1
|
Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 2012; 193:109-23. [PMID: 23105015 DOI: 10.1534/genetics.112.146993] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of ribonucleoprotein (RNP) granules form in eukaryotic cells to regulate the translation, decay, and localization of the encapsulated messenger RNA (mRNAs). The work here examined the assembly and function of two highly conserved RNP structures, the processing body (P body) and the stress granule, in the yeast Saccharomyces cerevisiae. These granules are induced by similar stress conditions and contain translationally repressed mRNAs and a partially overlapping set of protein constituents. However, despite these similarities, the data indicate that these RNP complexes are independently assembled and that this assembly is controlled by different signaling pathways. In particular, the cAMP-dependent protein kinase (PKA) was found to control P body formation under all conditions examined. In contrast, the assembly of stress granules was not affected by changes in either PKA or TORC1 signalling activity. Both of these RNP granules were also detected in stationary-phase cells, but each appears at a distinct time. P bodies were formed prior to stationary-phase arrest, and the data suggest that these foci are important for the long-term survival of these quiescent cells. Stress granules, on the other hand, were not assembled until after the cells had entered into the stationary phase of growth and their appearance could therefore serve as a specific marker for the entry into this quiescent state. In all, the results here provide a framework for understanding the assembly of these RNP complexes and suggest that these structures have distinct but important activities in quiescent cells.
Collapse
|
2
|
Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2010; 187:441-54. [PMID: 21078689 DOI: 10.1534/genetics.110.123372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
Collapse
|
3
|
Gray JV, Petsko GA, Johnston GC, Ringe D, Singer RA, Werner-Washburne M. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2004; 68:187-206. [PMID: 15187181 PMCID: PMC419917 DOI: 10.1128/mmbr.68.2.187-206.2004] [Citation(s) in RCA: 436] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The cells of organisms as diverse as bacteria and humans can enter stable, nonproliferating quiescent states. Quiescent cells of eukaryotic and prokaryotic microorganisms can survive for long periods without nutrients. This alternative state of cells is still poorly understood, yet much benefit is to be gained by understanding it both scientifically and with reference to human health. Here, we review our knowledge of one "model" quiescent cell population, in cultures of yeast grown to stationary phase in rich media. We outline the importance of understanding quiescence, summarize the properties of quiescent yeast cells, and clarify some definitions of the state. We propose that the processes by which a cell enters into, maintains viability in, and exits from quiescence are best viewed as an environmentally triggered cycle: the cell quiescence cycle. We synthesize what is known about the mechanisms by which yeast cells enter into quiescence, including the possible roles of the protein kinase A, TOR, protein kinase C, and Snf1p pathways. We also discuss selected mechanisms by which quiescent cells maintain viability, including metabolism, protein modification, and redox homeostasis. Finally, we outline what is known about the process by which cells exit from quiescence when nutrients again become available.
Collapse
Affiliation(s)
- Joseph V Gray
- Division of Molecular Genetics, Faculty of Biomedical and Life Sciences, University of Glasgow, Anderson College, 56 Dumbarton Rd., Glasgow G11 6NU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
4
|
Cytryńska M, Frajnt M, Jakubowicz T. Saccharomyces cerevisiae pyruvate kinase Pyk1 is PKA phosphorylation substrate in vitro. FEMS Microbiol Lett 2001; 203:223-7. [PMID: 11583852 DOI: 10.1111/j.1574-6968.2001.tb10845.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Fractionation of Saccharomyces cerevisiae postribosomal extract on DEAE-cellulose revealed two fractions of cAMP-dependent protein kinase (PKA-1 and PKA-2). The presence of PKA in both fractions was confirmed by immunoblotting with anti-Bcy1 antibodies. Yeast pyruvate kinase Pyk1 identified by amino acid microsequencing analysis and immunoblotting with anti-Pyk1 antibodies copurified with the PKA-1 but not the -2 fraction. Pyk1 can be phosphorylated by yeast PKA in vitro in the presence of cAMP and cGMP. Two-dimensional gel electrophoretic analysis revealed four phosphorylated forms of Pyk1 modified by PKA. In phosphorylation of Pyk1 mainly the Tpk2 catalytic subunit of yeast PKA was involved.
