1
|
Gabler T, Dali A, Sebastiani F, Furtmüller PG, Becucci M, Hofbauer S, Smulevich G. Iron insertion into coproporphyrin III-ferrochelatase complex: Evidence for an intermediate distorted catalytic species. Protein Sci 2023; 32:e4788. [PMID: 37743577 PMCID: PMC10578119 DOI: 10.1002/pro.4788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.
Collapse
Affiliation(s)
- Thomas Gabler
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Andrea Dali
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Paul Georg Furtmüller
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Stefan Hofbauer
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
- INSTM Research Unit of FirenzeSesto FiorentinoItaly
| |
Collapse
|
2
|
Uchida T, Kobayashi N, Muneta S, Ishimori K. The Iron Chaperone Protein CyaY from Vibrio cholerae Is a Heme-Binding Protein. Biochemistry 2017; 56:2425-2434. [DOI: 10.1021/acs.biochem.6b01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takeshi Uchida
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Noriyuki Kobayashi
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Souichiro Muneta
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Tang K, Knipp M, Liu BB, Cox N, Stabel R, He Q, Zhou M, Scheer H, Zhao KH, Gärtner W. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120. J Biol Chem 2015; 290:19067-80. [PMID: 26063806 DOI: 10.1074/jbc.m115.654087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 11/06/2022] Open
Abstract
The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.
Collapse
Affiliation(s)
- Kun Tang
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China, the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Markus Knipp
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany, Resolv, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany, and
| | - Bing-Bing Liu
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nicholas Cox
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Robert Stabel
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Qi He
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hugo Scheer
- the Department of Biologie I, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- From the State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China,
| | - Wolfgang Gärtner
- the Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany,
| |
Collapse
|
4
|
Abbruzzetti S, He C, Ogata H, Bruno S, Viappiani C, Knipp M. Heterogeneous kinetics of the carbon monoxide association and dissociation reaction to nitrophorin 4 and 7 coincide with structural heterogeneity of the gate-loop. J Am Chem Soc 2012; 134:9986-98. [PMID: 22594621 DOI: 10.1021/ja2121662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
NO is an important signaling molecule in human tissue. However, the mechanisms by which this molecule is controlled and directed are currently little understood. Nitrophorins (NPs) comprise a group of ferriheme proteins originating from blood-sucking insects that are tailored to protect and deliver NO via coordination to and release from the heme iron. Therefore, the kinetics of the association and dissociation reactions were studied in this work using the ferroheme-CO complexes of NP4, NP4(D30N), and NP7 as isoelectronic models for the ferriheme-NO complexes. The kinetic measurements performed by nanosecond laser-flash-photolysis and stopped-flow are accompanied by resonance Raman and FT-IR spectroscopy to characterize the carbonyl species. Careful analysis of the CO rebinding kinetics reveals that in NP4 and, to a larger extent, NP7 internal gas binding cavities are located, which temporarily trap photodissociated ligands. Moreover, changes in the free energy barriers throughout the rebinding and release pathway upon increase of the pH are surprisingly small in case of NP4. Also in case of NP4, a heterogeneous kinetic trace is obtained at pH 7.5, which corresponds to the presence of two carbonyl species in the heme cavity that are seen in vibrational spectroscopy and that are due to the change of the distal heme pocket polarity. Quantification of the two species from FT-IR spectra allowed the fitting of the kinetic traces as two processes, corresponding to the previously reported open and closed conformation of the A-B and G-H loops. With the use of the A-B loop mutant NP4(D30N), it was confirmed that the kinetic heterogeneity is controlled by pH through the disruption of the H-bond between the Asp30 side chain and the Leu130 backbone carbonyl. Overall, this first study on the slow phase of the dynamics of diatomic gas molecule interaction with NPs comprises an important experimental contribution for the understanding of the dynamics involved in the binding/release processes of NO/CO in NPs.
