1
|
Mishra B, Yuan Y, Yu H, Kang H, Gao J, Daniels R, Chen X. Synthetic Sialosides Terminated with 8-N-Substituted Sialic Acid as Selective Substrates for Sialidases from Bacteria and Influenza Viruses. Angew Chem Int Ed Engl 2024; 63:e202403133. [PMID: 38713874 DOI: 10.1002/anie.202403133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Sialosides containing C8-modified sialic acids are challenging synthetic targets but potentially useful probes for diagnostic substrate profiling of sialidases and elucidating the binding specificity of sialic acid-interacting proteins. Here, we demonstrate efficient chemoenzymatic methods for synthesizing para-nitrophenol-tagged α2-3- and α2-6-linked sialyl galactosides containing C8-acetamido, C8-azido, or C8-amino derivatized N-acetylneuraminic acid (Neu5Ac). High-throughput substrate specificity studies showed that the C8-modification of sialic acid significantly changes its recognition by sialidases from humans, various bacteria, and different influenza A and B viruses. Sialosides carrying Neu5Ac with a C8-azido modification were generally well tolerated by all the sialidases we tested, whereas sialosides containing C8-acetamido-modified Neu5Ac were only cleaved by selective bacterial sialidases. In contrast, sialosides with C8-amino-modified Neu5Ac were cleaved by a combination of selective bacterial and influenza A virus sialidases. These results indicate that sialosides terminated with a C8-amino or C8-acetamido-modified sialic acid can be used with other sialosides for diagnostic profiling of disease-causing sialidase-producing pathogens.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Yue Yuan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| |
Collapse
|
2
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1578] [Impact Index Per Article: 526.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
3
|
Checkouri E, Blanchard V, Meilhac O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021; 9:biomedicines9091214. [PMID: 34572399 PMCID: PMC8465019 DOI: 10.3390/biomedicines9091214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, France
| | - Valentin Blanchard
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- CHU de La Réunion, INSERM, CIC1410, 97500 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-8811
| |
Collapse
|
4
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7040171. [PMID: 31683930 PMCID: PMC6963189 DOI: 10.3390/vaccines7040171] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are a family of nine carbon keto-aldononulosonic acids presented at the terminal ends of glycans on cellular membranes. α-Linked sialoglycoconjugates often undergo post-glycosylation modifications, among which O-acetylation of N-acetyl neuraminic acid (Neu5Ac) is the most common in mammalian cells. Isoforms of sialic acid are critical determinants of virus pathogenesis. To date, the focus of viral receptor-mediated attachment has been on Neu5Ac. O-Acetylated Neu5Acs have been largely ignored as receptor determinants of virus pathogenesis, although it is ubiquitous across species. Significantly, the array of structures resulting from site-specific O-acetylation by sialic acid O-acetyltransferases (SOATs) provides a means to examine specificity of viral binding to host cells. Specifically, C4 O-acetylated Neu5Ac can influence virus pathogenicity. However, the biological implications of only O-acetylated Neu5Ac at C7-9 have been explored extensively. This review will highlight the biological significance, extraction methods, and synthetic modifications of C4 O-acetylated Neu5Ac that may provide value in therapeutic developments and targets to prevent virus related diseases.
Collapse
|
6
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Robinson LS, Lewis WG, Lewis AL. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9- O-acetylated sialoglycans. J Biol Chem 2017; 292:11861-11872. [PMID: 28526748 PMCID: PMC5512079 DOI: 10.1074/jbc.m116.769232] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2016] [Revised: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
The gut harbors many symbiotic, commensal, and pathogenic microbes that break down and metabolize host carbohydrates. Sialic acids are prominent outermost carbohydrates on host glycoproteins called mucins and protect underlying glycan chains from enzymatic degradation. Sialidases produced by some members of the colonic microbiota can promote the expansion of several potential pathogens (e.g. Clostridium difficile, Salmonella, and Escherichia coli) that do not produce sialidases. O-Acetyl ester modifications of sialic acids help resist the action of many sialidases and are present at high levels in the mammalian colon. However, some gut bacteria, in turn, produce sialylate-O-acetylesterases to remove them. Here, we investigated O-acetyl ester removal and sialic acid degradation by Bacteroidetes sialate-O-acetylesterases and sialidases, respectively, and subsequent utilization of host sialic acids by both commensal and pathogenic E. coli strains. In vitro foraging studies demonstrated that sialidase-dependent E. coli growth on mucin is enabled by Bacteroides EstA, a sialate O-acetylesterase acting on glycosidically linked sialylate-O-acetylesterase substrates, particularly at neutral pH. Biochemical studies suggested that spontaneous migration of O-acetyl esters on the sialic acid side chain, which can occur at colonic pH, may serve as a switch controlling EstA-assisted sialic acid liberation. Specifically, EstA did not act on O-acetyl esters in their initial 7-position. However, following migration to the 9-position, glycans with O-acetyl esters became susceptible to the sequential actions of bacterial esterases and sialidases. We conclude that EstA specifically unlocks the nutritive potential of 9-O-acetylated mucus sialic acids for foraging by bacteria that otherwise are prevented from accessing this carbon source.
Collapse
Affiliation(s)
- Lloyd S Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110.
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
8
|
Wu Z, Li H, Zhang Q, Liu X, Zheng Q, Li J. Characterization of O-acetylation in sialoglycans by MALDI-MS using a combination of methylamidation and permethylation. Sci Rep 2017; 7:46206. [PMID: 28387371 PMCID: PMC5384204 DOI: 10.1038/srep46206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
O-Acetylation of sialic acid in protein N-glycans is an important modification and can occur at either 4-, 7-, 8- or 9-position in various combinations. This modification is usually labile under alkaline reaction conditions. Consequently, a permethylation-based analytical method, which has been widely used in glycomics studies, is not suitable for profiling O-acetylation of sialic acids due to the harsh reaction conditions. Alternatively, methylamidation can be used for N-glycan analysis without affecting the base-labile modification of sialic acid. In this report, we applied both permethylation and methylamidation approaches to the analysis of O-acetylation in sialic acids. It has been demonstrated that methylamidation not only stabilizes sialic acids during MALDI processing but also allow for characterization of their O-acetylation pattern. In addition, LC-MS/MS experiments were carried out to distinguish between the O-acetylated glycans with potential isomeric structures. The repeatability of methylamidation was examined to evaluate the applicability of the approach to profiling of O-acetylation in sialic acids. In conclusion, the combination of methylamidation and permethylation methodology is a powerful MALDI-TOF MS-based tool for profiling O-acetylation in sialic acids applicable to screening of N-glycans.
