1
|
Kaspar M, Bohn-Wippert K, Bellstedt P, Häfner S, Görlach M, Sauerbrei A. Stepwise characterization of non-synonymous mutations in the HSV-1 thymidine kinase gene by different functional assays. J Virol Methods 2017; 247:51-57. [PMID: 28576448 DOI: 10.1016/j.jviromet.2017.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 11/28/2022]
Abstract
Twenty amino acid substitutions in the thymidine kinase (TK) of clinical herpes simplex virus type 1 strains were assessed for conferring acyclovir (ACV) resistance. Site-directed mutagenesis, cell-free protein synthesis and protein expression in Escherichia coli were performed to obtain recombinant TK proteins, which were authenticated by Western blotting. A modified enzyme-linked immunosorbent assay (ELISA) was carried out to determine the phosphorylation activity of the mutants towards 5-bromo-2'-deoxyuridine (BrdU). The activity against ACV and deoxythymidine (dT) was analyzed by high performance liquid chromatography/ultraviolet spectroscopy (HPLC/UV) following incubation of recombinant TK with ACV and dT. Using ELISA, seven substitutions (G61E, A93V, M121K, R163G, P173del, V238F, G264V) showing negative activity could be classified likely as resistance-related, eleven (Q15K, R20C, R32H, E43A, E43D, R89H, A156V, P269S, G271V, S276N, I326V) with high activity as natural polymorphisms, and two (N244H and N376stop) with low phosphorylation activity. Since the N244H protein did not show any activity towards ACV, but activity towards dT using HPLC/UV, it was classified as TK with altered substrate specificity. In conclusion, the ELISA determining activity towards BrdU is suitable for the characterization of substitutions regarding their significance for resistance. Ambiguous results can be re-assessed by HPLC/UV, which classifies TK with altered substrate specificity.
Collapse
Affiliation(s)
- Marisa Kaspar
- Section Experimental Virology, Institute of Medical Microbiology, German Consulting Laboratory for HSV and VZV, Jena University Clinic, Jena, Germany
| | - Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois, Urbana-Champaign, United States
| | - Peter Bellstedt
- Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Häfner
- Core Service Protein Production, Leibniz Institute on Aging/Fritz Lipman Institute e.V., Jena, Germany
| | - Matthias Görlach
- Core Service Protein Production, Leibniz Institute on Aging/Fritz Lipman Institute e.V., Jena, Germany
| | - Andreas Sauerbrei
- Section Experimental Virology, Institute of Medical Microbiology, German Consulting Laboratory for HSV and VZV, Jena University Clinic, Jena, Germany.
| |
Collapse
|
2
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
3
|
Abstract
Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs’ structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases’ enzymatic activity without significantly influencing the cell’s normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase’s activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3’-azido-3’-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 μg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli.
Collapse
|
4
|
Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. J Antimicrob Chemother 2015; 71:6-16. [PMID: 26433780 DOI: 10.1093/jac/dkv285] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of genotypic resistance testing of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) is increasing because the rapid availability of results significantly improves the treatment of severe infections, especially in immunocompromised patients. However, an essential precondition is a broad knowledge of natural polymorphisms and resistance-associated mutations in the thymidine kinase (TK) and DNA polymerase (pol) genes, of which the DNA polymerase (Pol) enzyme is targeted by the highly effective antiviral drugs in clinical use. Thus, this review presents a database of all non-synonymous mutations of TK and DNA pol genes of HSV-1 and HSV-2 whose association with resistance or natural gene polymorphism has been clarified by phenotypic and/or functional assays. In addition, the laboratory methods for verifying natural polymorphisms or resistance mutations are summarized. This database can help considerably to facilitate the interpretation of genotypic resistance findings in clinical HSV-1 and HSV-2 strains.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Kathrin Bohn-Wippert
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Marisa Kaspar
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrecht University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Karrasch
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Roland Zell
