1
|
Müller H, Terholsen H, Godehard SP, Badenhorst CPS, Bornscheuer UT. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Henrik Terholsen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
2
|
Laurieri N, Dairou J, Egleton JE, Stanley LA, Russell AJ, Dupret JM, Sim E, Rodrigues-Lima F. From arylamine N-acetyltransferase to folate-dependent acetyl CoA hydrolase: impact of folic acid on the activity of (HUMAN)NAT1 and its homologue (MOUSE)NAT2. PLoS One 2014; 9:e96370. [PMID: 24823794 PMCID: PMC4019507 DOI: 10.1371/journal.pone.0096370] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/07/2014] [Indexed: 11/24/2022] Open
Abstract
Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Nicola Laurieri
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Julien Dairou
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
| | - James E. Egleton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Lesley A. Stanley
- Consultant in Investigative Toxicology, Linlithgow, West Lothian, United Kingdom
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Jean-Marie Dupret
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Faculty of Science, Engineering and Computing, Kingston University, Kingston on Thames, United Kingdom
- * E-mail: (FR-L); (ES)
| | - Fernando Rodrigues-Lima
- Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, Paris, France
- * E-mail: (FR-L); (ES)
| |
Collapse
|
3
|
Arylamine N-Acetyltransferases – from Drug Metabolism and Pharmacogenetics to Identification of Novel Targets for Pharmacological Intervention. CURRENT CONCEPTS IN DRUG METABOLISM AND TOXICOLOGY 2012; 63:169-205. [DOI: 10.1016/b978-0-12-398339-8.00005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Oda A, Kobayashi K, Takahashi O. Computational study of the three-dimensional structure of N-acetyltransferase 2-acetyl coenzyme a complex. Biol Pharm Bull 2011; 33:1639-43. [PMID: 20930369 DOI: 10.1248/bpb.33.1639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-Acetyltransferase 2 (NAT2) is one of the most important polymorphic drug-metabolizing enzymes and plays a significant role in individual differences of drug efficacies and/or side effects. Coenzyme A (CoA) is a cofactor in the experimentally determined crystal structure of NAT2, although the acetyl source of acetylation reactions catalyzed by NAT is not CoA, but rather acetyl CoA. In this study, the three-dimensional structure of NAT2, including acetyl CoA, was calculated using molecular dynamics simulation. By substituting acetyl CoA for CoA the amino acid residue Gly286, which is known to transform into a glutamate residue by NAT2*7A and NAT2*7B, comes close to the cofactor binding site. In addition, the binding pocket around the sulfur atom of acetyl CoA expanded in the NAT2-acetyl CoA complex.
Collapse
Affiliation(s)
- Akifumi Oda
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Sendai, Miyagi981–8558, Japan.
| | | | | |
Collapse
|
5
|
Fullam E, Kawamura A, Wilkinson H, Abuhammad A, Westwood I, Sim E. Comparison of the Arylamine N-acetyltransferase from Mycobacterium marinum and Mycobacterium tuberculosis. Protein J 2010; 28:281-93. [PMID: 19636684 DOI: 10.1007/s10930-009-9193-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Arylamine N-acetyltansferase (NAT) from Mycobacterium tuberculosis (TBNAT) is a potential drug target for anti-tubercular therapy. Recombinant TBNAT is much less soluble and is produced in lower yields than the closely related NAT from Mycobacterium marinum (MMNAT). In order to explore MMNAT as a model for TBNAT in drug discovery, we compare the two mycobacterial NAT enzymes. Two site-directed mutants of MMNAT have been prepared and characterised: MMNAT71, Tyr --> Phe and MMNAT209, Met --> Thr, in which residues within 6 A of the active-site cysteine have been replaced with the corresponding residue from TBNAT. Two chimeric proteins have also been produced in which the third domain of MMNAT has been replaced by the third domain of TBNAT and vice versa. The activity profile of the chimeric proteins suggests a role for the third domain in the evolutionary divergence of NAT between these closely related mycobacterial species.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
6
|
Zhang N, Walters KJ. Insights into how protein dynamics affects arylamine N-acetyltransferase catalysis. Biochem Biophys Res Commun 2009; 385:395-401. [PMID: 19463782 DOI: 10.1016/j.bbrc.2009.05.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
Abstract
Arylamine N-acetyltransferases (NATs) detoxify arylamines and hydrazine xenobiotics by catalyzing their N-acetylation, which prevents their bioactivation. Here, we reveal how structural dynamics impact NAT protein function. Our data suggest that there are multiple conformations in the catalytic cavity of hamster NAT2 that exchange on the millisecond time scale and enable NATs to accommodate substrates of varying size. The regions spanning N177-L180 and D285-F288, which form unique structures in mammalian NATs, possess inherent motions on the nanosecond time scale. The latter segment becomes more restricted in its motions upon substrate binding according to our NMR XNOE data. This greater rigidity appears to stem from interactions with the substrate. Finally, NAT acetylation has been suggested to protect these enzymes from ubiquitination. Our NMR data on a catalytically active state of hamster NAT2 suggest that structural rearrangements caused by its acetylation might contribute to this protection.
