1
|
Mikami T, Kitagawa H. Immunochemical Detection and Glycosaminoglycan Disaccharide-Based Characterization of Chondroitin Sulfate Proteoglycans. Methods Mol Biol 2023; 2619:25-38. [PMID: 36662459 DOI: 10.1007/978-1-0716-2946-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are polyanionic extra/pericellular matrix macromolecules that surround almost all cell types and create microenvironmental niches to support miscellaneous cellular events. In general, the multifunctional properties of CSPGs are attributable to the structural divergence of the CS glycosaminoglycan (GAG) moieties. Because the expression profiles of the GAG chains of CSPGs change with developmental stage, aging, and disease progression, characterization of the GAG chains is essential to understand the functional roles of CSPGs. This chapter describes the basic protocols for GAG moiety-based immunochemical detection of CSPGs in biological samples in conjunction with CS disaccharide composition analysis.
Collapse
Affiliation(s)
- Tadahisa Mikami
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Kobe, Japan.
| |
Collapse
|
2
|
Listik E, Azevedo Marques Gaschler J, Matias M, Neuppmann Feres MF, Toma L, Raphaelli Nahás-Scocate AC. Proteoglycans and dental biology: the first review. Carbohydr Polym 2019; 225:115199. [DOI: 10.1016/j.carbpol.2019.115199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/08/2023]
|
3
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
4
|
Farrugia BL, Whitelock JM, O'Grady R, Caterson B, Lord MS. Mast Cells Produce a Unique Chondroitin Sulfate Epitope. J Histochem Cytochem 2015; 64:85-98. [PMID: 26586669 DOI: 10.1369/0022155415620649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia (BLF, JMW, ROG, MSL)
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia (BLF, JMW, ROG, MSL)
| | - Robert O'Grady
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia (BLF, JMW, ROG, MSL)
| | - Bruce Caterson
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom (BC)
| | - Megan S Lord
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, Australia (BLF, JMW, ROG, MSL)
| |
Collapse
|
5
|
Sugiura N, Ikeda M, Shioiri T, Yoshimura M, Kobayashi M, Watanabe H. Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 2013; 23:1520-30. [DOI: 10.1093/glycob/cwt082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Sugiura N, Shioiri T, Chiba M, Sato T, Narimatsu H, Kimata K, Watanabe H. Construction of a chondroitin sulfate library with defined structures and analysis of molecular interactions. J Biol Chem 2012; 287:43390-400. [PMID: 23129769 DOI: 10.1074/jbc.m112.412676] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chondroitin sulfate (CS) is a linear acidic polysaccharide, composed of repeating disaccharide units of glucuronic acid and N-acetyl-D-galactosamine and modified with sulfate residues at different positions, which plays various roles in development and disease. Here, we chemo-enzymatically synthesized various CS species with defined lengths and defined sulfate compositions, from chondroitin hexasaccharide conjugated with hexamethylenediamine at the reducing ends, using bacterial chondroitin polymerase and recombinant CS sulfotransferases, including chondroitin-4-sulfotransferase 1 (C4ST-1), chondroitin-6-sulfotransferase 1 (C6ST-1), N-acetylgalactosamine 4-sulfate 6-sulfotransferase (GalNAc4S-6ST), and uronosyl 2-sulfotransferase (UA2ST). Sequential modifications of CS with a series of CS sulfotransferases revealed their distinct features, including their substrate specificities. Reactions with chondroitin polymerase generated non-sulfated chondroitin, and those with C4ST-1 and C6ST-1 generated uniformly sulfated CS containing >95% 4S and 6S units, respectively. GalNAc4S-6ST and UA2ST generated highly sulfated CS possessing ∼90% corresponding disulfated disaccharide units. Sequential reactions with UA2ST and GalNAc4S-6ST generated further highly sulfated CS containing a mixed structure of disulfated units. Surprisingly, sequential reactions with GalNAc4S-6ST and UA2ST generated a novel CS molecule containing ∼29% trisulfated disaccharide units. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis using the CS library and natural CS products modified with biotin at the reducing ends, revealed details of the interactions of CS species with anti-CS antibodies, and with CS-binding molecules such as midkine and pleiotrophin. Chemo-enzymatic synthesis enables the generation of CS chains of the desired lengths, compositions, and distinct structures, and the resulting library will be a useful tool for studies of CS functions.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Deepa SS, Yamada S, Fukui S, Sugahara K. Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiology 2007; 17:631-45. [PMID: 17317718 DOI: 10.1093/glycob/cwm021] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Twelve octasaccharide fractions were obtained from chondroitin sulfate C derived from shark cartilage after hyaluronidase digestion. Their sugar and sulfate composition was assigned by matrix-assisted laser desorption ionization time of flight mass spectrometry. The sequences were determined at low picomole amounts by a combination of enzymatic digestions with high-performance liquid chromatography, and were composed of disaccharide building units including O [GlcUAbeta1-3GalNAc], C [GlcUAbeta1-3GalNAc(6S)], A [GlcUAbeta1-3GalNAc(4S)], and/or D [GlcUA(2S)beta1-3GalNAc(6S)], where 2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate, respectively. As many as 24 different sequences including minor ones were revealed, exhibiting a high degree of structural diversity reflecting the enormous heterogeneity of the parent polysaccharides. Nineteen of them were novel, with the other four reported previously as unsaturated counterparts obtained after digestion with chondroitinase. Microarrays of these structurally defined octasaccharide fractions were prepared using low picomole amounts of their lipid-derivatives to investigate the binding specificity of four commercial anti-chondroitin sulfate antibodies CS-56, MO-225, 2H6, and LY111. The results revealed that multiple unique sequences were recognized by each antibody, which implies that the common conformation shared by the multiple primary sequences in the intact chondroitin sulfate chains is important as an epitope for each monoclonal antibody. Comparison of the specificity of the tested antibodies indicates that CS-56 and MO-225 specifically recognize octasaccharides containing an A-D tetrasaccharide sequence, whereas 2H6 and LY111 require a hexasaccharide as a minimum size for their binding, and prefer sequences with A- and C-units such as C-C-A-C (2H6) or C-C-A-O, C-C-A-A, and C-C-A-C (LY111) for strong binding but require no D-unit.