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for HSV and VZV, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Antiherpesvirus activities of two novel 4'-thiothymidine derivatives, KAY-2-41 and KAH-39-149, are dependent on viral and cellular thymidine kinases. Antimicrob Agents Chemother 2014; 58:4328-40. [PMID: 24820089 DOI: 10.1128/aac.02825-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug-resistant herpesviruses represents a significant problem in clinical practice, primarily in immunocompromised patients. Furthermore, effective antiviral therapies against gammaherpesvirus-associated diseases are lacking. Here, we present two thiothymidine derivatives, KAY-2-41 and KAH-39-149, with different spectra of antiviral activity from those of the reference antiherpetic drugs, showing inhibitory activities against herpes simplex virus, varicella-zoster virus (VZV), and particularly against Epstein-Barr virus, with high selectivity in vitro. While KAY-2-41- and KAH-39-149-resistant herpesviruses were found to harbor mutations in the viral thymidine kinase (TK), these mutations conferred only low levels of resistance to these drugs but high levels to other TK-dependent drugs. Also, antiviral assays in HeLa TK-deficient cells showed a lack of KAY-2-41 and KAH-39-149 activities against herpes simplex virus 1 (HSV-1) and HSV-2 TK-deficient mutants. Furthermore, enzymatic TK assays showed the ability of HSV-1 TK, VZV TK, and cellular TK1 and TK2 to recognize and phosphorylate KAY-2-41 and KAH-39-149. These results demonstrate that the compounds depend on both viral and host TKs to exert antiviral activity. Additionally, the antiviral efficacy of KAH-39-149 proved to be superior to that of KAY-2-41 in a mouse model of gammaherpesvirus infection, highlighting the potential of this class of antiviral agents for further development as selective therapeutics against Epstein-Barr virus.
Collapse
|
6
|
Solaroli N, Johansson M, Persoons L, Balzarini J, Karlsson A. Substrate specificity of feline and canine herpesvirus thymidine kinase. Antiviral Res 2008; 79:128-32. [DOI: 10.1016/j.antiviral.2008.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/13/2008] [Accepted: 03/13/2008] [Indexed: 11/30/2022]
|
7
|
Wu CC, Hsu TY, Chen JY. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase. Biochemistry 2005; 44:4785-93. [PMID: 15779905 DOI: 10.1021/bi0484872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thymidine kinase encoded by Epstein-Barr virus (EBV TK) is an important target for antiviral therapy and the treatment of EBV-associated malignancies. Through computer-assisted alignment with other human herpesviral TK proteins, EBV TK was shown to contain a conserved ATP-binding motif as for the other TK enzymes. To investigate functional roles of three highly conserved residues (G294, K297, T298) within this region, site-directed mutagenesis was employed to generate various mutants. The TK enzyme activity and ATP-binding ability of these mutant TK enzymes were determined and compared with EBV wild-type TK (wtTK). Mutant G294V lost its ATP-binding ability and was inactive in enzyme activity assay. As the enzyme activity of G294A was reduced to 20% of that of wtTK, the K(m) for ATP binding of G294A was 48.7 microM as compared with 30.0 microM of EBV wtTK. These results suggested that G294 participates in ATP binding and contributes to maintenance of structure. EBV TK mutants K297E, K297Q, and K297R lost their ATP-binding ability and enzyme activity. However, K297R was shown to have a preference for usage of GTP (K(m): 43.0 microM) instead of ATP (K(m): 87.6 microM) as the phosphate donor. This implies that, in addition to nucleotide binding, K297 was involved in the selection of phosphate donor. While EBV TK mutant T298S retained approximately 80% of wtTK enzyme activity, T298A lost its enzyme activity, suggesting that a hydroxyl group at this position is important for the enzyme activity. Interestingly, T298A retained its ATP-binding ability, suggesting a role of T298 in the catalytic process but not in the coordination of ATP. This study demonstrated that amino acid residues G294, K297, and T298 in the ATP-binding motif of EBV TK enzyme are essential for the enzymatic activity but are involved in different aspects of its action.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | |
Collapse
|
8
|