Collapse
Affiliation(s)
- Naixia Zhang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
7
|
Abstract
Arylamine N-acetyltransferases (NATs) are phase II xenobiotic metabolizing enzymes, catalyzing acetyl-CoA-dependent N- and O-acetylation reactions. All NATs have a conserved cysteine protease-like Cys-His-Asp catalytic triad inside their active site cleft. Other residues determine substrate specificity, while the C-terminus may control hydrolysis of acetyl-CoA during acetyltransfer. Prokaryotic NAT-like coding sequences are found in >30 bacterial genomes, including representatives of Actinobacteria, Firmicutes and Proteobacteria. Of special interest are the nat genes of TB-causing Mycobacteria, since their protein products inactivate the anti-tubercular drug isoniazid. Targeted inactivation of mycobacterial nat leads to impaired mycolic acid synthesis, cell wall damage and growth retardation. In eukaryotes, genes for NAT are found in the genomes of certain fungi and all examined vertebrates, with the exception of canids. Humans have two NAT isoenzymes, encoded by highly polymorphic genes on chromosome 8p22. Syntenic regions in rodent genomes harbour two Nat loci, which are functionally equivalent to the human NAT genes, as well as an adjacent third locus with no known function. Vertebrate genes for NAT invariably have a complex structure, with one or more non-coding exons located upstream of a single, intronless coding region. Ubiquitously expressed transcripts of human NAT1 and its orthologue, murine Nat2, are initiated from promoters with conserved Sp1 elements. However, in humans, additional tissue-specific NAT transcripts may be expressed from alternative promoters and subjected to differential splicing. Laboratory animals have been widely used as models to study the effects of NAT polymorphism. Recently generated knockout mice have normal phenotypes, suggesting no crucial endogenous role for NAT. However, these strains will be useful for understanding the involvement of NAT in carcinogenesis, an area extensively investigated by epidemiologists, often with ambiguous results.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | | |
Collapse
|
8
|
Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol 2007; 375:178-91. [PMID: 18005984 DOI: 10.1016/j.jmb.2007.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/27/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
Arylamine N-acetyltransferase (NAT) enzymes are widespread in nature. They serve to acetylate xenobiotics and/or endogenous substrates using acetyl coenzyme A (CoA) as a cofactor. Conservation of the architecture of the NAT enzyme family from mammals to bacteria has been demonstrated by a series of prokaryotic NAT structures, together with the recently reported structure of human NAT1. We report here the cloning, purification, kinetic characterisation and crystallographic structure determination of NAT from Mycobacterium marinum, a close relative of the pathogenic Mycobacterium tuberculosis. We have also determined the structure of M. marinum NAT in complex with CoA, shedding the first light on cofactor recognition in prokaryotic NATs. Surprisingly, the principal CoA recognition site in M. marinum NAT is located some 30 A from the site of CoA recognition in the recently deposited structure of human NAT2 bound to CoA. The structure explains the Ping-Pong Bi-Bi reaction mechanism of NAT enzymes and suggests mechanisms by which the acetylated enzyme intermediate may be protected. Recognition of CoA in a much wider groove in prokaryotic NATs suggests that this subfamily may accommodate larger substrates than is the case for human NATs and may assist in the identification of potential endogenous substrates. It also suggests the cofactor-binding site as a unique subsite to target in drug design directed against NAT in mycobacteria.