Collapse
Affiliation(s)
- Zhaoguan Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056 China
| | - Henghui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056 China
| | - Xin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, 430056 China
| | - Jianjun Li
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6 Canada
| |
Collapse
|
9
|
Khedri Z, Xiao A, Yu H, Landig CS, Li W, Diaz S, Wasik BR, Parrish CR, Wang LP, Varki A, Chen X. A Chemical Biology Solution to Problems with Studying Biologically Important but Unstable 9-O-Acetyl Sialic Acids. ACS Chem Biol 2017; 12:214-224. [PMID: 27936566 PMCID: PMC5704959 DOI: 10.1021/acschembio.6b00928] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
9-O-Acetylation is a common natural modification on sialic acids (Sias) that terminate many vertebrate glycan chains. This ester group has striking effects on many biological phenomena, including microbe-host interactions, complement action, regulation of immune responses, sialidase action, cellular apoptosis, and tumor immunology. Despite such findings, 9-O-acetyl sialoglycoconjugates have remained largely understudied, primarily because of marked lability of the 9-O-acetyl group to even small pH variations and/or the action of mammalian or microbial esterases. Our current studies involving 9-O-acetylated sialoglycans on glycan microarrays revealed that even the most careful precautions cannot ensure complete stability of the 9-O-acetyl group. We now demonstrate a simple chemical biology solution to many of these problems by substituting the oxygen atom in the ester with a nitrogen atom, resulting in sialic acids with a chemically and biologically stable 9-N-acetyl group. We present an efficient one-pot multienzyme method to synthesize a sialoglycan containing 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) and compare it to the one with naturally occurring 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2). Conformational resemblance of the two molecules was confirmed by computational molecular dynamics simulations. Microarray studies showed that the Neu5Ac9NAc-sialoglycan is a ligand for viruses naturally recognizing Neu5,9Ac2, with a similar affinity but with much improved stability in handling and study. Feeding of Neu5Ac9NAc or Neu5,9Ac2 to mammalian cells resulted in comparable incorporation and surface expression as well as binding to 9-O-acetyl-Sia-specific viruses. However, cells fed with Neu5Ac9NAc remained resistant to viral esterases and showed a slower turnover. This simple approach opens numerous research opportunities that have heretofore proved intractable.
Collapse
Affiliation(s)
- Zahra Khedri
- Glycobiology Research and Training Center, University of California, San Diego, CA 92093, USA
| | - An Xiao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Corinna Susanne Landig
- Glycobiology Research and Training Center, University of California, San Diego, CA 92093, USA
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California, San Diego, CA 92093, USA
| | - Brian R. Wasik
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Colin R. Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, CA 92093, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Baumann AMT, Bakkers MJG, Buettner FFR, Hartmann M, Grove M, Langereis MA, de Groot RJ, Mühlenhoff M. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nat Commun 2015; 6:7673. [PMID: 26169044 PMCID: PMC4510713 DOI: 10.1038/ncomms8673] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. 9-O-Acetylation is one of the most common modifications of sialic acids, implicated in sialoglycan recognition and ganglioside biology. Here, the authors show that the key enzyme for the biosynthesis of 9-O-acetylated sialoglycans is CASD1, which uses CMP-activated sialic acid as acceptor substrate.![]()
Collapse
Affiliation(s)
- Anna-Maria T Baumann
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Mark J G Bakkers
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Falk F R Buettner
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Maike Hartmann
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Melanie Grove
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| |
Collapse
|
11
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
12
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
13
|
Muthana SM, Campbell CT, Gildersleeve JC. Modifications of glycans: biological significance and therapeutic opportunities. ACS Chem Biol 2012; 7:31-43. [PMID: 22195988 DOI: 10.1021/cb2004466] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate's overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as post-glycosylational modifications.
Collapse
Affiliation(s)
- Saddam M. Muthana
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Christopher T. Campbell
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Gille S, de Souza A, Xiong G, Benz M, Cheng K, Schultink A, Reca IB, Pauly M. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain. THE PLANT CELL 2011; 23:4041-53. [PMID: 22086088 PMCID: PMC3246330 DOI: 10.1105/tpc.111.091728] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/14/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 05/17/2023]
Abstract
In an Arabidopsis thaliana forward genetic screen aimed at identifying mutants with altered structures of their hemicellulose xyloglucan (axy mutants) using oligosaccharide mass profiling, two nonallelic mutants (axy4-1 and axy4-2) that have a 20 to 35% reduction in xyloglucan O-acetylation were identified. Mapping of the mutation in axy4-1 identified AXY4, a type II transmembrane protein with a Trichome Birefringence-Like domain and a domain of unknown function (DUF231). Loss of AXY4 transcript results in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds. Seed xyloglucan is instead O-acetylated by the paralog AXY4like, as demonstrated by the analysis of the corresponding T-DNA insertional lines. Wall fractionation analysis of axy4 knockout mutants indicated that only a fraction containing xyloglucan is non-O-acetylated. Hence, AXY4/AXY4L is required for the O-acetylation of xyloglucan, and we propose that these proteins represent xyloglucan-specific O-acetyltransferases, although their donor and acceptor substrates have yet to be identified. An Arabidopsis ecotype, Ty-0, has reduced xyloglucan O-acetylation due to mutations in AXY4, demonstrating that O-acetylation of xyloglucan does not impact the plant's fitness in its natural environment. The relationship of AXY4 with another previously identified group of Arabidopsis proteins involved in general wall O-acetylation, reduced wall acetylation, is discussed.
Collapse
Affiliation(s)
- Sascha Gille
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Amancio de Souza
- Energy Biosciences Institute, University of California, Berkeley, California 94720
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720
| | - Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Monique Benz
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Kun Cheng
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Alex Schultink
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Ida-Barbara Reca
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, California 94720
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720
| |
Collapse
|
15
|
Schauer R, Srinivasan GV, Wipfler D, Kniep B, Schwartz-Albiez R. O-Acetylated sialic acids and their role in immune defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:525-48. [PMID: 21618128 PMCID: PMC7123180 DOI: 10.1007/978-1-4419-7877-6_28] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Srinivasan GV, Schauer R. Assays of sialate-O-acetyltransferases and sialate-O-acetylesterases. Glycoconj J 2009; 26:935-44. [PMID: 18566887 DOI: 10.1007/s10719-008-9131-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2008] [Revised: 03/20/2008] [Accepted: 03/26/2008] [Indexed: 10/21/2022]
Abstract
The O-acetylation of sialic acids is one of the most frequent modifications of these monosaccharides and modulates many cell biological and pathological events. Sialic acid-specific O-acetyltransferases and O-acetylesterases are responsible for the metabolism of esterified sialic acids. Assays were developed for the analysis of the activities and specificities of these enzymes. The methods had to be varied in dependence on the substrate assayed, the kind of biological source, and the state of enzyme purity. With the new techniques the primary site of O-acetyl incorporation at C-7, catalyzed by the animal sialate-O-acetyltransferases studied, was ascertained. Correspondingly, this enzyme, for example from bovine submandibular gland, can be denominated as AcCoA:sialate-7-O-acetyltransferase (EC 2.3.1.45). Methods for assaying the activity of esterases de-O-acetylating sialic acids and their metabolic cooperation with the O-acetyltransferases are presented.
Collapse
Affiliation(s)
- G Vinayaga Srinivasan
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, 24098 Kiel, Germany
| | | |
Collapse
|
18
|
Padler-Karavani V, Yu H, Cao H, Chokhawala H, Karp F, Varki N, Chen X, Varki A. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 2008; 18:818-30. [PMID: 18669916 DOI: 10.1093/glycob/cwn072] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
Human heterophile antibodies that agglutinate animal erythrocytes are known to detect the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc). This monosaccharide cannot by itself fill the binding site (paratope) of an antibody and can also be modified and presented in various linkages, on diverse underlying glycans. Thus, we hypothesized that the human anti-Neu5Gc antibody response is diverse and polyclonal. Here, we use a novel set of natural and chemoenzymatically synthesized glycans to show that normal humans have an abundant and diverse spectrum of such anti-Neu5Gc antibodies, directed against a variety of Neu5Gc-containing epitopes. High sensitivity and specificity assays were achieved by using N-acetylneuraminic acid (Neu5Ac)-containing probes (differing from Neu5Gc by one less oxygen atom) as optimal background controls. The commonest anti-Neu5Gc antibodies are of the IgG class. Moreover, the range of reactivity and Ig classes of antibodies vary greatly amongst normal humans, with some individuals having remarkably large amounts, even surpassing levels of some well-known natural blood group and xenoreactive antibodies. We purified these anti-Neu5Gc antibodies from individual human sera using a newly developed affinity method and showed that they bind to wild-type but not Neu5Gc-deficient mouse tissues. Moreover, they bind back to human carcinomas that have accumulated Neu5Gc in vivo. As dietary Neu5Gc is primarily found in red meat and milk products, we suggest that this ongoing antigen-antibody reaction may generate chronic inflammation, possibly contributing to the high frequency of diet-related carcinomas and other diseases in humans.