Collapse
Affiliation(s)
- Stefania Abbruzzetti
- Dipartimento di Fisica, Università degli Studi di Parma, viale delle Scienze 7A, I-43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
5
|
He C, Fuchs MR, Ogata H, Knipp M. Guanidin-Ferrohäm-Koordination in der Proteinmutante Nitrophorin 4(L130R). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
He C, Fuchs MR, Ogata H, Knipp M. Guanidine-ferroheme coordination in the mutant protein nitrophorin 4(L130R). Angew Chem Int Ed Engl 2012; 51:4470-3. [PMID: 22334402 DOI: 10.1002/anie.201108691] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
7
|
He C, Neya S, Knipp M. Breaking the Proximal FeII–NHis Bond in Heme Proteins through Local Structural Tension: Lessons from the Heme b Proteins Nitrophorin 4, Nitrophorin 7, and Related Site-Directed Mutant Proteins. Biochemistry 2011; 50:8559-75. [DOI: 10.1021/bi201073t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical
Sciences, Chiba University, Image-Yayoi,
Chiba 263-8522, Japan
| | - Markus Knipp
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470
Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Vetter SW, Terentis AC, Osborne RL, Dawson JH, Goodin DB. Replacement of the axial histidine heme ligand with cysteine in nitrophorin 1: spectroscopic and crystallographic characterization. J Biol Inorg Chem 2009; 14:179-91. [PMID: 18923851 PMCID: PMC2635096 DOI: 10.1007/s00775-008-0436-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
To evaluate the potential of using heme-containing lipocalin nitrophorin 1 (NP1) as a template for protein engineering, we have replaced the native axial heme-coordinating histidine residue with glycine, alanine, and cysteine. We report here the characterization of the cysteine mutant H60C_NP1 by spectroscopic and crystallographic methods. The UV/vis, resonance Raman, and magnetic circular dichroism spectra suggest weak thiolate coordination of the ferric heme in the H60C_NP1 mutant. Reduction to the ferrous state resulted in loss of cysteine coordination, while addition of exogenous imidazole ligands gave coordination changes that varied with the ligand. Depending on the substitution of the imidazole, we could distinguish three heme coordination states: five-coordinate monoimidazole, six-coordinate bisimidazole, and six-coordinate imidazole/thiolate. Ligand binding affinities were measured and found to be generally 2-3 orders of magnitude lower for the H60C mutant relative to NP1. Two crystal structures of the H60C_NP1 in complex with imidazole and histamine were solved to 1.7- and 1.96-A resolution, respectively. Both structures show that the H60C mutation is well tolerated by the protein scaffold and suggest that heme-thiolate coordination in H60C_NP1 requires some movement of the heme within its binding cavity. This adjustment may be responsible for the ease with which the engineered heme-thiolate coordination can be displaced by exogenous ligands.
Collapse
Affiliation(s)
- Stefan W Vetter
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
9
|
Nicoletti FP, Howes BD, Fittipaldi M, Fanali G, Fasano M, Ascenzi P, Smulevich G. Ibuprofen Induces an Allosteric Conformational Transition in the Heme Complex of Human Serum Albumin with Significant Effects on Heme Ligation. J Am Chem Soc 2008; 130:11677-88. [DOI: 10.1021/ja800966t] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Francesco P. Nicoletti
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Barry D. Howes
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Maria Fittipaldi
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Gabriella Fanali
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Mauro Fasano
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Paolo Ascenzi
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| | - Giulietta Smulevich
- Dipartimento di Chimica and INSTM, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy, Dipartimento di Biologia Strutturale e Funzionale, and Centro di Neuroscienze, Università dell’Insubria, Via Alberto da Giussano 12, I-21052 Busto Arsizio (VA), Italy, Centro Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy, and Istituto Nazionale per le Malattie Infettive I.R.C.C.S. ‘Lazzaro Spallanzani’, Via Portuense
| |
Collapse
|
10
|
Stevens JM, Uchida T, Daltrop O, Kitagawa T, Ferguson SJ. Dynamic Ligation Properties of the Escherichia coli Heme Chaperone CcmE to Non-covalently Bound Heme. J Biol Chem 2006; 281:6144-51. [PMID: 16373344 DOI: 10.1074/jbc.m508765200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome c maturation protein CcmE is an essential membrane-anchored heme chaperone involved in the post-translational covalent attachment of heme to c-type cytochromes in Gram-negative bacteria such as Escherichia coli. Previous in vitro studies have shown that CcmE can bind heme both covalently (via a histidine residue) and non-covalently. In this work we present results on the latter form of heme binding to a soluble form of CcmE. Examination of a number of site-directed mutants of E. coli CcmE by resonance Raman spectroscopy has identified ligands of the heme iron and provided insight into the initial steps of heme binding by CcmE before it binds the heme covalently. The heme binding histidine (His-130) appears to ligate the heme iron in the ferric oxidation state, but two other residues ligate the iron in the ferrous form, thereby freeing His-130 to undergo covalent attachment to a heme vinyl group. It appears that the heme ligation in the non-covalent form is different from that in the holo-form, suggesting that a change in ligation could act as a trigger for the formation of the covalent bond and showing the dynamic and oxidation state-sensitive ligation properties of CcmE.