is a eukaryotic single-celled and photosynthetic organism grouped under the kingdom Protista. This phytoflagellate can accumulate the carbon photoassimilate as a linear β-1,3-glucan chain called paramylon. This storage polysaccharide can undergo degradation to provide glucose units to obtain ATP and reducing power both in aerobic and anaerobic growth conditions. Our group has recently characterized an essential enzyme for accumulating the polysaccharide, the UDP-glucose pyrophosphorylase (Biochimie vol 154, 2018, 176-186), which catalyzes the synthesis of UDP-glucose (the substrate for paramylon synthase). Additionally, the identification of nucleotide sequences coding for putative UDP-sugar pyrophosphorylases suggests the occurrence of an alternative source of UDP-glucose. In this study, we demonstrate the active involvement of both pyrophosphorylases in paramylon accumulation. Using techniques of single and combined knockdown of transcripts coding for these proteins, we evidenced a substantial decrease in the polysaccharide synthesis from 39 ± 7 μg/106 cells determined in the control at day 21st of growth. Thus, the paramylon accumulation in Euglena gracilis cells decreased by 60% and 30% after a single knockdown of the expression of genes coding for UDP-glucose pyrophosphorylase and UDP-sugar pyrophosphorylase, respectively. Besides, the combined knockdown of both genes resulted in a ca. 65% reduction in the level of the storage polysaccharide. Our findings indicate the existence of a physiological dependence between paramylon accumulation and the partitioning of sugar nucleotides into other metabolic routes, including the Leloir pathway's functionality in Euglena gracilis.
Collapse
Affiliation(s)
- Robertino J Muchut
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Rodrigo D Calloni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Agustin L Arce
- Laboratorio de Biología del ARN, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET - UNL), Argentina, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
3
|
Kotake T, Takata R, Verma R, Takaba M, Yamaguchi D, Orita T, Kaneko S, Matsuoka K, Koyama T, Reiter WD, Tsumuraya Y. Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion between UDP-D-xylose and UDP-L-arabinose in plants. Biochem J 2009; 424:169-77. [PMID: 19754426 DOI: 10.1042/bj20091025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UDP-sugars serve as substrates in the synthesis of cell wall polysaccharides and are themselves generated through sequential interconversion reactions from UDP-Glc (UDP-glucose) as the starting substrate in the cytosol and the Golgi apparatus. For the present study, a soluble enzyme with UDP-Xyl (UDP-xylose) 4-epimerase activity was purified approx. 300-fold from pea (Pisum sativum L.) sprouts by conventional chromatography. The N-terminal amino acid sequence of the enzyme revealed that it is encoded by a predicted UDP-Glc 4-epimerase gene, PsUGE1, and is distinct from the UDP-Xyl 4-epimerase localized in the Golgi apparatus. rPsUGE1 (recombinant P. sativum UGE1) expressed in Escherichia coli exhibited both UDP-Xyl 4-epimerase and UDP-Glc 4-epimerase activities with apparent Km values of 0.31, 0.29, 0.16 and 0.15 mM for UDP-Glc, UDP-Gal (UDP-galactose), UDP-Ara (UDP-L-arabinose) and UDP-Xyl respectively. The apparent equilibrium constant for UDP-Ara formation from UDP-Xyl was 0.89, whereas that for UDP-Gal formation from UDP-Glc was 0.24. Phylogenetic analysis revealed that PsUGE1 forms a group with Arabidopsis UDP-Glc 4-epimerases, AtUGE1 and AtUGE3, apart from a group including AtUGE2, AtUGE4 and AtUGE5. Similar to rPsUGE1, recombinant AtUGE1 and AtUGE3 expressed in E. coli showed high UDP-Xyl 4-epimerase activity in addition to their UDP-Glc 4-epimerase activity. Our results suggest that PsUGE1 and its close homologues catalyse the interconversion between UDP-Xyl and UDP-Ara as the last step in the cytosolic de novo pathway for UDP-Ara generation. Alternatively, the net flux of metabolites may be from UDP-Ara to UDP-Xyl as part of the salvage pathway for Ara.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. THE PLANT CELL 2009; 21:892-909. [PMID: 19286968 PMCID: PMC2671695 DOI: 10.1105/tpc.108.063925] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana. Liquid chromatography-mass spectrometry analysis of leaf lipids in two Arabidopsis ugp3 mutants revealed that no sulfolipid was accumulated in these mutants, indicating the participation of UGP3 in sulfolipid biosynthesis. From the deduced amino acid sequence, UGP3 was presumed to be a UDP-glucose pyrophosphorylase (UGPase) involved in the generation of UDP-glucose, serving as the precursor of the polar head of sulfolipid. Recombinant UGP3 was able to catalyze the formation of UDP-glucose from glucose-1-phosphate and UTP. A transient assay using fluorescence fusion proteins and UGPase activity in isolated chloroplasts indicated chloroplastic localization of UGP3. The transcription level of UGP3 was increased by phosphate starvation. A comparative genomics study on UGP3 homologs across different plant species suggested the structural and functional conservation of the proteins and, thus, a committing role for UGP3 in sulfolipid synthesis.