Collapse
Affiliation(s)
- M Cytryńska
- Department of Molecular Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | |
Collapse
|
5
|
Affiliation(s)
- L Wiesmüller
- Heinrich-Pette-Institut für exp. Virologie und Immunologie, Universität Hamburg, F.R.G
| | | |
Collapse
|
6
|
Bussereau F, Dupont CH, Boy-Marcotte E, Mallet L, Jacquet M. The CCS1 gene from Saccharomyces cerevisiae which is involved in mitochondrial functions is identified as IRA2 an attenuator of RAS1 and RAS2 gene products. Curr Genet 1992; 21:325-9. [PMID: 1326414 DOI: 10.1007/bf00351690] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ccs1-1 mutation of Saccharomyces cerevisiae, which has been previously described, is associated with an increase in cytochrome content, in respiration, and in ATP synthesis. In addition, this mutation leads to the same phenotype as cells de-regulated in the cAMP pathway. From a yeast genomic library, we have isolated a DNA fragment in a recombinant plasmid pCD1 which complements the ccs1-1 mutation. Homologous integration of this DNA in the genome occurs at the CCS1 locus. An 11 kb of the DNA insert is necessary for complementation. Sequencing part of the fragment identifies CCS1 as the IRA2 gene. The IRA2 gene is known to encode an attenuator of RAS gene product activity which stimulates the GTPase activity of the RAS proteins. This result underlines the involvement of cAMP-dependent phosphorylation in mitochondrial function. We present the sequence of 1 kb DNA upstream of the putative ATG of the IRA2/CCS1 gene product which is devoid of an ORF and could contain several regulatory sites.
Collapse
Affiliation(s)
- F Bussereau
- Université Paris-Sud, Institut de Génétique et de Microbiologie, Orsay, France
| | | | | | | | | |
Collapse
|
7
|
Uno I. Role of signal transduction systems in cell proliferation in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 1992; 139:309-32. [PMID: 1330967 DOI: 10.1016/s0074-7696(08)61415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- I Uno
- Life Science Research Center, Nippon Steel Corporation, Kawasaki, Japan
| |
Collapse
|
8
|
Werner-Washburne M, Brown D, Braun E. Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological status of the cell. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55049-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Morishita T, Uno I. A dominant interfering mutation (CYR3) of the Saccharomyces cerevisiae RAS2 gene. J Bacteriol 1991; 173:4533-6. [PMID: 1906067 PMCID: PMC208119 DOI: 10.1128/jb.173.14.4533-4536.1991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dominant cyclic AMP-requiring mutation CYR3 had been previously reported as a mutation in the regulatory subunit of cyclic AMP-dependent protein kinase. However, recharacterization revealed that the CYR3 mutation was a nonconditional dominant lethal mutation and was a missense allele of RAS2 which results from the substitution of aspartic acid for glycine at amino acid 22.
Collapse
Affiliation(s)
- T Morishita
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | |
Collapse
|
10
|
Grandori R, Popolo L, Vai M, Alberghina L. cAMP promotes the synthesis in early G1 of gp115, a yeast glycoprotein containing glycosyl-phosphatidylinositol. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77302-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Heideman W, Casperson GF, Bourne HR. Adenylyl cyclase in yeast: antibodies and mutations identify a regulatory domain. J Cell Biochem 1990; 42:229-42. [PMID: 2187889 DOI: 10.1002/jcb.240420406] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adenylyl cyclase system of the yeast Saccharomyces cerevisiae contains the CYR1 polypeptide, responsible for catalyzing formation of cAMP from ATP, and two RAS polypeptides, responsible for stimulation of cAMP synthesis by guanine nucleotides. We have obtained rabbit antibodies that recognize the CYR1 protein. Antibodies were raised against synthetic oligopeptides and against a recombinant beta-galactosidase/CYR1 fusion protein. These antibodies have allowed the identification of the CYR1 gene product as a 205 kDa protein. Treatment with trypsin (2 micrograms/ml) reduced the size of the CYR1 protein from 205 to 155 kDa and produced an activated enzyme which no longer responded to guanine nucleotides. This result is consistent with a model in which adenylyl cyclase activity is regulated by an inhibitory domain near the amino-terminus of the CYR1 protein. This model is further supported by the finding that adenylyl cyclase activity is also markedly elevated and unresponsive to guanine nucleotides in mutant yeast strains that express only the carboxy-terminal half of the CYR1 protein. Treatment with high trypsin concentrations (greater than 10 micrograms/ml) caused release of adenylyl cyclase activity from the membrane. Comparison of immunoreactive CYR1 fragments released by trypsin and membrane bound genetically altered proteins suggests that the CYR1 protein is attached to the membrane via a separate trypsin sensitive anchoring protein rather than via a membrane anchoring domain.