Collapse
Affiliation(s)
- Vered Padler-Karavani
- Glycobiology Research and Training Center and Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lrhorfi LA, Srinivasan GV, Schauer R. Properties and partial purification of sialate-O-acetyltransferase from bovine submandibular glands. Biol Chem 2007; 388:297-306. [PMID: 17338637 DOI: 10.1515/bc.2007.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The O-acetylation of sialic acids in various positions is a frequent modification of these residues in glycoproteins and glycolipids of higher animals and some bacteria. Sialic acid O-acetylation is involved in the regulation of many cell biological and pathophysiological events. Since the properties and the structural and molecular genetic aspects of the eukaryotic sialate O-acetyltransferases are not yet known, we attempted to isolate the enzyme from bovine submandibular glands. O-Acetyltransferase was solubilised from its microsomal location with a zwitterionic detergent and enriched by approximately 50-fold in three steps, including affinity chromatography on coenzyme A. It exhibits a molecular mass of 150-160 kDa. Evidence was obtained for the putative existence of a low-molecular-mass, dialysable enzyme activator. The enzyme showed best activity with CMP-N-acetylneuraminic acid (CMP-Neu5Ac), followed by N-acetylneuraminic acid (Neu5Ac). These compounds, as well as AcCoA, have high affinity for both the microsome-bound and the partially purified O-acetyltransferase. CoA is a strong inhibitor. N-Acetyl-9-O-acetylneuraminic acid was found to be the main reaction product. No evidence was obtained for the involvement of an isomerase that might be responsible for the migration of O-acetyl groups within the sialic acid side chain.
Collapse
Affiliation(s)
- L Aicha Lrhorfi
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | |
Collapse
|
20
|
Houliston RS, Endtz HP, Yuki N, Li J, Jarrell HC, Koga M, van Belkum A, Karwaski MF, Wakarchuk WW, Gilbert M. Identification of a sialate O-acetyltransferase from Campylobacter jejuni: demonstration of direct transfer to the C-9 position of terminalalpha-2, 8-linked sialic acid. J Biol Chem 2006; 281:11480-6. [PMID: 16481326 DOI: 10.1074/jbc.m512183200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a sialate O-acetyltransferase in the lipo-oligosaccharide biosynthesis locus of Campylobacter jejuni. Strains possessing this locus are known to produce sialylated outer core structures that mimic host gangliosides, and have been implicated in triggering the onset of Guillain-Barré syndrome. The acetyltransferase, which was cloned and expressed as a fusion construct in Escherichia coli, is soluble and homologous with members of the NodL-LacA-CysE family of O-acetyltransferases. This enzyme catalyzes the transfer of O-acetyl groups onto oligosaccharide-bound sialic acid, with a high specificity for terminal alpha2,8-linked residues. The modification is directed to C-9 and not C-7 as is believed to occur more commonly in other organisms. Despite their wide prevalence and importance in both eukaryotes and prokaryotes, this is the first report to describe the characterization of a purified sialate O-acetyltransferase.
Collapse
Affiliation(s)
- R Scott Houliston
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen HY, Challa AK, Varki A. 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem 2006; 281:7825-33. [PMID: 16434401 DOI: 10.1074/jbc.m512379200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023] Open
Abstract
Sialic acids are sometimes 9-O-acetylated in a developmentally regulated and cell-type-specific manner. Cells naturally expressing the disialoganglioside GD3 often O-acetylate the terminal sialic acid residue, giving 9-O-acetyl-GD3 (9AcGD3), a marker of neural differentiation and malignant transformation. We also reported that Chinese hamster ovary cells transfected with GD3 synthase can spontaneously O-acetylate some of the newly synthesized GD3. It is unclear whether such phenomena result from induction of the 9-O-acetylation machinery and whether induction is caused by the GD3 synthase protein or by the GD3 molecule itself. We now show that exogenously added GD3 rapidly incorporates into the plasma membrane of Chinese hamster ovary cells, and 9AcGD3 is detected after approximately 6 h. The incorporated GD3 and newly synthesized 9AcGD3 have a half-life of approximately 24 h. This phenomenon is also seen in other cell types, such as human diploid fibroblasts. Inhibitors of gene transcription, protein translation, or endoplasmic reticulum-to-Golgi transport each prevent induction of 9-O-acetylation, without affecting GD3 incorporation. Inhibition of the initial clathrin-independent internalization of incorporated GD3 also blocks induction of 9-O-acetylation. Thus, new synthesis of one or more components of the 9-O-acetylation machinery is induced by incorporation and internalization of GD3. Prepriming with structurally related gangliosides fails to accelerate the onset of 9-O-acetylation of subsequently added GD3, indicating a requirement for specific recognition of GD3. To our knowledge, this is the first example wherein a newly expressed or exogenously introduced ganglioside induces de novo synthesis of an enzymatic machinery to modify itself, and the first evidence for a mechanism of induction of sialic acid O-acetylation.
Collapse
Affiliation(s)
- Helen Y Chen
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | |
Collapse
|
22
|
Abstract
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.
Collapse
Affiliation(s)
- Yanqin Shen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | |
Collapse
|
23
|
Iwersen M, Dora H, Kohla G, Gasa S, Schauer R. Solubilisation and properties of the sialate-4-O-acetyltransferase from guinea pig liver. Biol Chem 2003; 384:1035-47. [PMID: 12956420 DOI: 10.1515/bc.2003.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The O-acetylation of sialic acids turns out to be one of the most important modifications that influence the diverse biological and pathophysiological properties of glycoconjugates in animals and microorganisms. To understand the functions of this esterification, knowledge of the properties, structures and regulation of expression of the enzymes involved is essential. Attempts to solubilise, purify or clone the gene of one of the sialate-O-acetyltransferases have failed so far. Here we report on the solubilisation of the sialate-4-O-acetyltransferase from guinea pig liver, the first and essential step in the purification and molecular characterisation of this enzyme, by the zwitterionic detergent CHAPS. This enzyme O-acetylates sialic acids at C-4 both free and bound to oligosaccharides, glycoproteins and glycolipids with varying activity, however, gangliosides proved to be the best substrates. Correspondingly, a rapid enzyme test was elaborated using the ganglioside GD3. The soluble O-acetyltransferase maximally operated at 30 degrees C, pH 5.6, and 50-70 mM KCl and K2HPO4 concentrations. The Km values were 3.6 microM for AcCoA and 1.2 microM for GD3. CoA inhibits the enzyme with a Ki value of 14.8 microM. A most important discovery enabling further enzyme purification is its need for an unknown low molecular mass and heat-stable cofactor that can be separated from the crude enzyme preparation by 30 kDa ultrafiltration.