Shi Z, Ferreira GC. Probing the Active Site Loop Motif of Murine Ferrochelatase by Random Mutagenesis. J Biol Chem 2004; 279:19977-86. [PMID: 14981080 DOI: 10.1074/jbc.m313821200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferrochelatase catalyzes the terminal step of the heme biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. A conserved loop motif was shown to form part of the active site and contact the bound porphyrin by molecular dynamics calculations and structural analysis. We applied a random mutagenesis approach and steady-state kinetic analysis to assess the role of the loop motif in murine ferrochelatase function, particularly with respect to porphyrin interaction. Functional substitutions in the 10 consecutive loop positions Gln(248)-Leu(257) were identified by genetic complementation in Escherichia coli strain Deltavis. Lys(250), Val(251), Pro(253), Val(254), and Pro(255) tolerated a variety of replacements including single substitutions and contained low informational content. Gln(248), Ser(249), Gly(252), Trp(256), and Leu(257) possessed high informational content, since permissible replacements were limited and only observed in multiply substituted mutants. Selected active loop variants exhibited k(cat) values comparable with or higher than that of wild-type murine ferrochelatase. The K(m) values for porphyrin increased, except for the single mutant V251L. Other than a moderate increase observed in the triple mutant S249A/K250Q/V251C, the K(m) values for Fe(2+) were lowered. The k(cat)/K(m) for porphyrin remained largely unchanged, with the exception of a 10-fold reduction in the triple mutant K250M/V251L/W256Y. The k(cat)/K(m) for Fe(2+) was improved. Molecular modeling of these active loop variants indicated that loop mutations resulted in alterations of the active site architecture. However, despite the plasticity of the loop primary structure, the relative spatial positioning of the loop in the active site appeared to be maintained in functional variants, supporting a role for the loop in ferrochelatase function.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biochemistry and Molecular Biology, College of Medicine and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
9
|
Solaroli N, Bjerke M, Amiri MH, Johansson M, Karlsson A. Active site mutants of Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2879-84. [PMID: 12823558 DOI: 10.1046/j.1432-1033.2003.03666.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is sequence-related to three human deoxyribonucleoside kinases and to herpes simplex virus type-1 thymidine kinase. Dm-dNK phosphorylates both purine and pyrimidine deoxyribonucleosides and nucleoside analogues although it has a preference for pyrimidine nucleosides. We performed site-directed mutagenesis on residues that, based on structural data, are involved in substrate recognition. The aim was to increase the phosphorylation efficiency of purine nucleoside substrates to create an improved enzyme to be used in suicide gene therapy. A Q81N mutation showed a relative increase in deoxyguanosine phosphorylation compared with the wild-type enzyme although the efficiency of deoxythymidine phosphorylation was 10-fold lower for the mutant. In addition to residue Q81 the function of amino acids N28, I29 and F114 was investigated by different substitutions. All of the mutated enzymes showed decreased efficiency of thymidine phosphorylation in comparison with the wild-type enzyme supporting their importance for substrate binding and/or catalysis as proposed by the recently solved structure of Dm-dNK.
Collapse
Affiliation(s)
- Nicola Solaroli
- Division of Clinical Virology F68, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden and Dipartimento di Scienze Farmaceutiche, Università di Ferrara, Italy.
| | | | | | | | | |
Collapse
|
10
|
Kokoris MS, Black ME. Characterization of herpes simplex virus type 1 thymidine kinase mutants engineered for improved ganciclovir or acyclovir activity. Protein Sci 2002; 11:2267-72. [PMID: 12192082 PMCID: PMC2373606 DOI: 10.1110/ps.2460102] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes Simplex Virus type 1 (HSV-1) thymidine kinase (TK) is currently the most widely used suicide agent for gene therapy of cancer. Tumor cells that express HSV-1 thymidine kinase are rendered sensitive to prodrugs due to preferential phosphorylation by this enzyme. Although ganciclovir (GCV) is the prodrug of choice for use with TK, this approach is limited in part by the toxicity of this prodrug. From a random mutagenesis library, seven thymidine kinase variants containing multiple amino acid substitutions were identified on the basis of activity towards ganciclovir and acyclovir based on negative selection in Escherichia coli. Using a novel affinity chromatography column, three mutant enzymes and the wild-type TK were purified to homogeneity and their kinetic parameters for thymidine, ganciclovir, and acyclovir determined. With ganciclovir as the substrate, one mutant (mutant SR39) demonstrated a 14-fold decrease in K(m) compared to the wild-type enzyme. The most dramatic change is displayed by mutant SR26, with a 124-fold decrease in K(m) with acyclovir as the substrate. Such new "prodrug kinases" could provide benefit to ablative gene therapy by now making it feasible to use the relatively nontoxic acyclovir at nanomolar concentrations or ganciclovir at lower, less immunosuppressive doses.