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Uchida T, Sato E, Sato A, Sagami I, Shimizu T, Kitagawa T. CO-dependent Activity-controlling Mechanism of Heme-containing CO-sensor Protein, Neuronal PAS Domain Protein 2. J Biol Chem 2005; 280:21358-68. [PMID: 15797872 DOI: 10.1074/jbc.m412350200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal PAS domain protein 2, which was recently established to be a heme protein, acts as a CO-dependent transcription factor. The protein consists of the basic helix-loop-helix domain and two heme-containing PAS domains (PAS-A and PAS-B). In this study, we prepared wild type and mutants of the isolated PAS-A domain and measured resonance Raman spectra of these proteins. Upon excitation of the Raman spectrum at 363.8 nm, a band assignable to Fe3+-S stretching was observed at 334 cm(-1) for the ferric wild type protein; in contrast, this band was drastically weaker in the spectrum of C170A, suggesting that Cys170 is an axial ligand of the ferric heme. The Raman spectrum of the reduced form of wild type was mainly of six-coordinate low spin, and the nu11 band, which is sensitive to the donor strength of the axial ligand, was lower than that of reduced cytochrome c3, suggesting coordination of a strong ligand and thus a deprotonated His. In the reduced forms of H119A and H171A, the five-coordinate species became more prevalent, whereas no such changes were observed for C170A, indicating that His119 and His171, but not Cys170, are axial ligands in the ferrous heme. This means that ligand replacement from Cys to His occurs upon heme reduction. The nu(Fe-CO) versus nu(C-O) correlation indicates that a neutral His is a trans ligand of CO. Our results support a mechanism in which CO binding disrupts the hydrogen bonding of His171 with surrounding amino acids, which induces conformational changes in the His171-Cys170 moiety, leading to physiological signaling.
Collapse
Affiliation(s)
- Takeshi Uchida
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Egawa T, Hishiki T, Ichikawa Y, Kanamori Y, Shimada H, Takahashi S, Kitagawa T, Ishimura Y. Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation. Formations of folding intermediates with non-native heme coordination state. J Biol Chem 2004; 279:32008-17. [PMID: 15128748 DOI: 10.1074/jbc.m310810200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry, School of Medicine, Keio University, Shinanomachi, Shinjuku-ku, Tokyo 160-8582.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Couture M, Das TK, Lee HC, Peisach J, Rousseau DL, Wittenberg BA, Wittenberg JB, Guertin M. Chlamydomonas chloroplast ferrous hemoglobin. Heme pocket structure and reactions with ligands. J Biol Chem 1999; 274:6898-910. [PMID: 10066743 DOI: 10.1074/jbc.274.11.6898] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the optical and resonance Raman spectral characterization of ferrous recombinant Chlamydomonas LI637 hemoglobin. We show that it is present in three pH-dependent equilibrium forms including a 4-coordinate species at acid pH, a 5-coordinate high spin species at neutral pH, and a 6-coordinate low spin species at alkaline pH. The proximal ligand to the heme is the imidazole group of a histidine. Kinetics of the reactions with ligands were determined by stopped-flow spectroscopy. At alkaline pH, combination with oxygen, nitric oxide, and carbon monoxide displays a kinetic behavior that is interpreted as being rate-limited by conversion of the 6-coordinate form to a reactive 5-coordinate form. At neutral pH, combination rates of the 5-coordinate form with oxygen and carbon monoxide were much faster (>10(7) microM-1 s-1). The dissociation rate constant measured for oxygen is among the slowest known, 0.014 s-1, and is independent of pH. Replacement of the tyrosine 63 (B10) by leucine or of the putative distal glutamine by glycine increases the dissociation rate constant 70- and 30-fold and increases the rate of autoxidation 20- and 90-fold, respectively. These results are consistent with at least two hydrogen bonds stabilizing the bound oxygen molecule, one from tyrosine B10 and the other from the distal glutamine. In addition, the high frequency (232 cm-1) of the iron-histidine bond suggests a structure that lacks any proximal strain thus contributing to high ligand affinity.