Collapse
Affiliation(s)
- Matthias Iwersen
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
24
|
Brinkman-Van der Linden ECM, Angata T, Reynolds SA, Powell LD, Hedrick SM, Varki A. CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol 2003; 23:4199-206. [PMID: 12773563 PMCID: PMC156146 DOI: 10.1128/mcb.23.12.4199-4206.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Mouse CD33/Siglec-3 (mCD33) is the apparent ortholog of human CD33/Siglec-3 (hCD33), a member of the Siglec (sialic acid-binding Ig superfamily lectin) family of sialic acid-recognizing cell-surface lectins. We examined the binding specificity and expression pattern of mCD33 and explored its functions by generating mice deficient in this molecule. Like hCD33, mCD33 is expressed on myeloid precursors in the bone marrow, albeit mostly in the more mature stages of the granulocytic lineage. Moreover, unlike hCD33, mCD33 in peripheral blood is primarily expressed on granulocytes. Also, unlike hCD33, mCD33 did not bind to alpha2-3- or alpha2-6-linked sialic acids on lactosamine units. Instead, it showed distinctive sialic acid-dependent binding only to the short O-linked glycans of certain mucins and weak binding to the sialyl-Tn epitope. Binding was enhanced by removal of 9-O-acetyl groups and attenuated by truncation of the glycerol-like side chain of sialic acids. Mice deficient in CD33 were viable and fertile in a controlled-access specific-pathogen-free vivarium, showed no major morphological or histological abnormalities, had no changes in bone marrow or peripheral leukocyte subpopulations, and had very minor differences in biochemical and erythrocyte parameters. Cellular responses to intraperitoneally injected proinflammatory stimulants, as well as subsequent interleukin-6 secretion, were also apparently unaffected. These results indicate substantial species differences in CD33 expression patterns and ligand recognition and suggest functional degeneracy between mCD33 and the other CD33-related Siglec proteins expressed on cells of the myeloid lineage.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/biosynthesis
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/physiology
- Biotinylation
- COS Cells
- Caseins/metabolism
- Cell Lineage
- Enzyme-Linked Immunosorbent Assay
- Epitopes
- Exons
- Gene Deletion
- Granulocytes/metabolism
- Hematopoietic Stem Cells/metabolism
- Humans
- Inflammation
- Lipopolysaccharides/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Genetic
- N-Acetylneuraminic Acid/metabolism
- Protein Binding
- Recombinant Fusion Proteins/metabolism
- Sialic Acid Binding Ig-like Lectin 3
Collapse
|
25
|
Satake H, Chen HY, Varki A. Genes modulated by expression of GD3 synthase in Chinese hamster ovary cells. Evidence that the Tis21 gene is involved in the induction of GD3 9-O-acetylation. J Biol Chem 2003; 278:7942-8. [PMID: 12493756 DOI: 10.1074/jbc.m210565200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is a common sialic acid modification, expressed in a developmentally regulated and tissue/cell type-specific manner. The relevant 9-O-acetyltransferase(s) have not been isolated or cloned; nor have mechanisms for their regulation been elucidated. We previously showed that transfection of the GD3 synthase (ST8Sia-I) gene into Chinese hamster ovary (CHO)-K1 cells gave expression of not only the disialoganglioside GD3 but also 9-O-acetyl-GD3. We now use differential display PCR between wild type CHO-K1 cells and clones stably expressing GD3 synthase (CHO-GD3 cells) to detect any increased expression of other genes and explore the possible induction of a 9-O-acetyltransferase. The four CHO mRNAs showing major up-regulation were homologous to VCAM-1, Tis21, the KC-protein-like protein, and a functionally unknown type II transmembrane protein. A moderate increase in expression of the FxC1 and SPR-1 genes was also seen. Interestingly, these are different from genes observed by others to be up-regulated after transfection of GD3 synthase into a neuroblastoma cell line. We also isolated a CHO-GD3 mutant lacking 9-O-acetyl-GD3 following chemical mutagenesis (CHO-GD3-OAc(-)). Analysis of the above differential display PCR-derived genes in these cells showed that expression of Tis21 was selectively reduced. Transfection of a mouse Tis21 cDNA into the CHO-GD3-OAc(-) mutant cells restored 9-O-acetyl-GD3 expression. Since the only major gangliosides expressed by CHO-GD3 cells are GD3 and 9-O-acetyl-GD3 (in addition to GM3, the predominant ganglioside type in wild-type CHO-K1 cells), we conclude that GD3 enhances its own 9-O-acetylation via induction of Tis21. This is the first known nuclear inducible factor for 9-O-acetylation and also the first proof that 9-O-acetylation can be directly regulated by GD3 synthase. Finally, transfection of CHO-GD3-OAc(-) mutant cells with ST6Gal-I induced 9-O-acetylation specifically on sialylated N-glycans, in a manner similar to wild-type cells. This indicates separate machineries for 9-O-acetylation on alpha2-8-linked sialic acids of gangliosides and on alpha2-6-linked sialic acids on N-glycans.
Collapse
Affiliation(s)
- Honoo Satake
- Glycobiology Research and Training Center, Department of Medicine, University of California, San Diego, La Jolla 92093-0687, USA
| | | | | |
Collapse
|
26
|
Hoyte K, Kang C, Martin PT. Definition of pre- and postsynaptic forms of the CT carbohydrate antigen at the neuromuscular junction: ubiquitous expression of the CT antigens and the CT GalNAc transferase in mouse tissues. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:146-60. [PMID: 12531524 DOI: 10.1016/s0169-328x(02)00551-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
At the rodent neuromuscular junction, the synaptic expression of the CT carbohydrate antigens is defined by the binding of two monoclonal antibodies, CT1 and CT2. CT1 preferentially stains the presynaptic membrane, while CT2 preferentially stains the postsynaptic apparatus. Here we show that the differential subsynaptic distribution of these antigens is due to a preference of CT1 for structures containing N-acetyl neuraminic acid (NeuAc) and a preference of CT2 for structures containing N-glycolyl neuraminic acid (NeuGc). This was found to be the case both in binding to cultured myotubes, where NeuAc/NeuGc levels were manipulated by feeding acetylated N-acetyl mannosamine precursors, and in binding to purified GM2 ganglioside containing either NeuAc or NeuGc. At human neuromuscular junctions, where the enzymatic machinery to make NeuGc is absent [Proc. Natl. Acac. Sci. USA 95 (1998) 11751], CT1 and GM2(NeuAc) antibodies stained, while CT2 did not. Thus, the N-glycolyl modification of sialic acid helps to define the differential distribution of the CT antigens at the rodent neuromuscular junction, and this difference is lost in humans. In addition, sulfatase and 9-O-acetylesterase treatment of cells or tissues increased the amount of CT1 and CT2 antibody binding, with sulfatase differentially unmasking CT antigen expression on particular glycoproteins. Despite its uniquely synaptic localization in skeletal muscle, the CT antigens and the CT GalNAc transferase are ubiquitously expressed in other mouse tissues, including brain, spinal cord, and peripheral nerve. One of the proteins that can be co-purified with a CT-reactive glycoprotein is alpha dystroglycan. These data better define the sub-synaptic structures of the CT carbohydrate antigens at the neuromuscular junction and demonstrate their ubiquitous presence in mouse tissues, including the brain.