Collapse
Affiliation(s)
- W Heideman
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | | | |
Collapse
|
12
|
Garrett S, Broach J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 1989; 3:1336-48. [PMID: 2558053 DOI: 10.1101/gad.3.9.1336] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The yeast Saccharomyces cerevisiae contains two functionally redundant genes RAS1 and RAS2, which are homologous to the mammalian ras gene family and are required for vegetative growth. We isolated and characterized five temperature-sensitive alleles of RAS2. In a ras1 strain, these alleles cause growth arrest at the G1 stage of the cell cycle. Revertants capable of growth at the nonpermissive temperature define four recessive, extragenic complementation groups. Suppressors in one complementation group (designated yak1) are particularly intriguing because they appear to alleviate only the growth defect of the temperature-sensitive ras mutants and do not show any of the phenotypes, such as heat shock sensitivity or starvation sensitivity, associated with increased production of cAMP. The YAK1 gene has been cloned, and disruptions generated in vitro reveal that it is not essential for growth and that its loss confers growth to a strain deleted for tpk1, tpk2, and tpk3, the structural genes for the catalytic subunit of the cAMP-dependent protein kinase. These results place Yak1 downstream from, or on a parallel pathway to, the kinase step in the Ras/cAMP pathway. Finally, the coding region predicts a protein with significant homology to the family of protein kinases, suggesting that loss of cAMP-dependent protein kinase function can be suppressed by the loss of a second protein kinase.
Collapse
Affiliation(s)
- S Garrett
- Department of Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|
13
|
Cherry JR, Johnson TR, Dollard C, Shuster JR, Denis CL. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell 1989; 56:409-19. [PMID: 2644045 DOI: 10.1016/0092-8674(89)90244-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been proposed in several eukaryotic systems that the regulation of gene transcription involves phosphorylation of specific transcription factors. We report here that the yeast transcriptional activator ADR1 is phosphorylated in vitro by cyclic AMP-dependent protein kinase and that mutations which enhance the ability of ADR1 to activate ADH2 expression decrease ADR1 phosphorylation. We also show that increased kinase activity in vivo inhibits ADH2 expression in an ADR1 allele-specific manner. Our data suggest that glucose repression of ADH2 is in part mediated through a cAMP-dependent phosphorylation-inactivation of the ADR1 regulatory protein.
Collapse
Affiliation(s)
- J R Cherry
- Department of Biochemistry, University of New Hampshire, Durham 03824
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Golubovskaya IN. Meiosis in Maize: mei Genes and Conception of Genetic Control of Meiosis. ADVANCES IN GENETICS 1989. [DOI: 10.1016/s0065-2660(08)60225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Sipiczki M. The role of sterility genes (ste and aff) in the initiation of sexual development in Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:529-34. [PMID: 3185514 DOI: 10.1007/bf00339626] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Haploid homothallic strains of Schizosaccharomyces pombe with mutations in any of nine "sterility genes" (ste) do not mate with wild-type fertile strains. Those defective in genes ste1 to ste4 and ste7 to ste9 are also deficient in meiosis and sporulation. I found that the ste1, ste3 and ste8 genes act very early in the sexual development, presumably before the pat1-controlled conjugation-specific event. ste5 and ste6 exert their function downstream of pat1 in the initiation of conjugation and do not play any role in the meiotic pathway. ste2, ste4, ste7 and ste9 are involved in both sexual pathways: they seem to act downstream of pat1 in conjugation but upstream of pat1 in the initiation of meiosis. A new gene, aff1, whose defective allele suppresses the pat1-114-provoked haploid sporulation and arrest of vegetative growth is also described. It is supposed that the aff1+ gene product participates in a cascade of regulatory events, as a factor antagonistic to pat1.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, L.K. University, Debrecen, Hungary
| |
Collapse
|
17
|
Uno I, Oshima T, Ishikawa T. Localization of the regulatory subunit of cAMP-dependent protein kinase in Saccharomyces cerevisiae. Exp Cell Res 1988; 176:360-5. [PMID: 3288487 DOI: 10.1016/0014-4827(88)90337-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The subcellular distribution of the regulatory subunit of cAMP-dependent protein kinase in Saccharomyces cerevisiae cells was determined by subcellular fractionation and indirect immunofluorescence microscopy using the bcy1 mutant deficient in the regulatory subunit as control. The regulatory subunit of cAMP-dependent protein kinase showing cAMP-binding activity was identified as a single protein of 50 kDa by photoaffinity labeling and immunoblotting. The regulatory subunit was concentrated in a nuclear fraction in addition to a cytoplasmic fraction. By comparison of the regulatory subunit distribution with the DNA localization, the area detected by the indirect immunofluorescence was identified as the nucleus.