Collapse
Affiliation(s)
- Sarama S Deepa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | |
Collapse
|
8
|
Fitch JM, Kidder JM, Linsenmayer TF. Cellular invasion of the chicken corneal stroma during development: regulation by multiple matrix metalloproteases and the lens. Dev Dyn 2005; 232:106-18. [PMID: 15580628 DOI: 10.1002/dvdy.20218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Avian corneal development requires cellular invasion into the acellular matrix of the primary stroma. Previous results show that this invasion is preceded by the removal of the fibril-associated type IX collagen, which possibly stabilizes matrices through interfibrillar cross-bridges secured by covalent crosslinks. In the present study, we provide evidence for the expression of three matrix metalloproteinases (MMPs) in early corneas, two of which act cooperatively to selectively remove type IX collagen in situ. In organ cultures, MMP inhibitors (either TIMP-2 or a synthetic inhibitor) resulted in arrested development, in which collagen IX persisted, and the stroma remained compact and acellular. We also show that blocking covalent crosslinking of collagen allows for cellular invasion to occur, even when the removal of type IX collagen is prevented. Thus, one factor regulating corneal invasion is the physical structure of the matrix, which can be modified by either selective proteolysis or reducing interfibrillar cross-bridges. We also detected another level of regulation of cellular invasion involving inhibition by the underlying lens. This block, which seems to influence invasive behavior independently of matrix modification, is a transient event that is released in ovo just before invasion proceeds.
Collapse
Affiliation(s)
- John M Fitch
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | |
Collapse
|
9
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
10
|
Gregory KE, Marsden ME, Anderson-MacKenzie J, Bard JB, Bruckner P, Farjanel J, Robins SP, Hulmes DJ. Abnormal collagen assembly, though normal phenotype, in alginate bead cultures of chick embryo chondrocytes. Exp Cell Res 1999; 246:98-107. [PMID: 9882519 DOI: 10.1006/excr.1998.4291] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The collagens produced by chick embryo chondrocytes cultured in alginate beads were investigated both biochemically and ultrastructurally. The cartilage phenotype is maintained for at least 14 days, as indicated by the production of the cartilage-specific collagens II, IX, and XI and the absence of collagen I. There were differences in the distributions of collagens among the three different compartments analyzed (cells and their associated matrix, further-removed matrix (released by alginate solubilization), and culture medium), with large amounts of collagen IX (mainly in proteoglycan form) in the culture medium. Inhibition of lysyl oxidase activity by beta-aminopropionitrile led to an overall decrease in collagen production. In contrast to the biochemical observations, collagen ultrastructure in the extracellular matrix of alginate cultures was not in the form of the expected 64-nm banded fibrils, but rather in the form of segment-long-spacing-like crystallites. This abnormal structure is likely to be a result of alginate disrupting normal assembly. We conclude that, in this system, the native fibrillar structure of the collagenous matrix is not essential for the maintenance of the differentiated phenotype of chondrocytes.