Collapse
Affiliation(s)
- Kwame Hoyte
- Department of Neuroscience, Glycobiology Research and Training Center, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0691, USA
| | | | | |
Collapse
|
27
|
Martin LT, Marth JD, Varki A, Varki NM. Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J Biol Chem 2002; 277:32930-8. [PMID: 12068010 DOI: 10.1074/jbc.m203362200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Glycan chains on glycoconjugates traversing the Golgi apparatus are often terminated by sialic acid residues, which can also be 9-O-acetylated. This process involves competition between multiple Golgi enzymes. Expression levels of Golgi enzyme mRNAs do not always correlate with enzyme activity, which in turn cannot accurately predict glycan sequences found on cell surfaces. Here we examine the cell type-specific expression of terminal glycans in tissues of normal mice in comparison with animals deficient in ST6Gal-I (transfers alpha2-6-linked sialic acid to Galbeta1-4GlcNAc) or ST3Gal-I (transfers alpha2-3-linked sialic acid to Galbeta1-3GalNAc). Tissues of ST6Gal-I null mice showed minimal binding of an alpha2-6-sialic acid-specific lectin, indicating that no other enzyme generates Siaalpha2-6Galbeta1-4GlcNAc and that Siaalpha2-6GalNAc (sialyl-Tn) is rare in mice. However, exposed Galbeta1-4GlcNAc termini were only moderately increased, indicating that these can be partially capped by other enzymes. Indeed, Galalpha1-3Galbeta1-4GlcNAc and Fucalpha1-2Galbeta1-4GlcNAc termini were enhanced in some tissues. Many tissues of ST3Gal-I null animals showed increases in Galbeta1-3GalNAc termini, and some increases in poly-N-acetyllactosamines. However, overall expression of alpha2-3-linked sialic acid was selectively reduced only in a few instances, indicating that other ST3Gal enzymes can generate this linkage in most tissues. Highly selective losses of 9-O-acetylation of sialic acid residues were also observed, with ST6Gal-I deficiency causing loss on endothelium and ST3Gal-I deficiency giving a marked decrease on CD4(+) lymphocytes. These data demonstrate selective regulation of sialylation and 9-O-acetylation, point to cell types with potential physiological defects in null animals, and show in vivo evidence for competition between Golgi enzymes.
Collapse
Affiliation(s)
- Laura T Martin
- Glycobiology Research and Training Center, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
28
|
Dumermuth E, Beuret N, Spiess M, Crottet P. Ubiquitous 9-O-acetylation of sialoglycoproteins restricted to the Golgi complex. J Biol Chem 2002; 277:18687-93. [PMID: 11904293 DOI: 10.1074/jbc.m109408200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation of sialic acid is known as a cell type-specific modification of secretory and plasma membrane glycoconjugates of higher vertebrates with important functions in modulating cell-cell recognition. Using a recombinant probe derived from influenza C virus hemagglutinin, we discovered 9-O-acetylated protein in the Golgi complex of various cell lines, most of which did not display 9-O-acetylated sialic acid on the cell surface. All cell lines expressed a sulfated glycoprotein of 50 kDa (sgp50) carrying 9-O-acetylated sialic acids, which was used as a model substrate. Like gp40, the major receptor for influenza C virus of Madin-Darby canine kidney I cells, sgp50 is 9-O-acetylated on O-linked glycans. However, gp40 was not 9-O-acetylated when expressed in Madin-Darby canine kidney II or COS-7 cells. The results demonstrate the existence of two 9-O-acetylation machineries for O-glycosylated proteins with distinct substrate specificities. The widespread occurrence of 9-O-acetylated protein in the Golgi furthermore suggests an additional intracellular role for this modification.
Collapse
Affiliation(s)
- Eric Dumermuth
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
Brinkman-Van der Linden ECM, Sonnenburg JL, Varki A. Effects of sialic acid substitutions on recognition by Sambucus nigra agglutinin and Maackia amurensis hemagglutinin. Anal Biochem 2002; 303:98-104. [PMID: 11906157 DOI: 10.1006/abio.2001.5539] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
|
30
|
Schauer R, Schmid H, Pommerencke J, Iwersen M, Kohla G. Metabolism and role of O-acetylated sialic acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:325-42. [PMID: 14533806 DOI: 10.1007/978-1-4615-1267-7_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Schauer
- Biochemisches Institut, Christian-Albrechts-Universität Olshausenstrasse 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
31
|
Mandal C, Chatterjee M, Sinha D. Investigation of 9-O-acetylated sialoglycoconjugates in childhood acute lymphoblastic leukaemia. Br J Haematol 2000; 110:801-12. [PMID: 11054061 DOI: 10.1046/j.1365-2141.2000.02105.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Affiliation(s)
- C Mandal
- Indian Institute of Chemical Biology, Immunobiology Division, 4, Raja S. C. Mullick Road, Calcutta 700032, India.
| | | | | |
Collapse
|
32
|
Manzi AE, Norgard-Sumnicht K, Argade S, Marth JD, van Halbeek H, Varki A. Exploring the glycan repertoire of genetically modified mice by isolation and profiling of the major glycan classes and nano-NMR analysis of glycan mixtures. Glycobiology 2000; 10:669-89. [PMID: 10910972 DOI: 10.1093/glycob/10.7.669] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The production of mice with genetic alterations in glycosyltransferases has highlighted the need to isolate and study complex mixtures of the major classes of oligosaccharides (glycans) from intact tissues. We have found that nano-NMR spectroscopy of whole mixtures of N- and O-glycans can complement HPLC profiling methods for elucidating structural details. Working toward obtaining such glycan mixtures from mouse tissues, we decided to develop an approach to isolate not only N- and O-glycans, but also to separate out glycosphingolipids, glycosaminoglycans and glycosylphosphatidylinositol anchors. We describe here a comprehensive Glycan Isolation Protocol that is based primarily upon the physicochemical characteristics of the molecules, and requires only commonly available reagents and equipment. Using radiolabeled internal tracers, we show that recovery of each major class of glycans is as good or better than with conventional approaches for isolating individual classes, and that cross-contamination is minimal. The recovered glycans are of sufficient purity to provide a "glycoprofile" of a cell type or tissue. We applied this approach to compare the N- and O-glycans from wild type mouse tissues with those from mice genetically deficient in glycosyltransferases. N- and O-glycan mixtures from organs of mice deficient in ST6Gal-I (CMP-Sia:Galbeta1-4GlcNAc alpha2-6 sialyltransferase) were studied by the nano-NMR spectroscopy approach, showing no detectable alpha2-6-linked sialic acids. Thus, ST6Gal-I is likely responsible for generating most or all of these residues in normal mice. Similar studies indicate that this linkage is very rare in ganglioside glycans, even in wild-type tissues. In mice deficient in GalNAcT-8 (UDP-GalNAc:polypeptide O-Ser/Thr GalNAc transferase 8), HPLC profiling indicates that O-glycans persist in the thymus in large amounts, without a major change in overall profile, suggesting that other enzymes can synthesize the GalNAc-O-Ser/Thr linkage in this tissue. These results demonstrate the applicability of nano-NMR spectroscopy to complex glycan mixtures, as well as the versatility of the Glycan Isolation Protocol, which makes possible the concurrent examination of multiple glycan classes from intact vertebrate tissues.