Collapse
Affiliation(s)
- I Uno
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
18
|
|
19
|
Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ. Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47461-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 1987; 48:789-99. [PMID: 3545497 DOI: 10.1016/0092-8674(87)90076-6] [Citation(s) in RCA: 434] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gene corresponding to the S. cerevisiae cell division cycle mutant cdc25 has been cloned and sequenced, revealing an open reading frame encoding a protein of 1589 amino acids that contains no significant homologies with other known proteins. Cells lacking CDC25 have low levels of cyclic AMP and decreased levels of Mg2+-dependent adenylate cyclase activity. The lethality resulting from disruption of the CDC25 gene can be suppressed by the presence of the activated RAS2val19 gene, but not by high copy plasmids expressing a normal RAS2 or RAS1 gene. These results suggest that normal RAS is dependent on CDC25 function. Furthermore, mutationally activated alleles of CDC25 are capable of inducing a set of phenotypes similar to those observed in strains containing a genetically activated RAS/adenylate cyclase pathway, suggesting that CDC25 encodes a regulatory protein. We propose that CDC25 regulates adenylate cyclase by regulating the guanine nucleotide bound to RAS proteins.
Collapse
|
21
|
Franks DJ, Whitfield JF, Durkin JP. Viral p21 Ki-RAS protein: a potent intracellular mitogen that stimulates adenylate cyclase activity in early G1 phase of cultured rat cells. J Cell Biochem 1987; 33:87-94. [PMID: 3553214 DOI: 10.1002/jcb.240330203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rat kidney (NRK) cells infected with a temperature-sensitive mutant of the Kirsten sarcoma virus were arrested in the G0/G1 phase of their cell cycle by incubation in serum-deficient medium at a p21-inactivating temperature of 41 degrees C. These quiescent ts K-NRK cells were then stimulated to transit G1 and initiate DNA replication by lowering the temperature to 36 degrees C, which rapidly reactivated p21. Reactivating the viral Ki-RAS protein by temperature shift led to an increase in adenylate cyclase activity in early G1 phase. The Ki-RAS protein increased the sensitivity of adenylate cyclase to guanyl nucleotides by a mechanism that seemed to involve inactivation of the enzyme's inhibitory G1 regulatory protein.
Collapse
|
22
|
Lisziewicz J, Godany A, Förster H, Küntzel H. Isolation and nucleotide sequence of a Saccharomyces cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61539-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Whitfield JF, Durkin JP, Franks DJ, Kleine LP, Raptis L, Rixon RH, Sikorska M, Walker PR. Calcium, cyclic AMP and protein kinase C--partners in mitogenesis. Cancer Metastasis Rev 1987; 5:205-50. [PMID: 3030578 DOI: 10.1007/bf00046999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence is steadily mounting that the proto-oncogenes, whose products organize and start the programs that drive normal eukaryotic cells through their chromosome replication/mitosis cycles, are transiently stimulated by sequential signals from a multi-purpose, receptor-operated mechanism (consisting of internal surges of Ca2+ and bursts of protein kinase C activity resulting from phosphatidylinositol 4,5-bisphosphate breakdown and the opening of membrane Ca2+ channels induced by receptor-associated tyrosine-protein kinase activity) and bursts of cyclic AMP-dependent kinase activity. The bypassing or subversion of the receptor-operated Ca2+/phospholipid breakdown/protein kinase C signalling mechanism is probably the basis of the freeing of cell proliferation from external controls that characterizes all neoplastic transformations.