Collapse
Affiliation(s)
- K E Gregory
- Department of Biochemistry, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Poole CA, Gilbert RT, Herbage D, Hartmann DJ. Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage 1997; 5:191-204. [PMID: 9219682 DOI: 10.1016/s1063-4584(97)80014-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The pericellular localization of type IX collagen in avian and mammalian hyaline cartilages remains controversial, while its distribution during osteoarthritic degeneration is poorly understood. This study aimed to compare and contrast the immunohistochemical distribution of type IX collagen in normal mature and spontaneously osteoarthritic canine tibial cartilage. DESIGN Thick vibratome sectioning techniques were evaluated and compared with isolated chondrons using a range of streptavidin-linked probes in combination with light, confocal and transmission electron microscopy. RESULTS In normal intact samples, type IX collagen was concentrated in the pericellular microenvironment, while a weaker extracellular reaction around each chondron separated the territorial matrix from the unstained interterritorial matrix. Further differentiation was evident in isolated chondrons where the fibrous pericellular capsule stained more intensely than the tail and interconnecting segments between columnated chondrons. Two regions of type IX reactivity were identified in osteoarthritic tissue: an intensely stained superficial reactive region below the eroding margins, and normal deep layer cartilage where pericellular staining persists. The superficial reactive region was characterized by chondron swelling and chondrocyte cluster formation, a loss of pericellular type IX staining, and a significant increase in matrix staining between clusters. Disintegration and loss of fibrillar collagens was evident in both the swollen microenvironment and adjacent territorial matrices. CONCLUSIONS The results suggest that changes in type IX distribution, expansion of the pericellular microenvironment and chondrocyte proliferation represent key elements in the chondron remodeling and chondrocyte cluster formation associated with osteoarthritic degeneration.
Collapse
Affiliation(s)
- C A Poole
- Department of Anatomy, Faculty of Medicine and Health Sciences, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
12
|
Abstract
Collagens are the major proteinaceous constituents of cartilage. Three collagen types participate in the formation of striated fibrils of cartilage, collagens II, IX, and XI. Collagen II and XI belong to the subgroup of fibrillar collagens and are structurally closely related, differing mainly in their N-propeptides. Collagen IX has a very different structure but is nevertheless an essential constituent of the striated fibrils. Two other collagen types are also found in cartilage but form distinct structures. Collagen VI, found mainly in the periphery of the chondrocytes, forms beaded filaments. These filaments are probably formed by interaction of collagen VI with hyaluronan. Collagen X is expressed by hypertrophic chondrocytes. It has been shown to form in vitro hexagonal lattices and in vivo to be associated either with striated fibrils or with mats which may correspond to the lattices. The functional role of the collagen diversity in cartilage is discussed.
Collapse
Affiliation(s)
- P Bruckner
- Institut de Biologie et Chimie des Protéines, Lyon, France
| | | |
Collapse
|
13
|
Cole WG. Collagen genes: mutations affecting collagen structure and expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:29-80. [PMID: 8016323 DOI: 10.1016/s0079-6603(08)60249-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is to be expected that more collagen genes will be identified and that additional heritable connective tissue diseases will be shown to arise from collagen mutations. Further progress will be fostered by the coordinated study of naturally occurring and induced heritable connective tissues diseases. In some instances, human mutations will be studied in more detail using transgenic mice, while in others, transgenic studies will be used to determine the type of human phenotype that is likely to result from mutations of a given collagen gene. Further studies of transcriptional regulation of the collagen genes will provide the prospect for therapeutic control of expression of specific collagen genes in patients with genetically determined collagen disorders as well as in a wide range of common human diseases in which abnormal formation of the connective tissues is a feature.
Collapse
Affiliation(s)
- W G Cole
- Division of Orthopaedics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Affiliation(s)
- N Fukai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Yamagata M, Saga S, Kato M, Bernfield M, Kimata K. Selective distributions of proteoglycans and their ligands in pericellular matrix of cultured fibroblasts. Implications for their roles in cell-substratum adhesion. J Cell Sci 1993; 106 ( Pt 1):55-65. [PMID: 8270643 DOI: 10.1242/jcs.106.1.55] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We showed previously that a large chondroitin sulfate proteoglycan, PG-M (also known as versican), inhibits cell-substratum adhesion, while basement membrane heparan sulfate proteoglycan (recently named perlecan) does not (Yamagata et al. (1989) J. Biol. Chem. 264, 8012–8018). To extend our understanding of the adhesive function of these proteoglycans, we examined the pericellular localization of the proteoglycans and their ligands and also that of some matrix receptors and cytoskeletal molecules in various fibroblast culture systems. PG-M was abundant in the subcellular space of fibroblasts, but was excluded selectively from focal contacts where vinculin, integrins and fibronectin were localized. Hyaluronan, CD44 and tenascin were distributed similarly as PG-M. In contrast, perlecan was associated with fibronectin and was included in focal contacts. Syndecan-1, a membrane heparan sulfate/chondroitin sulfate proteoglycan, was associated with fibronectin at the cell surface, partly at focal contacts and in association with stress fibers. Thus, complexes of PG-M with hyaluronan, tenascin and CD44, are not involved in focal contacts. On the other hand, perlecan and syndecan-1 together with fibronectin may participate in focal contacts. The difference in localization between these proteoglycans may be related to their glycosaminoglycan content and to their distinctive roles in cell-substratum adhesion.
Collapse
Affiliation(s)
- M Yamagata
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan
| | | | | | | | | |
Collapse
|