Collapse
Affiliation(s)
- A E Manzi
- Departments of Medicine and Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California San Diego, La Jolla 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
33
|
Brinkman-Van der Linden EC, Varki A. New aspects of siglec binding specificities, including the significance of fucosylation and of the sialyl-Tn epitope. Sialic acid-binding immunoglobulin superfamily lectins. J Biol Chem 2000; 275:8625-32. [PMID: 10722702 DOI: 10.1074/jbc.275.12.8625] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The siglecs (sialic acid-binding immunoglobulin superfamily lectins) are immunoglobulin superfamily members recognizing sialylated ligands. Most prior studies of siglec specificities focused on alpha2-3- and alpha2-6-sialyllactos(amin)es and on one or two of the siglecs at a time. Here, we explore several new aspects of specificities of the first six reported siglecs, using sialylated glycans presented in multivalent form, on synthetic polyacrylamide backbones, or on mucin polypeptides. First, we report that binding of siglec-1 (sialoadhesin), siglec-3 (CD33), siglec-4a (myelin-associated glycoprotein), and siglec-5 to alpha2-3 sialyllactosamine is affected markedly by the presence of an alpha1-3-linked fucose. Thus, while siglecs may not interfere with selectin-mediated recognition, fucosylation could negatively regulate siglec binding. Second, in contrast to earlier studies, we find that siglec-3 prefers alpha2-6-sialyllactose. Third, siglec-5 binds alpha2-8-linked sialic acid, making it the siglec least specific for linkage recognition. Fourth, siglecs-2 (CD22), -3, -5, and -6 (obesity-binding protein 1) showed significant binding to sialyl-Tn (Neu5Acalpha2-6-GalNAc), a tumor marker associated with poor prognosis. Fifth, siglec-6 is an exception among siglecs in not requiring the glycerol side chain of sialic acid for recognition. Sixth, all siglecs require the carboxyl group of sialic acid for binding. Finally, the presentation of the sialyl-Tn epitope and/or more extended structures that include this motif may be important for optimal recognition by the siglecs. This was concluded from studies using ovine, bovine, and porcine submaxillary mucins and Chinese hamster ovary cells transfected with ST6GalNAc-I and/or the mucin polypeptide MUC1.
Collapse
Affiliation(s)
- E C Brinkman-Van der Linden
- Glycobiology Research and Training Center and Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
34
|
Takematsu H, Diaz S, Stoddart A, Zhang Y, Varki A. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus. J Biol Chem 1999; 274:25623-31. [PMID: 10464298 DOI: 10.1074/jbc.274.36.25623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
9-O-Acetylation is one of the most common modifications of sialic acids, and it can affect several sialic acid-mediated recognition phenomena. We previously reported a cDNA encoding a lysosomal sialic acid-specific 9-O-acetylesterase, which traverses the endoplasmic reticulum-Golgi pathway and localizes primarily to lysosomes and endosomes. In this study, we report a variant cDNA derived from the same gene that contains a different 5' region. This cDNA has a putative open reading frame lacking a signal peptide-encoding sequence and is thus a candidate for the previously described cytosolic sialic acid 9-O-acetylesterase activity. Epitope-tagged constructs confirm that the new sequence causes the protein product to be targeted to the cytosol and has esterase activity. Using reverse transcription-polymerase chain reaction to distinguish the two forms of message, we show that although the lysosomal sialic acid-specific 9-O-acetylesterase message has a widespread pattern of expression in adult mouse tissues, this cytosolic sialic acid 9-O-acetylesterase form has a rather restricted distribution, with the strongest expression in the liver, ovary, and brain. Using a polyclonal antibody directed against the 69-amino acid region common to both proteins, we confirmed that the expression of glycosylated and nonglycosylated polypeptides occurred in appropriate subcellular fractions of normal mouse tissues. Rodent liver polypeptides reacting to the antibody also co-purify with previously described lysosomal sialic acid esterase activity and at least a portion of the cytosolic activity. Thus, two sialic acid 9-O-acetylesterases found in very different subcellular compartments can be encoded by a single gene by differential usage of a signal peptide-encoding exon at the N terminus. The 5'-rapid amplification of cDNA ends results and the differences in tissue-specific expression suggest that expression of these two products may be differentially regulated by independent promoters.
Collapse
Affiliation(s)
- H Takematsu
- Glycobiology Research and Training Center, Divisions of Hematology-Oncology and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | |
Collapse
|
35
|
Sato C, Inoue S, Matsuda T, Kitajima K. Development of a highly sensitive chemical method for detecting alpha2-->8-linked oligo/polysialic acid residues in glycoproteins blotted on the membrane. Anal Biochem 1998; 261:191-7. [PMID: 9716421 DOI: 10.1006/abio.1998.2718] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
A highly sensitive chemical method for detecting alpha2-->8-linked oligo/polysialic acid (oligo/polySia) chains was developed, including (i) periodate oxidation, reduction with sodium borohydride, and subsequent acid hydrolysis, giving rise to C7 analogues and intact C9 compounds from nonreducing terminal and internal sialic acid residues, respectively; (ii) fluorescent labeling of these C7 and C9 compounds with 1,2-diamino-4,5-methylenedioxybenzene (DMB); and (iii) quantitation of theseDMB derivatives on fluorometric high-performance liquid chromatography. As little as 1 ng of internal sialic acid residues of oligo/polySia chains, the existence of which indicates the presence of oligo/polySia structure, was detectable by this method. This fluorometric C7/C9 analysis was successfully applied to glycoproteins blotted onto a slit of polyvinylidene fluoride membranes and suggested the presence of some novel oligoSia-containing glycoproteins in pig embryonic brains.
Collapse
Affiliation(s)
- C Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | |
Collapse
|
36
|
Shi WX, Chammas R, Varki A. Induction of sialic acid 9-O-acetylation by diverse gene products: implications for the expression cloning of sialic acid O-acetyltransferases. Glycobiology 1998; 8:199-205. [PMID: 9451030 DOI: 10.1093/glycob/8.2.199] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Sialic acids can be modified by O-acetyl esters at the 7- and/or 9-position, altering recognition by antibodies, lectins and viruses. 9(7)-O-acetylation is mediated by a sialic acid-specific O-acetyltransferase, which has proven difficult to purify. Two groups have recently isolated cDNAs possibly encoding this enzyme, by expression cloning of human melanoma libraries in COS cells expressing the substrate ganglioside GD3. Pursuing a similar approach, we have isolated additional clones that can induce 9-O-acetylation. One clone present in a melanoma library encodes a fusion protein between a bacterial tetracycline resistance gene repressor and a sequence reported to be part of the P3 plasmid. Expression of the open reading frame is necessary for inducing 9-O-acetylation, indicating that this is not a reaction to the introduction of bacterial DNA. Another clone from a rat liver cDNA library induced 9-O-acetylation on COS cells expressing alpha2-6-linked sialic acids, and encodes an open reading frame identical to the Vitamin D binding protein. However, truncation at the 5' end eliminates the amino-terminal hydrophobic signal sequence, predicting cytosolic hyperexpression of a truncated protein. Thus, diverse types of cDNAs can indirectly induce sialic acid 9-O-acetylation in the COS cell system, raising the possibility that the real enzyme may be composed of multiple subunits which would not be amenable to expression cloning. Importantly, the cDNAs we isolated are highly specific in their ability to induce 9-O-acetylation either on alpha2-6-linked sialic acids of glycoproteins (truncated vitamin D binding protein) or on the alpha2-8-linked sialic acids of gangliosides (Tetrfusion protein). These data confirm our prior suggestion that a family of O-acetyltransferases with distinctive substrate specificities exists in mammalian systems.