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kotake T, Hojo S, Tajima N, Matsuoka K, Koyama T, Tsumuraya Y. A Bifunctional Enzyme with L-Fucokinase and GDP-L-fucose Pyrophosphorylase Activities Salvages Free L-Fucose in Arabidopsis. J Biol Chem 2008; 283:8125-35. [DOI: 10.1074/jbc.m710078200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Kotake T, Yamaguchi D, Ohzono H, Hojo S, Kaneko S, Ishida HK, Tsumuraya Y. UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J Biol Chem 2004; 279:45728-36. [PMID: 15326166 DOI: 10.1074/jbc.m408716200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-sugars, activated forms of monosaccharides, are synthesized through de novo and salvage pathways and serve as substrates for the synthesis of polysaccharides, glycolipids, and glycoproteins in higher plants. A UDP-sugar pyrophosphorylase, designated PsUSP, was purified about 1,200-fold from pea (Pisum sativum L.) sprouts by conventional chromatography. The apparent molecular mass of the purified PsUSP was 67,000 Da. The enzyme catalyzed the formation of UDP-Glc, UDP-Gal, UDP-glucuronic acid, UDP-l-arabinose, and UDP-xylose from respective monosaccharide 1-phosphates in the presence of UTP as a co-substrate, indicating that the enzyme has broad substrate specificity toward monosaccharide 1-phosphates. Maximum activity of the enzyme occurred at pH 6.5-7.5, and at 45 degrees C in the presence of 2 mm Mg(2+). The apparent K(m) values for Glc 1-phosphate and l-arabinose 1-phosphate were 0.34 and 0.96 mm, respectively. PsUSP cDNA was cloned by reverse transcriptase-PCR. PsUSP appears to encode a protein with a molecular mass of 66,040 Da (600 amino acids) and possesses a uridine-binding site, which has also been found in a human UDP-N-acetylhexosamine pyrophosphorylase. Phylogenetic analysis revealed that PsUSP can be categorized in a group together with homologues from Arabidopsis and rice, which is distinct from the UDP-Glc and UDP-N-acetylhexosamine pyrophosphorylase groups. Recombinant PsUSP expressed in Escherichia coli catalyzed the formation of UDP-sugars from monosaccharide 1-phosphates and UTP with efficiency similar to that of the native enzyme. These results indicate that the enzyme is a novel type of UDP-sugar pyrophosphorylase, which catalyzes the formation of various UDP-sugars at the end of salvage pathways in higher plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bergamini CM, Signorini M, Ferrari C, Dallocchio F. Non-Michaelian kinetics of rabbit muscle uridine diphosphoglucose pyrophosphorylase. Arch Biochem Biophys 1983; 227:397-405. [PMID: 6320725 DOI: 10.1016/0003-9861(83)90469-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The kinetic properties of rabbit muscle uridine diphosphoglucose (UDP-Glc) pyrophosphorylase have been studied, in both directions, with respect to substrate saturation, product inhibition, and cation requirement for activity. The results demonstrate that UDP-Glc pyrophosphorylase is a non-Michaelian enzyme: the synthetic reaction is characterized by a marked inhibition by glucose-1-phosphate (at concentrations higher than 0.3 mM) and by an hyperbolic saturation for UTP. In the reverse reaction, instead, the saturation function for UDP-Glc is hyperbolic and that for inorganic pyrophosphate is sigmoid, with a high Hill coefficient of (nH) 2.5. The study of the metal requirement indicates a distinctive ability of cations to stimulate the reactions of synthesis and degradation of the sugar nucleotide and a different stoichiometry of the metal chelates involved. The reaction mechanism is of the ordered-sequential type and the data of product inhibition allowed the identification of glucose-1-phosphate as the first substrate bound and UDP-Glc as the last product released. The inhibition pattern by UDP-Glc gives evidence for cooperativity also in the binding of this molecule.
Collapse
|
8
|
|
9
|
UDP-glucose pyrophosphorylase. Stereochemical course of the reaction of glucose 1-phosphate with uridine-5'[1-thiotriphosphate]. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)34808-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Deichmann U, Jantzen H. [The cellulase enzyme system during growth and development of Acanthamoeba castellanii (author's transl)]. Arch Microbiol 1977; 113:309-13. [PMID: 18125 DOI: 10.1007/bf00492040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It could be shown that extracts of growing cultures of Acanthamoeba castellanii contained a cellulose degrading system. Reducing sugars are split off by one component of this system at an optimum of pH 4, another enzyme changes the viscosity at an optimum of pH 6, and a third component is a beta-glucosidase with an optimum at pH 3.5. At pH 4 the cellulose degradation products are cellobiose and glucose; at pH 6 higher molecular weight oligosaccharides are produced. During the development from trophozoites to cysts in a nutrient-free medium, the activities of both cellulases decline: Prior to the start of cellulose synthesis only 30%, and in cysts only 10% of the original existing activities are detectable. The biological function of the cellulase enzyme system is discussed together with a consideration of the fact that excystment takes place without digestion of the cyst wall in which the cellulose is deposited.
Collapse
|
11
|
Skrdlant HB, Weisman RA. Glucolipid synthesis in Acanthamoeba castellanii. THE JOURNAL OF PROTOZOOLOGY 1976; 23:613-8. [PMID: 12367 DOI: 10.1111/j.1550-7408.1976.tb03852.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|