Collapse
Affiliation(s)
- Mark S Kokoris
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington 99164-6534, USA
| | | |
Collapse
|
11
|
Abstract
To examine whether the exonuclease activity intrinsic to the polymerase (Pol) of herpes simplex virus type 1 can influence the mutational spectra, we applied the denaturing gradient gel electrophoresis (DGGE) system combined with sequencing to characterize thymidine kinase mutants isolated from both the wild-type virus and a mutant deficient in exonuclease activity, Y7. Wild-type viruses produced predominantly frameshift mutations (67%), whereas Y7 replicated a significantly lower proportion of frameshifts (21%; P < 0.005). Furthermore, the majority of substitutions were transitional changes in both groups, although they distributed differently. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Qiaosheng Lu
- Department of Microbiology and Immunology, Medical College, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
12
|
Balzarini J, Liekens S, Esnouf R, De Clercq E. The A167Y mutation converts the herpes simplex virus type 1 thymidine kinase into a guanosine analogue kinase. Biochemistry 2002; 41:6517-24. [PMID: 12009916 DOI: 10.1021/bi0255930] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thymidine (dThd) kinase (TK) encoded by herpes simplex virus type 1 (HSV-1) is not only endowed with dThd kinase, but also with thymidylate (dTMP) kinase and 2'-deoxycytidine (dCyd) kinase (dCK) activity. HSV-1 TK also recognizes a variety of antiherpetic guanine nucleoside analogues such as acyclovir (ACV), ganciclovir (GCV), lobucavir (LBV), penciclovir (PCV), and others (i.e., A5021). Site-directed mutagenesis of the highly conserved Ala-167 to Tyr in HSV-1 TK completely abolished TK, dTMP-K, and dCK activity, but maintained ACV-, GCV-, LBV-, PCV-, and A5021-phosphorylating capacity. A variety of 5-substituted pyrimidine nucleoside substrates, but also a number of selective HSV-1 TK inhibitors structurally related to thymine lost significant binding affinity for the mutant enzyme and did not markedly compete with GCV phosphorylation by the mutant enzyme. These findings could be explained by computer-assisted modeling data that revealed steric hindrance of the pyrimidine ring in the HSV-1 TK active site by the large 4-hydroxybenzyl ring of 167-Tyr, while the positioning of the purine ring of guanine-based HIV-1 TK substrates in the active site was kept virtually unaltered. Surprisingly, the efficiency of conversion the antiherpetic 2'-deoxyguanosine analogues ACV, GCV, LBV, PCV, and A5021 to their phosphorylated forms by the A167Y mutant HSV-1 TK was far more pronounced than for the wild-type enzyme. Therefore, the single A167Y mutation converts the wild-type HSV-1 TK from a predominantly pyrimidine nucleos(t)ide kinase into a virtually exclusive purine (guanine) nucleoside analogue kinase.
Collapse
Affiliation(s)
- Jan Balzarini
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
13
|
Hwang YT, Liu BY, Hwang CBC. Replication fidelity of the supF gene integrated in the thymidine kinase locus of herpes simplex virus type 1. J Virol 2002; 76:3605-14. [PMID: 11907200 PMCID: PMC136086 DOI: 10.1128/jvi.76.8.3605-3614.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant viruses were constructed to have an Escherichia coli replicon containing a mutagenesis marker, the supF gene, integrated within the thymidine kinase locus (tk) of herpes simplex virus type 1. These viruses expressed either wild-type or mutant DNA polymerase (Pol) and were tested in a mutagenesis assay for the fidelity of their replication of the supF gene. A mutation frequency of approximately 10(-4) was observed for wild-type strain KOS-derived recombinants in their replication of the supF gene. However, recombinants derived from the PAA(r)5 Pol mutant, which has been demonstrated to have an antimutator phenotype in replicating the tk gene, had three- to fourfold increases in supF mutation frequency (P < 0.01), a result similar to that exhibited when the supF gene was induced to replicate as episomal DNA (Y. T. Hwang, B.-Y. Liu, C.-Y. Hong, E. J. Shillitoe, and C. B. C. Hwang, J. Virol. 73:5326-5332, 1999). Thus, the PAA(r)5 Pol mutant had an antimutator function in replicating the tk gene and was less accurate in replicating the supF gene than was the wild-type strain. The spectra of mutations and distributions of substituted bases within the supF genes that replicated as genomic DNA were different from those in the genes that replicated as episomal DNA. Therefore, the differences in sequence contents between the two target genes influenced the accuracy of the Pol during viral replication. Furthermore, the replication mode of the target gene also affected the mutational spectrum.