Collapse
Affiliation(s)
- W X Shi
- Glycobiology Program, UCSD Cancer Center, Division of Cellular and Molecular Medicine, University of California San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechls-Universität zu Kiel, Germany
| | - Johannis P. Kamerling
- Bijuoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| |
Collapse
|
38
|
Shi WX, Chammas R, Varki A. Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells. J Biol Chem 1996; 271:15130-8. [PMID: 8662976 DOI: 10.1074/jbc.271.25.15130] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
9-O-Acetylation of sialic acids shows cell type-specific and developmentally regulated expression in various systems. In a given cell type, O-acetylation can also be specific to a particular type of glycoconjugate. It is assumed that this regulation is achieved by control of expression of specific 9-O-acetyltransferases. However, it has been difficult to test this hypothesis, as these enzymes have so far proven intractable to purification or molecular cloning. During a cloning attempt, we discovered that while polyoma T antigen-positive Chinese hamster ovary cells (CHO-Tag cells) do not normally express cell-surface 9-O-acetylation, they do so when transiently transfected with a cDNA encoding the lactosamine-specific alpha2-6-sialyltransferase (Galbeta1-4GlcNAc:alpha2-6-sialyltransferase (ST6Gal I); formerly ST6N). This phenomenon is reproducible by stable expression of ST6Gal I in parental CHO cells, but not upon transfection of the competing lactosamine-specific alpha2-3-sialyltransferase (Galbeta1-(3)4GlcNAc:alpha2-3-sialyltransferase; (ST6Gal III) formerly ST3N) into either cell type. Further analyses of stably transfected parental CHO-K1 cells indicated that expression of the ST6Gal I gene causes selective 9-O-acetylation of alpha2-6-linked sialic acid residues on N-linked oligosaccharides. In a similar manner, while the alpha2-3-linked sialic acid residue of the endogenous GM3 ganglioside of CHO cells is not O-acetylated, transfection of an alpha2-8-sialyltransferase (GM3:alpha2-8-sialyltransferase (ST8Sia I); formerly GD3 synthase) caused expression of 9-O-acetylation of the alpha2-8-linked sialic acid residues of newly synthesized GD3. These data indicate either that linkage-specific sialic acid O-acetyltransferase(s) are constitutively expressed in CHO cells or that expression of these enzymes is secondarily induced upon expression of certain sialyltransferases. The former explanation is supported by a low level of background 9-O-acetylation found in parental CHO-K1 cells and by the finding that O-acetylation is not induced when the ST6Gal I or ST8Sia I cDNAs are overexpressed in SV40 T antigen-expressing primate (COS) cells. Taken together, these results indicate that expression of sialic acid 9-O-acetylation can be regulated by the action of specific sialyltransferases that alter the predominant linkage of the terminal sialic acids found on specific classes of glycoconjugates.
Collapse
Affiliation(s)
- W X Shi
- University of California at San Diego Cancer Center, Division of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
39
|
Guimarães MJ, Bazan JF, Castagnola J, Diaz S, Copeland NG, Gilbert DJ, Jenkins NA, Varki A, Zlotnik A. Molecular cloning and characterization of lysosomal sialic acid O-acetylesterase. J Biol Chem 1996; 271:13697-705. [PMID: 8662838 DOI: 10.1074/jbc.271.23.13697] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
O-Acetylation and de-O-acetylation of sialic acids have been implicated in the regulation of a variety of biological phenomena, including endogenous lectin recognition, tumor antigenicity, virus binding, and complement activation. Applying a strategy designed to identify genes preferentially expressed in active sites of embryonic hematopoiesis, we isolated a novel cDNA from the pluripotent hematopoietic cell line FDCPmixA4 whose open reading frame contained sequences homologous to peptide fragments of a lysosomal sialic acid O-acetylesterase (Lse) previously purified from rat liver, but with no evident similarity to endoplasmic reticulum-derived acetylesterases. The expressed Lse protein exhibits sialic-acid O-acetylesterase activity that is not attributable to a typical serine esterase active site. lse expression is spatially and temporally restricted during embryogenesis, and its mRNA levels correlate with differences in O-acetylesterase activity described in adult tissues and blood cell types. Using interspecific backcross analysis, we further mapped the lse gene to the central region of mouse chromosome 9. This constitutes the first report on the molecular cloning of a sialic acid-specific O-acetylesterase in vertebrates and suggests novel roles for the 9-O-acetyl modification of sialic acids during the development and differentiation of mammalian organisms.
Collapse
Affiliation(s)
- M J Guimarães
- DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kniep B, Claus C, Peter-Katalinic J, Monner DA, Dippold W, Nimtz M. 7-O-acetyl-GD3 in human T-lymphocytes is detected by a specific T-cell-activating monoclonal antibody. J Biol Chem 1995; 270:30173-80. [PMID: 8530426 DOI: 10.1074/jbc.270.50.30173] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
The monoclonal antibody U5, which is a potent inducer of proliferation in human T-cells, was found to bind to an alkali-sensitive derivative of ganglioside GD3. Using immunochemical and spectroscopic methods, the structure of the U5 antigen was determined as 7-O-acetyl-GD3. The antibody U5 did not react with 9-O-acetyl-GD3 and bound severalfold more stronger to 7-O-acetyl-GD3 than to GD3. U5 is the first antibody known to detect preferentially 7-O-acetyl-GD3. Flow cytometric analysis showed that each major class of human leukocytes contained a significant fraction of cells binding the U5 antibody.
Collapse
Affiliation(s)
- B Kniep
- GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
41
|
Zimmer G, Klenk HD, Herrler G. Identification of a 40-kDa cell surface sialoglycoprotein with the characteristics of a major influenza C virus receptor in a Madin-Darby canine kidney cell line. J Biol Chem 1995; 270:17815-22. [PMID: 7629082 DOI: 10.1074/jbc.270.30.17815] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
Infection of cells by influenza C virus is known to be initiated by virus attachment to cell surface glycoconjugates containing N-acetyl-9-O-acetylneuraminic acid. Using an in vitro virus binding assay, we have detected this carbohydrate on several glycoproteins of Madin-Darby canine kidney cells (type I), a polarized epithelial cell line permissive for infection with influenza C virus. Among these proteins, only one was found to be present to a significant extent on the cell surface. This protein, gp40, was characterized as an O-glycosylated (mucin-type) integral membrane protein of 40 kDa, which was predominantly localized on the apical plasma membrane of filter-grown cells. It is a major cell surface sialoglycoprotein in this cell line and was shown to be subject to constitutive and rapid endocytosis. Thus, this glycoprotein can mediate not only the binding of influenza C virus to the cell surface, but also its delivery to endosomes, where penetration occurs by membrane fusion. Other highly sialylated cell surface glycoproteins were also detected but did not mediate influenza C virus binding to a significant extent, indicating that only gp40 contains 9-O-acetylated sialic acids.