Collapse
|
9
|
Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble MEM, Sim E. Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 2005; 390:115-23. [PMID: 15869465 PMCID: PMC1184567 DOI: 10.1042/bj20050277] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/22/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
The NATs (arylamine N-acetyltransferases) are a well documented family of enzymes found in both prokaryotes and eukaryotes. NATs are responsible for the acetylation of a range of arylamine, arylhydrazine and hydrazine compounds. We present here an investigation into the catalytic triad of residues (Cys-His-Asp) and other structural features of NATs using a variety of methods, including site-directed mutagenesis, X-ray crystallography and bioinformatics analysis, in order to investigate whether each of the residues of the catalytic triad is essential for catalytic activity. The catalytic triad of residues, Cys-His-Asp, is a well defined motif present in several families of enzymes. We mutated each of the catalytic residues in turn to investigate the role they play in catalysis. We also mutated a key residue, Gly126, implicated in acetyl-CoA binding, to examine the effects on acetylation activity. In addition, we have solved the structure of a C70Q mutant of Mycobacterium smegmatis NAT to a resolution of 1.45 A (where 1 A=0.1 nm). This structure confirms that the mutated protein is correctly folded, and provides a structural model for an acetylated NAT intermediate. Our bioinformatics investigation analysed the extent of sequence conservation between all eukaryotic and prokaryotic NAT enzymes for which sequence data are available. This revealed several new sequences, not yet reported, of NAT paralogues. Together, these studies have provided insight into the fundamental core of NAT enzymes, and the regions where sequence differences account for the functional diversity of this family. We have confirmed that each of the three residues of the triad is essential for acetylation activity.
Collapse
Affiliation(s)
- James Sandy
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Biochemistry 2004; 43:8234-46. [PMID: 15209520 DOI: 10.1021/bi0497244] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from acetyl coenzyme A (AcCoA) to arylamines, hydrazines, and their N-hydroxylated arylamine metabolites. The recently determined three-dimensional structures of prokaryotic NATs have revealed a cysteine protease-like Cys-His-Asp catalytic triad, which resides in a deep and hydrophobic pocket. This catalytic triad is strictly conserved across all known NATs, including hamster NAT2 (Cys-68, His-107, and Asp-122). Treatment of NAT2 with either iodoacetamide (IAM) or bromoacetamide (BAM) at neutral pH rapidly inactivated the enzyme with second-order rate constants of 802.7 +/- 4.0 and 426.9 +/- 21.0 M(-1) s(-1), respectively. MALDI-TOF and ESI mass spectral analysis established that Cys-68 is the only site of alkylation by IAM. Unlike the case for cysteine proteases, no significant inactivation was observed with either iodoacetic acid (IAA) or bromoacetic acid (BAA). Pre-steady state and steady state kinetic analysis with p-nitrophenyl acetate (PNPA) and NAT2 revealed a single-exponential curve for the acetylation step with a second-order rate constant of (1.4 +/- 0.05) x 10(5) M(-1) s(-1), followed by a slow linear rate of (7.85 +/- 0.65) x 10(-3) s(-1) for the deacetylation step. Studies of the pH dependence of the rate of inactivation with IAM and the rate of acetylation with PNPA revealed similar pK(a)(1) values of 5.23 +/- 0.09 and 5.16 +/- 0.04, respectively, and pK(a)(2) values of 6.95 +/- 0.27 and 6.79 +/- 0.25, respectively. Both rates reached their maximum values at pH 6.4 and decreased by only 30% at pH 9.0. Kinetic studies in the presence of D(2)O revealed a large inverse solvent isotope effect on both inactivation and acetylation of NAT2 [k(H)(inact)/k(D)(inact) = 0.65 +/- 0.02 and (k(2)/K(m)(acetyl))(H)/(k(2)/K(m)(acetyl))(D) = 0.60 +/- 0.03], which were found to be identical to the fractionation factors (Phi) derived from proton inventory studies of the rate of acetylation at pL 6.4 and 8.0. Substitution of the catalytic triad Asp-122 with either alanine or asparagine resulted in the complete loss of protein structural integrity and catalytic activity. From these results, it can be concluded that the catalytic mechanism of NAT2 depends on the formation of a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)). However, in contrast to the case with cysteine proteases, a pH-dependent protein conformational change is likely responsible for the second pK(a), and not deprotonation of the thiolate-imidazolium ion. In addition, substitutions of the triad aspartate are not tolerated. The enzyme appears, therefore, to be engineered to rapidly form a stable acetylated species poised to react with an arylamine substrate.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Mushtaq A, Payton M, Sim E. The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. J Biol Chem 2002; 277:12175-81. [PMID: 11799105 DOI: 10.1074/jbc.m104365200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arylamine N-acetyltransferases (NATs) are a homologous family of enzymes, which acetylate arylamines, arylhydroxylamines, and arylhydrazines by acetyl transfer from acetyl-coenzyme A (Ac-CoA) and are found in many organisms. NAT was first identified as the enzyme responsible for the inactivation of the anti-tubercular drug isoniazid in humans. The three-dimensional structure of NAT from Salmonella typhimurium has been resolved and shown to have three distinct domains and an active site catalytic triad composed of "Cys(69)-His(107)-Asp(122)," which is typical of hydrolytic enzymes such as the cysteine proteases. The crystal unit cell consists of a dimer of tetramers, with the C terminus of individual monomers juxtaposed. To investigate the function of the first two domains of full-length NAT from S. typhimurium and to investigate the role of the C terminus of NAT, truncation mutants were made with either the C-terminal undecapeptide or the entire third domain (85 amino acids) missing. Unlike the full-length NAT protein (281 amino acids), the truncation mutants of NAT from S. typhimurium are toxic when overexpressed intracellularly in Escherichia coli. Full-length NAT hydrolyses Ac-CoA but only in the presence of an arylamine substrate. Both truncation mutants, however, hydrolyze Ac-CoA even in the absence of arylamine substrate, illustrating that the C-terminal undecapeptide controls hydrolysis of Ac-CoA by NAT from S. typhimurium.
Collapse
Affiliation(s)
- Adeel Mushtaq
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| | | | | |
Collapse
|
12
|
De Angelis J, Gastel J, Klein DC, Cole PA. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J Biol Chem 1998; 273:3045-50. [PMID: 9446620 DOI: 10.1074/jbc.273.5.3045] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT, EC 2.3.1.87) is the penultimate enzyme in melatonin biosynthesis. This enzyme is of special biological interest because large changes in its activity drive the large night/day rhythm in circulating melatonin in vertebrates. In this study the kinetic mechanism of AANAT action was studied using bacterially expressed glutathione S-transferase (GST)-AANAT fusion protein. The enzymologic behavior of GST-AANAT and cleaved AANAT was essentially identical. Two-substrate kinetic analysis generated an intersecting line pattern characteristic of a ternary complex mechanism. The dead end inhibitor analog desulfo-CoA was competitive versus acetyl-CoA and noncompetitive versus tryptamine. Tryptophol was not an alternative substrate but was a dead end competitive inhibitor versus tryptamine and an uncompetitive inhibitor versus acetyl-CoA, indicative of an ordered binding mechanism requiring binding of acetyl-CoA first. N-Acetyltryptamine, a reaction product, was a noncompetitive inhibitor versus tryptamine and uncompetitive with respect to acetyl-CoA. Taken together these results support an ordered BiBi ternary complex (sequential) kinetic mechanism for AANAT and provide a framework for inhibitor design.