Collapse
Affiliation(s)
- Ying T Hwang
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- M E Black
- Department of Pharmaceutical Sciences, P.O. Box 646534, Washington State University, Pullman, WA 99164-6534, USA
| |
Collapse
|
15
|
Chan MF, van Amerongen R, Nijjar T, Cuppen E, Jones PA, Laird PW. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells. Mol Cell Biol 2001; 21:7587-600. [PMID: 11604495 PMCID: PMC99930 DOI: 10.1128/mcb.21.22.7587-7600.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor suppressor gene inactivation is a crucial event in oncogenesis. Gene inactivation mechanisms include events resulting in loss of heterozygosity (LOH), gene mutation, and transcriptional silencing. The contribution of each of these different pathways varies among tumor suppressor genes and by cancer type. The factors that influence the relative utilization of gene inactivation pathways are poorly understood. In this study, we describe a detailed quantitative analysis of the three major gene inactivation mechanisms for a model gene at two different genomic integration sites in mouse embryonic stem (ES) cells. In addition, we targeted the major DNA methyltransferase gene, Dnmt1, to investigate the relative contribution of DNA methylation to these various competing gene inactivation pathways. Our data show that gene loss is the predominant mode of inactivation of a herpes simplex virus thymidine kinase neomycin phosphotransferase reporter gene (HSV-TKNeo) at the two integration sites tested and that this event is significantly reduced in Dnmt1-deficient cells. Gene silencing by promoter methylation requires Dnmt1, suggesting that the expression of Dnmt3a and Dnmt3b alone in ES cells is insufficient to achieve effective gene silencing. We used a novel assay to show that missense mutation rates are also substantially reduced in Dnmt1-deficient cells. This is the first direct demonstration that DNA methylation affects point mutation rates in mammalian cells. Surprisingly, the fraction of CpG transition mutations was not reduced in Dnmt1-deficient cells. Finally, we show that methyl group-deficient growth conditions do not cause an increase in missense mutation rates in Dnmt1-proficient cells, as predicted by methyltransferase-mediated mutagenesis models. We conclude that Dnmt1 deficiency and the accompanying genomic DNA hypomethylation result in a reduction of three major pathways of gene inactivation in our model system.
Collapse
Affiliation(s)
- M F Chan
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90089-9176, USA
| | | | | | | | | | | |
Collapse
|
16
|
Degrève B, Esnouf R, De Clercq E, Balzarini J. Selective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine. Mol Pharmacol 2000; 58:1326-32. [PMID: 11093770 DOI: 10.1124/mol.58.6.1326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK.
Collapse
Affiliation(s)
- B Degrève
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | | | | | | |
Collapse
|
17
|
Keilty AT, Ermakova-Gerdes SY, Vermaas WF. Probing the CD lumenal loop region of the D2 protein of photosystem II in Synechocystis sp. strain PCC 6803 by combinatorial mutagenesis. J Bacteriol 2000; 182:2453-60. [PMID: 10762245 PMCID: PMC111307 DOI: 10.1128/jb.182.9.2453-2460.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CD lumenal loop region of the photosystem II reaction center protein D2 contains residues involved in oxygen evolution. Since detailed structural information about this region is unavailable, an M13-based combinatorial mutagenesis approach was used to investigate structure-function relationships in this vital region of D2 in Synechocystis sp. strain PCC 6803. The CD loop coding region contains close to 100 nucleotides, and for effective mutagenesis, it was subdivided into four regions of seven to eight codons. A gain-of-function selection protocol was employed such that all mutants that were selected contained a functional D2 protein. In this way, conservation patterns of residues along with numbers and types of amino acid substitutions accommodated at each position for each set of mutants would indicate which residues in the CD loop may play important structural and functional roles. Results of this study have substantiated the importance of residues previously studied by site-directed mutagenesis such as Arg180 and His189 and have identified other previously unremarkable residues in the CD loop (such as Ser166, Phe169, and Ala170) that cannot be replaced by many other residues. In addition, the pliability of the CD loop was further tested using deletion and D1-D2 substitution constructs in M13. This showed that the length of the loop was important to its function, and in two cases, D2 could accommodate homologous sequences from D1, which forms a heterodimer with D2 in photosystem II, but not the other way around. This study of the CD loop in D2 provides valuable clues regarding the structural and functional requirements of the region.