Collapse
|
24
|
14 Protein Phosphorylation in Prokaryotes and Single-Celled Eukaryotes. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s1874-6047(08)60265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Otaka E, Kumazaki T, Matsumoto K. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase. J Bacteriol 1986; 167:713-5. [PMID: 3015887 PMCID: PMC212948 DOI: 10.1128/jb.167.2.713-715.1986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using wild-type Saccharomyces cerevisiae strains and mutants which are defective in the regulatory subunit of cyclic-AMP-dependent protein kinase (bcy1) and phosphoprotein phosphatase activity (ppd1), we demonstrated that a cyclic-AMP-dependent protein kinase phosphorylated the S. cerevisiae ribosomal protein S10 in vivo. S10 was not dephosphorylated in bcy1 or ppd1 mutants after heat shock. The phosphorylated forms of S10 were diminished during the stationary phase in bcy1 and ppd1 mutants as well as in wild-type cells.
Collapse
|
26
|
|
27
|
Fukui Y, Kozasa T, Kaziro Y, Takeda T, Yamamoto M. Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 1986; 44:329-36. [PMID: 3002633 DOI: 10.1016/0092-8674(86)90767-1] [Citation(s) in RCA: 228] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have analyzed the function of the only ras homolog in S. pombe detectable by Southern blotting, ras1, which is homologous to mammalian ras genes and has been cloned. We have disrupted the ras1 gene and have replaced it with ras1Val17, which corresponds to a transforming variant of mammalian ras. Loss of ras1 activity by disruption results in the complete inability to mate. The cell body of a ras1- strain is extensively deformed, and a ras1-/ras1- diploid sporulates very poorly. Unlike RAS1 and RAS2 of S. cerevisiae, ras1 of S. pombe appears to have no effect on adenylate cyclase activity. This suggests that the target enzymes presumably modulated by ras proteins in signal transduction are not the same for all organisms.
Collapse
|
28
|
Hanes SD, Koren R, Bostian KA. Control of cell growth and division in Saccharomyces cerevisiae. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1986; 21:153-223. [PMID: 3530635 DOI: 10.3109/10409238609113611] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Considerable advances have been made in recent years in our understanding of the biochemistry of protein and nucleic acid synthesis and, particularly, the molecular biology of gene expression in eukaryotes. The yeast Saccharomyces cerevisiae, and to a lesser extent Schizosaccharomyces pombe, has had a preeminent role as a focus for these studies, principally because of the facility with which these organisms can be experimentally manipulated biochemically and genetically. This review will be designed to critically examine and integrate recent advances in several vital areas of regulatory control of enzyme synthesis in yeast: structure and organization of DNA, transcriptional regulation, post-transcriptional modification, control of translation, post-translational modification and secretion, and cell-cycle modulation. It will attempt to emphasize and illustrate, where detailed information is available, principal underlying molecular mechanisms, and it will attempt to make relevant comparisons of this material to inferred and demonstrated facets of regulatory control of enzyme and protein synthesis in higher eukaryotes.
Collapse
|
29
|
Kataoka T, Broek D, Wigler M. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 1985; 43:493-505. [PMID: 2934138 DOI: 10.1016/0092-8674(85)90179-5] [Citation(s) in RCA: 366] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have cloned CYR1, the S. cerevisiae gene encoding adenylate cyclase. The DNA sequence of CYR1 can encode a protein of 2026 amino acids. This protein would contain a central region comprised of over twenty copies of a 23 amino acid repeating unit with remarkable homology to a 24 amino acid tandem repeating unit of a trace human serum glycoprotein. Gene disruption and biochemical experiments indicate that the catalytic domain of adenylate cyclase resides in the carboxyl terminal 400 amino acids. Elevated expression of adenylate cyclase suppresses the lethality that otherwise results from loss of RAS gene function in yeast. Yeast adenylate cyclase, made in E. coli, cannot be activated by added RAS protein.