Collapse
Affiliation(s)
- M Couture
- Department of Biochemistry, Faculty of Sciences and Engineering, Laval University, Quebec G1K 7P4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Temperature- and pH-dependent changes in the coordination sphere of the heme c group in the model peroxidase N alpha-acetyl microperoxidase-8. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49535-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Wells AV, Li P, Champion PM, Martinis SA, Sligar SG. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420. Biochemistry 1992; 31:4384-93. [PMID: 1581294 DOI: 10.1021/bi00133a002] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-resolution resonance Raman spectra of the ferric, ferrous, and carbonmonoxy (CO)-bound forms of wild-type Escherichia coli-expressed Pseudomonas putida cytochrome P450cam and its P420 form are reported. The ferric and ferrous species of P450 and P420 have been studied in both the presence and absence of excess camphor substrate. In ferric, camphor-bound, P450 (mos), the E. coli-expressed P450 is found to be spectroscopically indistinguishable from the native material. Although substrate binding to P450 is known to displace water molecules from the heme pocket, altering the coordination and spin state of the heme iron, the presence of camphor substrate in P420 samples is found to have essentially no effect on the Raman spectra of the heme in either the oxidized or reduced state. A detailed study of the Raman and absorption spectra of P450 and P420 reveals that the P420 heme is in equilibrium between a high-spin, five-coordinate (HS,5C) form and low-spin six-coordinate (LS,6C) form in both the ferric and ferrous oxidation states. In the ferric P420 state, H2O evidently remains as a heme ligand, while alterations of the protein tertiary structure lead to a significant reduction in affinity for Cys(357) thiolate binding to the heme iron. Ferrous P420 also consists of an equilibrium between HS,5C and LS,6C states, with the spectroscopic evidence indicating that H2O and histidine are the most likely axial ligands. The spectral characteristics of the CO complex of P420 are found to be almost identical to those of a low pH of Mb. Moreover, we find that the 10-ns transient Raman spectrum of the photolyzed P420 CO complex possesses a band at 220 cm-1, which is strong evidence in favor of histidine ligation in the CO-bound state. The equilibrium structure of ferrous P420 does not show this band, indicating that Fe-His bond formation is favored when the iron becomes more acidic upon CO binding. Raman spectra of stationary samples of the CO complex of P450 reveal VFe-CO peaks corresponding to both substrate-bound and substrate-free species and demonstrate that substrate dissociation is coupled to CO photolysis. Analysis of the relative band intensities as a function of photolysis indicates that the CO photolysis and rebinding rates are faster than camphor rebinding and that CO binds to the heme faster when camphor is not in the distal pocket.
Collapse
Affiliation(s)
- A V Wells
- Department of Physics, Northeastern University, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
16
|
Sage JT, Morikis D, Champion PM. Spectroscopic studies of myoglobin at low pH: heme structure and ligation. Biochemistry 1991; 30:1227-37. [PMID: 1991102 DOI: 10.1021/bi00219a010] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We explore heme structure and ligation subsequent to a low-pH conformational transition in sperm whale myoglobin. Below pH 4.0, the iron-histidine bond breaks in metMb and deoxyMb. In MbCO, the majority of the iron-histidine bonds remain intact down to pH 2.6; however, the observation of a weak Fe-CO mode at 526 cm-1 indicates that a small fraction of the sample has the histidine replaced by a weak ligand, possibly water. The existence of a sterically hindered CO subpopulation in MbCO and the continued association of the four-coordinate heme with the protein in deoxyMb suggest that the heme pocket remains at least partially intact in the acid-induced conformation. The global pH-dependent conformational change described here is clearly distinguished from the local "closed" to "open" transition described previously in MbCO [Morikis et al. (1989) Biochemistry 28, 4791-4800]. Further observations of the four-coordinate heme state yield insights on the mechanism of heme photoreduction and the assignment of the 760-nm band in deoxyMb.
Collapse
Affiliation(s)
- J T Sage
- Department of Physics, Northeastern University, Boston, Massachusetts 02115
| | | | | |
Collapse
|