Collapse
Affiliation(s)
- A T Keilty
- Department of Plant Biology, Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA.
| | | | | |
Collapse
|
18
|
Pilger BD, Perozzo R, Alber F, Wurth C, Folkers G, Scapozza L. Substrate diversity of herpes simplex virus thymidine kinase. Impact Of the kinematics of the enzyme. J Biol Chem 1999; 274:31967-73. [PMID: 10542226 DOI: 10.1074/jbc.274.45.31967] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 (HSV 1) thymidine kinase (TK) exhibits an extensive substrate diversity for nucleobases and sugar moieties, in contrast to other TKs. This substrate diversity is the crucial molecular basis of selective antiviral and suicide gene therapy. The mechanisms of substrate binding of HSV 1 TK were studied by means of site-directed mutagenesis combined with isothermal calorimetric measurements and guided by theoretical calculations and sequence comparison. The results show the link between the exceptionally broad substrate diversity of HSV 1 TK and the presence of structural features such as the residue triad His-58/Met-128/Tyr-172. The mutation of Met-128 into a Phe and the double mutant M128F/Y172F result in mutants that have lost their activity. However, by exchanging His to form the triple mutant H58L/M128F/Y172F, the enzyme regains activity. Strikingly, this triple mutant becomes resistant toward acyclovir. Furthermore, we give evidence for the importance of Glu-225 of the flexible LID region for the catalytic reaction. The data presented give new insights to understand mechanisms ruling substrate diversity and thus are crucial for both the development of new antiviral drugs and engineering of mutant TKs apt to accept novel substrate analogs for gene therapeutic approaches.
Collapse
Affiliation(s)
- B D Pilger
- Department of Pharmacy, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Johansson M, van Rompay AR, Degrève B, Balzarini J, Karlsson A. Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J Biol Chem 1999; 274:23814-9. [PMID: 10446143 DOI: 10.1074/jbc.274.34.23814] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) was reported to phosphorylate all four natural deoxyribonucleosides as well as several nucleoside analogs (Munch-Petersen, B., Piskur, J., and Sondergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). The broad substrate specificity of this enzyme together with a high catalytic rate makes it unique among the nucleoside kinases. We have in the present study cloned the Dm-dNK cDNA, expressed the 29-kDa protein in Escherichia coli, and characterized the recombinant enzyme for the phosphorylation of nucleosides and clinically important nucleoside analogs. The recombinant enzyme preferentially phosphorylated the pyrimidine nucleosides dThd, dCyd, and dUrd, but phosphorylation of the purine nucleosides dAdo and dGuo was also efficiently catalyzed. Dm-dNK is closely related to human and herpes simplex virus deoxyribonucleoside kinases. The highest level of sequence similarity was noted with human mitochondrial thymidine kinase 2, and these enzymes also share many substrates. The cDNA cloning and characterization of Dm-dNK will be the basis for studies on the use of this multisubstrate nucleoside kinase as a suicide gene in combined gene/chemotherapy of cancer.