Collapse
|
30
|
Affiliation(s)
- K Matsumoto
- Department of Industrial Chemistry, Tottori University, Japan
| | | | | |
Collapse
|
31
|
Matsumoto K, Uno I, Kato K, Ishikawa T. Isolation and characterization of a phosphoprotein phosphatase-deficient mutant in yeast. Yeast 1985; 1:25-38. [PMID: 2851899 DOI: 10.1002/yea.320010104] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ppd1 mutant of yeast, Saccharomyces cerevisiae, was isolated as a suppressor of the cyr2 mutation which caused alteration of the catalytic subunit of cAMP-dependent protein kinase. Three peaks of phosphoprotein phosphatase activity (peak I, II and III) were identified by DEAE-Sephacel chromatography of crude extracts of the wild-type strain. The ppd1 mutant was deficient in peak III phosphoprotein phosphatase activity. The peak III enzyme efficiently utilized the phosphorylated forms of NAD-dependent glutamate dehydrogenase and trehalase as substrate. The ppd1 mutation did not suppress the cyr1, CYR3 or ras1 ras2 mutations. The ppd1 locus was located on chromosome II and had identical characteristics with glc1. The ppd1 mutation suppressed the G1 arrest caused by nutritional limitation, but maintained sensitivity to mating pheromone. In diploids homozygous for the ppd1 mutation, no premeiotic DNA replication and commitment to intragenic recombination occurred and no spores were formed, suggesting that the accumulation of phosphorylated proteins in the absence of one of the phosphoprotein phosphatases is required for mitosis but not for the initiation of meiosis.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Industrial Chemistry, Tottori University, Japan
| | | | | | | |
Collapse
|
32
|
|
33
|
Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 1985; 41:763-9. [PMID: 3891097 DOI: 10.1016/s0092-8674(85)80057-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In these experiments we demonstrate that purified RAS proteins, whether derived from the yeast RAS1 or RAS2 or the human H-ras genes, activate yeast adenylate cyclase in the presence of guanine nucleotides. These results confirm the prediction of earlier genetic and biochemical data and for the first time provide a complete biochemical assay for RAS protein function. Furthermore, we observe a biochemical difference between the RAS2 and RAS2val19 proteins in their ability to activate adenylate cyclase after preincubation with GTP.
Collapse
|
34
|
de Gunzburg J. [Mode of action of cyclic amp in prokaryotes and eukaryotes, CAP and cAMP-dependent protein kinases]. Biochimie 1985; 67:563-82. [PMID: 2413906 DOI: 10.1016/s0300-9084(85)80196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
cAMP is an ubiquitous compound which is involved in the regulation of many biological processes. In bacteria such as E. coli, cAMP mediates the activation of catabolic operons via the CAP protein. The CAP-cAMP complex, whose tridimensional structure has recently been established, binds to the promoter regions of catabolic operons at a specific site, and activates their transcription by inducing RNA polymerase to bind and initiate transcription at the correct site. Various phenomenons including protein-protein interactions or CAP-induced DNA bending or kinking could be involved in the process of forming the open transcription complex. In eukaryotes, cAMP activates cAMP dependent protein kinases which covalently modify proteins by phosphorylation on serine or threonine residues. The catalytically inactive holoenzyme is generally a tetramer containing two regulatory subunits, each capable of binding two molecules of cAMP, and two catalytic subunits. In mammalian cells, two types of cAMP dependent protein kinases (I and II) can be distinguished on the basis of their regulatory subunits; their relative proportion varies from tissue to tissue. Binding of cAMP to the regulatory subunits induces the dissociation of the holoenzyme and releases the free and active catalytic subunits. Phosphorylation of proteins occurs at sequences containing two basic residues in the vicinity of the phosphorylated serine or threonine. A heat-stable protein, present in most eukaryotic cells, specifically interacts with the catalytic subunit and inhibits its activity. The amino-acid sequence of cAMP dependent protein kinases has recently been determined. It is interesting to note that the domains responsible for cAMP binding by the regulatory subunits of mammalian cAMP dependent protein kinases and CAP share important sequence homologies. The same phenomenon is observed concerning the domain responsible for ATP binding to the catalytic subunit of cAMP dependent protein kinases and that of tyrosine-specific protein kinases from oncoviruses. Other eukaryotic proteins such as S-adenosyl-L-homocysteine (SAH) hydrolase are also capable of binding cAMP. The latter is involved in the regulation of S-adenosyl-L-methionine dependent methylations, and its activity could be affected by cAMP. Besides its role as an effector of enzymatic activity via phosphorylation, such as in the regulation of glycogen metabolism, cAMP has recently been shown to activate the transcription of a number of eukaryotic genes. This process probably also involves protein phosphorylation, but its precise mechanism remains to be understood.