Collapse
Affiliation(s)
- J De Angelis
- Laboratory of Bioorganic Chemistry, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
13
|
Lee FJ, Lin LW, Smith JA. A glucose-repressible gene encodes acetyl-CoA hydrolase from Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39129-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Lee FJ, Lin LW, Smith JA. Purification and characterization of an acetyl-CoA hydrolase from Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 184:21-8. [PMID: 2570693 DOI: 10.1111/j.1432-1033.1989.tb14985.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acetyl-CoA hydrolase, which hydrolyzes acetyl-CoA to acetate and CoASH, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 1080-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, gel filtration and hydroxylapatite. The molecular mass of the native yeast acetyl-CoA hydrolase was estimated to be 64 +/- 5 kDa by gel-filtration chromatography. SDS/PAGE analysis revealed that the denatured molecular mass was 65 +/- 2 kDa and together with that for the native enzyme indicates that yeast acetyl-CoA hydrolase was monomeric. The enzyme had a pH optimum near 8.0 and its pI was approximately 5.8. Several acyl-CoA derivatives of varying chain length were tested as substrates for yeast acetyl-CoA hydrolase. Although acetyl-CoA hydrolase was relatively specific for acetyl-CoA, longer acyl-chain CoAs were also hydrolyzed and were capable of functioning as inhibitors during the hydrolysis of acetyl-CoA. Among a series of divalent cations, Zn2+ was demonstrated to be the most potent inhibitor. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate, a histidine-modifying reagent.
Collapse
Affiliation(s)
- F J Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114
| | | | | |
Collapse
|
15
|
Purification and characterization of an N alpha-acetyltransferase from Saccharomyces cerevisiae. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68130-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
|
17
|
Andres HH, Klem AJ, Schopfer LM, Harrison JK, Weber WW. On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J). J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68529-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Bame KJ, Rome LH. Acetyl-coenzyme A:alpha-glucosaminide N-acetyltransferase. Evidence for an active site histidine residue. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Andres HH, Kolb HJ, Schreiber RJ, Weiss L. Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 746:193-201. [PMID: 6882770 DOI: 10.1016/0167-4838(83)90074-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It could be demonstrated that a sulfhydryl group is involved in the catalysis of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver (EC 2.3.1.5). From ping-pong kinetics it was concluded that there is a covalent acetyl-enzyme intermediate. The respective intermediate could be isolated and chemically characterized as a cysteinyl thioester. Electrophoretically homogeneous acetyl-CoA:acylamine N-acetyltransferase from pigeon liver was able to acetylate a broad variety of aromatic and aliphatic amines from different acetyldonors such as acetyl-CoA, p-nitroacetanilide and p-nitrophenylacetate. Apparent Km values were determined for a number of acetyl donors and acetyl acceptors. Additionally, Ki values were evaluated for CoA, 3',5'-ADP and AMP. Correlation studies of basicity of acceptor amines and acetylation rate demonstrated that there is a limit of the pKa value (about pKa = 1) where the covalently-bound acetyl-enzyme intermediate can still be saponified. Testing crude liver homogenates of several animals including turkey, duck, chicken, cow, pig, horse, sheep, carp, trout and herring the outstanding nature of the pigeon liver enzyme in acetylating very weakly basic amines could be demonstrated. It is shown that the enzyme is quite flexible concerning sterically different acceptor amines, because arylamines whose amino group was effected by large o-substituents could be quantitatively acetylated. After enzymatic acetylation of the first amino group, 1,2-phenylendiamine formed the heterocyclic compound 2-methylbenzimidazole by a spontaneous condensation reaction. There is evidence that with distinct amines formation of heterocyclic compounds may also occur in vivo.