Collapse
Affiliation(s)
- G Zimmer
- Institut für Virologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
42
|
Butor C, Griffiths G, Aronson NN, Varki A. Co-localization of hydrolytic enzymes with widely disparate pH optima: implications for the regulation of lysosomal pH. J Cell Sci 1995; 108 ( Pt 6):2213-9. [PMID: 7673341 DOI: 10.1242/jcs.108.6.2213] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Lysosomes are traditionally defined by their acidic interior, their content of degradative ‘acid hydrolases’, and the presence of distinctive membrane proteins. Terminal degradation of the N-linked oligosaccharides of glycoproteins takes place in lysosomes, and involves several hydrolases, many of which are known to have acidic pH optima. However, a sialic acid-specific 9-O-acetyl-esterase and a glycosyl-N-asparaginase, which degrade the outer- and inner-most linkages of N-linked oligosaccharides, respectively, both have pH optima in the neutral to alkaline range. By immunoelectron microscopy, these enzymes co-localize in lysosomes with several conventional acid hydrolases and with lysosomal membrane glycoproteins. Factors modifying the pH/activity profiles of these enzymes could not be found in lysosomal extracts. Thus, the function of the enzymes with neutral pH optima must depend either upon their minimal residual activity at acidic pH, or upon the possibility that lysosomes are not always strongly acidic. Indeed, when lysosomes are marked in living cells by uptake of fluorescently labeled mannose 6-phosphorylated proteins, the labeled organelles do not all rapidly accumulate Acridine Orange, a vital stain that is specific for acidic compartments. One plausible explanation is that lysosomal pH fluctuates, allowing hydrolytic enzymes with a wide range of pH optima to efficiently degrade macromolecules.
Collapse
Affiliation(s)
- C Butor
- Division of Cellular and Molecular Medicine, VA Medical Research Service, San Diego, CA, USA
| | | | | | | |
Collapse
|
43
|
Zhu HG, Voetsch W, Hauer J, Anderer FA. Chemospecificity and cross-reactivity of target cell recognition by human CD56+ NK and LAK cells. Scand J Immunol 1995; 41:545-52. [PMID: 7770724 DOI: 10.1111/j.1365-3083.1995.tb03606.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
Inhibition of specific cytotoxicity of highly purified (> 95%) human CD56+ NK and LAK cells against K562 tumour cells was studied with various sugar acetates. Maximum inhibitory specificity was obtained with 60%-deacetylated penta-acetates of mannose, galactose, glucose, or 80%-deacetylated penta-O-acetate of N-acetyl neuraminic acid. The inhibition was strictly dosedependent and 100% inhibition was achieved in the concentration range of 500-1000 nmoles/ml with all four sugar acetate samples. Enhancement of specific cytotoxicity in the presence of rhamnogalacturonan (RG; 500 ng/ml), acting as a bridging molecule, was also inhibited in a dose-dependent manner with the same inhibitory specificity and within the same concentration range indicating involvement of the same number of sugar acetate-specific receptors. Moreover, formation of lytic CD56+ effector cell/tumour cell (E/T) conjugates was equally well inhibited whereas formation of total E/T conjugates was only partially inhibited (NK: 44-73%; LAK: 46-50%). E/T conjugate formation in the presence of RG was enhanced. Inhibition of the enhancement of formation of lytic E/T conjugates in the presence of RG was again completely accomplished with the same inhibitory specificity and within the same concentration ranges as recorded for E/T conjugate formation in the absence of RG. However, inhibition of total E/T conjugate formation was again only partially achieved at the given concentrations. The data support the assumption of an NK cell receptor with specificity for acetylated carbohydrate moieties on target cells or on bridging molecules such as RG.
Collapse
Affiliation(s)
- H G Zhu
- Friedrich Miescher-Laboratorium, Max-Planck-Gesellschaft, Tuebingen, Germany
| | | | | | | |
Collapse
|
44
|
Waters PJ, Lewry E, Pennock CA. Measurement of sialic acid in serum and urine: clinical applications and limitations. Ann Clin Biochem 1992; 29 ( Pt 6):625-37. [PMID: 1489159 DOI: 10.1177/000456329202900603] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
Many recent studies have examined the sialic acid content of serum or urine in various pathological states. We have briefly reviewed the substances which contribute to the observed total sialic acid concentration, and given an overview of assay methods used. Three major areas of clinical interest in sialic acid metabolism are discussed. Serum total sialic acid, 'lipid-bound' and 'protein bound' sialic acid have all been proposed as tumour markers; but the usefulness of any of these tests is severely limited by changes due to accompanying inflammatory processes. Serum total sialic acid is not a valuable simple marker of an acute phase response. Urinary free and bound sialic acid measurements should be included in screening protocols for inherited disorders of lysosomal metabolism. Current developments in research and potential applications within the clinical biochemistry laboratory are briefly discussed.
Collapse
Affiliation(s)
- P J Waters
- Department of Chemical Pathology, St Michael's Hospital, Bristol, UK
| | | | | |
Collapse
|
45
|
Kniep B, Peter-Katalinić J, Flegel W, Northoff H, Rieber EP. CDw 60 antibodies bind to acetylated forms of ganglioside GD3. Biochem Biophys Res Commun 1992; 187:1343-9. [PMID: 1417810 DOI: 10.1016/0006-291x(92)90450-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Four monoclonal antibodies, M-T21, M-T32, M-T41 and UM4D4, which belong to the new CDw 60 cluster of antibodies specific for a subpopulation of human T-lymphocytes, were found to bind mainly to acetylated forms of ganglioside GD3. After O-deacetylation of the antigen, binding was reduced ("M-T"-antibodies) or abolished (UM4D4).
Collapse
Affiliation(s)
- B Kniep
- GBF-Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, FRG
| | | | | | | | | |
Collapse
|
46
|
Sjoberg E, Manzi A, Khoo K, Dell A, Varki A. Structural and immunological characterization of O-acetylated GD2. Evidence that GD2 is an acceptor for ganglioside O-acetyltransferase in human melanoma cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41986-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
|
47
|
|
48
|
Manzi AE, Diaz S, Varki A. High-pressure liquid chromatography of sialic acids on a pellicular resin anion-exchange column with pulsed amperometric detection: a comparison with six other systems. Anal Biochem 1990; 188:20-32. [PMID: 2221361 DOI: 10.1016/0003-2697(90)90523-c] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
A wide variety of different sialic acids have been reported in nature. Following their release and purification, detection and quantitation of these molecules is now possible by a number of techniques. We and others have previously reported high-pressure liquid chromatography separation of sialic acids with several different columns, elution methods, and detection techniques. We report here a new method for the separation of sialic acids at neutral pH on a Carbopac PA-1 anion-exchange column of pellicular resin, with pulsed amperometric detection following postcolumn addition of alkali. The major advantages of this system are the separation of a variety of sialic acids, sensitive detection (into the picomole range), and the relative ease of use for preparative purposes. Using a set of defined sialic acid standards, this method is compared and contrasted with six other HPLC methods previously described by us and by others. The advantages and disadvantages of each system are also addressed. In the final analysis, no single method is adequate to completely separate and quantitate all of the known sialic acids. However, used in appropriate combinations, these methods allow exploration of the biology of sialic acids in a manner heretofore not possible.
Collapse
Affiliation(s)
- A E Manzi
- Department of Medicine, UCSD Cancer Center, La Jolla 92093
| | | | | |
Collapse
|
49
|
Manzi AE, Dell A, Azadi P, Varki A. Studies of naturally occurring modifications of sialic acids by fast-atom bombardment-mass spectrometry. Analysis of positional isomers by periodate cleavage. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39043-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
50
|
|