Collapse
|
35
|
Jacquet M, Camonis J. [Control of the cell division cycle and sporulation in Saccharomyces cerevisiae by the cyclic AMP system]. Biochimie 1985; 67:35-43. [PMID: 2986730 DOI: 10.1016/s0300-9084(85)80228-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper reviews recent data on the adenylate cyclase system of the yeast Saccharomyces cerevisiae. Since the discovery of yeast adenylate cyclase mutants and the possibility of molecular biological analysis, adenylate cyclase and the subsequent steps in the cAMP cascade have become subject of intense investigation. CYR1, the structural gene for the adenylate cyclase catalytic subunit is necessary for cell division and in diploid cells is involved in the choice between sporulation and cell division. The cell division cycle in yeast is initiated by a step called START, which has been defined by mutations causing an arrest of the cells in an unbudded state. One class of mutation causes the cell to arrest at the same stage of the cell division cycle as the pheromone implicated in conjugation. A second class causes cells to cease growth in a different manner, but one which is similar to the arrest brought about by nutient deprivation. The adenylate cyclase gene belongs to the second class and has been identified as CDC35. Two genes of the first class have been cloned and sequenced. CDC28 codes for a kinase which has homology with the src proto-oncogene family. CDC36 is partly homologous with the oncogene ets. Two genes related to the ras oncogene family have also been implicated in the control of START. START can be dissociated in two subsequent phases, the first being controlled by the AMPc system and the second including proto-oncogenes. A model in which cAMP is a positive indicator of available nutrients such as nitrogen has been constructed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
36
|
Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 1985; 40:27-36. [PMID: 2981630 DOI: 10.1016/0092-8674(85)90305-8] [Citation(s) in RCA: 914] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
S. cerevisiae strains containing RAS2val19, a RAS2 gene with a missense mutation analogous to one that activates the transforming potential of mammalian ras genes, have growth and biochemical properties strikingly similar to yeast strains carrying IAC or bcy1. Yeast strains carrying the IAC mutation have elevated levels of adenylate cyclase activity. bcy1 is a mutation that suppresses the lethality in adenylate cyclase deficient yeast. Yeast strains deficient in RAS function exhibit properties similar to adenylate cyclase deficient yeast. bcy1 suppresses lethality in ras1- ras2- yeast. Compared to wild-type yeast strains, intracellular cyclic AMP levels are significantly elevated in RAS2val19 strains, significantly depressed in ras2- strains, and virtually undetectable in ras1- ras2- bcy1 strains. Membranes from ras1- ras2- bcy1 yeast lack the GTP-stimulated adenylate cyclase activity present in membranes from wild-type cells, and membranes from RAS2val19 yeast strains have elevated levels of an apparently GTP-independent adenylate cyclase activity. Mixing membranes from ras1- ras2- yeast with membranes from adenylate cyclase deficient yeast reconstitutes a GTP-dependent adenylate cyclase.
Collapse
|
37
|
Uno I, Matsumoto K, Adachi K, Ishikawa T. Characterization of cyclic AMP-requiring yeast mutants altered in the catalytic subunit of protein kinase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90776-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Matsumoto K, Uno I, Ishikawa T. Identification of the structural gene and nonsense alleles for adenylate cyclase in Saccharomyces cerevisiae. J Bacteriol 1984; 157:277-82. [PMID: 6360999 PMCID: PMC215163 DOI: 10.1128/jb.157.1.277-282.1984] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tetraploid strains of Saccharomyces cerevisiae carrying different dosages of the CYR1+ gene have been constructed. Adenylate cyclase activity observed in these tetraploid strains was proportional to the dosage of the active CYR1+ gene. Of the 57 mutants requiring adenosine 3',5'-monophosphate for growth at 35 degrees C, two allelic temperature-sensitive cyr1 mutants produced thermolabile adenylate cyclase. Crude extract and plasma membrane fraction of cyr1 mutant cells had no adenylate cyclase activity when assayed with GTP or 5'-guanylyl imidodiphosphate in the presence of Mn2+ or Mg2+. Plasma membrane and Lubrol-soluble plasma membrane fractions obtained from the temperature-sensitive cyr1 mutant were thermolabile compared with those from the wild-type strain. Three cyr1 mutants carried nonsense mutations susceptible to ochre (UAA) suppressors, SUP3 and SUP-o, and had no detectable level of adenylate cyclase activity. It is concluded that the cyr1 mutants carry lesions in the structural gene for adenylate cyclase.