Collapse
|
20
|
Lebo R, Kredich N. Inactivation of human gamma-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme-ligand complexes. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)40865-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Kinetic evidence for an acyl-enzyme intermediate in D-alanine carboxypeptidases of Bacillus subtilis and Bacillus stearothermophilus. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40451-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Corfield AP, Ferreira do Amaral C, Wember M, Schauer R. The metabolism of O-acyl-N-acylneuraminic acids. Biosynthesis of O-acylated sialic acids in bovine and equine submandibular glands. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 68:597-610. [PMID: 976276 DOI: 10.1111/j.1432-1033.1976.tb10848.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. The enzymic synthesis of 4-O-acetylneuraminic acid, 4-O-acetyl-N-glycolyneuraminic acid, 4-O-glycolyl-N-acetylneuraminic acid, 9-O-acetyl-N-acetylneuraminic acid and 9-O-acetyl-N-glycolyneuraminic acid is shown using radioactive precursors with surviving slices, membrane fractions or particle-free homogenates from bovine and equine submandibular glands. 2. Acetyl-CoA: N-acetylneuraminate-9(or 7)-O-acetyltransferase activity was found in a microsome fraction and in the cytosol of bovine submandibular glands. The properties of the membrane-bound enzyme acting on endogenous, glycoprotein-bound N-acetyl- and N-glycolylneuraminic acids were compared with those of the soluble enzyme, O-acetylating exogenous, non-glycosidically bound N-acetyl- and N-glycolyneuraminic acids. 3. A rapid, radioactive assay for the membrane-bound enzyme activity is described. The enzyme activity shows an optimum at pH 7 and has a Km for acetyl-CoA of 0.1 mM. The enzyme is inhibited by p-chloromercuribenzoate and iodoacetate. Divalent cations, EDTA and glutathione have no influence on its activity while CoA proved to be a competitive inhibitor with a Ki of 0.56 mM. 4. The soluble enzyme activity, assayed using a radioactive procedure, shows Km values of 0.01 mM, 0.5 mM and 0.39 mM for acetyl-CoA, N-acetylneuraminic acid and N-glycolylneuraminic acid respectively. The general properties are similar to those found for the membrane-bound enzyme, except that membrane-bound activity is stable for longer on storage at 4 degrees C. 5. Acetyl-CoA, acyl-CoA and CoA concentrations of 33 nmol, 65 nmol and 106 nmol/g wet tissue respectively are found in fresh bovine submandibular glands. 6. The occurrence of the CMP-glycosides of N-acetylneuraminic acid, 9-O-acetyl-N-acetyl-neuraminic acid and N-glycolylneuraminic acid in bovine submandibular glands is demonstrated. 7. The results are discussed in relation to the general metabolism of acylneuraminic acids.
Collapse
|
23
|
White H, Solomon F, Jencks WP. Utilization of the inactivation rate of coenzyme A transferase by thiol reagents to determine properties of the enzyme-CoA intermediate. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33705-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Abstract
Choline acetyltransferase (EC 2.3.1.6) catalyzes the biosynthesis of acetylcholine according to the following chemical equation: acetyl-CoA + choline in equilibrium to acetylcholine + CoA. In addition to nervous tissue, primate placenta is the only other animal source which contains appreciable acetylcholine and its biosynthetic enzyme. Human brain caudate nucleus and human placental choline acetyltransferase were purified to electrophoretic homogeneity using ion-exchange and blue dextran-Sepharose affinity chromatography. The molecular weights determined by Sephadex G-150 gel filtration and sodium dodecyl sulfate gel electrophoresis are 67000 plus or minus 3000. N-Ethylmaleimide, p-chloromercuribenzoate, and dithiobis(2-nitrobenzoic acid) inhibit the enzyme. Dithiothreitol reverses the inhibition produced by the latter two reagents. The pKa of the group associated with N-ethylmaleimide inhibition is 8.6 plus or minus 0.3. A chemically competent acetyl-thioenzyme is isolable by Sephadex gel filtration. The enzymes from the brain and placenta are thus far physically and biochemically indistinguishable.
Collapse
|
25
|
|