Collapse
|
39
|
Uno I, Matsumoto K, Adachi K, Ishikawa T. Regulation of NAD-dependent glutamate dehydrogenase by protein kinases in Saccharomyces cerevisiae. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43601-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Srivastava AK. Streptozotocin-induced diabetes decreases the cyclic AMP binding activity of the regulatory subunit of type I cAMP-dependent protein kinase from rat liver. Biochem Biophys Res Commun 1983; 117:794-802. [PMID: 6320816 DOI: 10.1016/0006-291x(83)91667-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liver post-mitochondrial supernatant from diabetic rats showed a decrease in the [3H] cAMP binding activity which was associated with a decrease in the number of cAMP binding sites. On the other hand, the cAMP binding activity of nuclear fractions from diabetic rat liver was not significantly different than that of control. The cAMP binding activity of post-mitochondrial supernatant was further analyzed by using 8-azido-[32P] cAMP, a photoaffinity probe for cAMP binding sites. The diabetic supernatants showed a selective reduction in the photolabeling of a protein band representing the regulatory subunit of type I cAMP-dependent protein kinase without any appreciable change in the photolabeling of regulatory subunit of type II cAMP-dependent protein kinase.
Collapse
|
41
|
Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44356-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
mRNA from mutant Y1 adrenal cells directs the synthesis of altered regulatory subunits of type 1 cAMP-dependent protein kinase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44443-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Matsumoto K, Uno I, Ishikawa T. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase. Exp Cell Res 1983; 146:151-61. [PMID: 6305691 DOI: 10.1016/0014-4827(83)90333-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Examination of the proportion of unbudded cells, terminal nuclear phenotype and DNA content of nuclei indicated that cyr1 mutants of yeast defective in adenylate cyclase activity were arrested at the G1 phase of the cell cycle. The step of G1 arrest due to the cyr1 mutation preceded the step sensitive to the mating pheromone. The temperature-sensitive cyr1 cells did not continue growth, nor retain the capacity to conjugate at a restrictive temperature. The phenotypes of the cyr1 mutant mimicked those of nutritionally limited cells. The G1 arrest caused by the cyr1 mutation was overcome by the presence of a suppressor mutation, bcy1, that resulted in deficiency of a regulatory subunit of cAMP-dependent protein kinase and production of high level of cAMP-independent protein kinase. The bcy1 mutation suppressed G1 arrest caused by nutritional limitation, and continued bud emergence for multiple cycles without further nuclear division. The data suggest that cAMP works as a positive effector at the start of a yeast cell cycle via activation of cAMP-dependent protein kinase.
Collapse
|
44
|
Uno I, Matsumoto K, Ishikawa T. Characterization of a cyclic nucleotide phosphodiesterase-deficient mutant in yeast. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32695-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Matsumoto K, Uno I, Ishikawa T. Initiation of meiosis in yeast mutants defective in adenylate cyclase and cyclic AMP-dependent protein kinase. Cell 1983; 32:417-23. [PMID: 6297794 DOI: 10.1016/0092-8674(83)90461-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Control of the initiation of meiosis was examined in diploids of yeast homozygous for two temperature-sensitive mutations, cyr1 and CYR3, which are defective in adenylate cyclase and cAMP-dependent protein kinase, respectively. The cyr1 and CYR3 mutations permitted the initiation of meiosis, but resulted in the frequent production of two-spored asci at the restrictive temperature. Unlike the wild-type diploid cells, the cyr1 and CYR3 homozygous diploid cells were capable of initiating meiosis even in nutrient growth media. This unique feature of the cyr1 and CYR3 mutants suggests that these mutations relate to the choice between mitotic and meiotic processes. In diploids homozygous for the bcy1 mutation that results in deficiency of the regulatory subunit of cAMP-dependent protein kinase and production of a high level of the catalytic subunit of this enzyme, no premeiotic DNA replication and commitment to intragenic recombination occurred, and no spores were formed. We conclude that the initiation of meiosis may be dependent upon the repression of cAMP production and the inactivation of cAMP-dependent protein kinase.
Collapse
|