Collapse
Affiliation(s)
- M Johansson
- Division of Clinical Virology, Karolinska Institute, Huddinge University Hospital, S-141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Kokoris MS, Sabo P, Adman ET, Black ME. Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Ther 1999; 6:1415-26. [PMID: 10467366 DOI: 10.1038/sj.gt.3300966] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advent of gene therapy, herpes simplex virus type I (HSV-1) thymidine kinase (TK) has garnered much interest as a suicide gene for cancer ablation. As a means to improve the overall efficacy of the prodrug-gene activation approach, as well as to reduce ganciclovir-mediated toxicity, a large library of mutant thymidine kinases was generated and screened for the ability to enhance in vitro cell sensitivity to the prodrugs, ganciclovir (GCV) and acyclovir (ACV). Enzyme kinetics of one thymidine kinase mutant from this library that contains six amino acid substitutions at or near the active site reveals a distinct mechanism for providing enhanced prodrug-mediated killing in mammalian cells. In in vitro rat C6 cell prodrug sensitivity assays the TK mutant (mutant 30) achieves nanomolar IC50 values with GCV and ACV, in contrast to IC50values of 30 microM and >100 microM, respectively, for wild-type TK. In a mouse xenograft tumor model, growth of mutant 30 expressing tumors is restricted by ganciclovir at a dose at least 10- fold lower than one that impedes growth of wild-type TK-expressing tumors. Furthermore, in the presence of GCV a substantial bystander effect is observable when only 20% of the tumor cells express mutant 30 whereas no restriction in tumor growth is seen in tumors bearing the wild-type TK under the same conditions. The enhanced sensitization to prodrugs conferred by mutant 30 is apparently due to a 35-fold increase in thymidine Km which results in reduced competition between prodrug and thymidine at the active site. This provides mutant 30 a substantial kinetic advantage despite very high Kms for both ganciclovir and acyclovir. Molecular modeling of the mutations within the active site suggests that a tyrosine substitution at alanine 168 (A168) alters thymidine and prodrug interactions by causing catalytically important residues to move. The use of mutant 30 in place of the wild-type TK should provide a more effective gene therapy of cancer.
Collapse
Affiliation(s)
- M S Kokoris
- Chiroscience R & D, Inc., Bothell, WA 99164-6510, USA
| | | | | | | |
Collapse
|
21
|
Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 1999; 4:35-43. [PMID: 10445025 DOI: 10.1016/s1097-2765(00)80185-9] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in HIV-1 reverse transcriptase (RT) give rise to 3'-azido-3'-deoxythymidine (AZT) resistance by a mechanism that has not been previously reproduced in vitro. We show that mutant RT has increased ability to remove AZTMP from blocked primers through a nucleotide-dependent reaction, producing dinucleoside polyphosphate and extendible primer. In the presence of physiological concentrations of ATP, mutant RT extended 12% to 15% of primers past multiple AZTMP termination sites versus less than 0.5% for wild type. Although mutant RT also unblocked ddAMP-terminated primers more efficiently than wild-type RT, the removal of ddAMP was effectively inhibited by the next complementary dNTP (IC50 approximately equal to 12 microM). In contrast, the removal of AZTMP was not inhibited by dNTPs except at nonphysiological concentrations (IC50 > 200 microM).
Collapse
Affiliation(s)
- P R Meyer
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
22
|
Guo S, Ives DH. Functional assignment by Chimera construction of the domain affecting heterotropic activation of deoxyadenosine kinase from Lactobacillus acidophilus R-26. J Biol Chem 1998; 273:26624-30. [PMID: 9756902 DOI: 10.1074/jbc.273.41.26624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric subunits of deoxyadenosine kinase (dAK)-deoxyguanosine kinase (dGK) from Lactobacillus acidophilus R-26 exhibit contrasting conformations manifested in the nearly unidirectional heterotropic activation of dAK when dGK binds deoxyguanosine. This is mediated, in part, by the conserved Ras switch I-like sequence (residues 153-161) [Guo et al. (1997) J. Biol. Chem. 272, 6890-6897]. In an attempt to identify domains differentiating the specificities of dAK and dGK, we constructed several chimeras splicing heterodimeric dAK within this region. In Chimera-III, dAK residues 120-170 were replaced by the homologous section of dGK. dAK activity was elevated 40%, but although it retained its original specificity and Km values, it could no longer be activated by deoxyguanosine. Moreover, both the activated dAK and the "dAK" of Chimera-III exhibited (i) an increased Ks for the leading substrate ATP-Mg2+, suggesting the formation of intermediate enzyme species along their respective kinetic pathways, and (ii) broadened and lower pH optima for the dAK activities. These observations further indicate the importance of dAK residues 120-170, including the Ras-like segment, in catalysis and heterotropic activation. The other conformational properties of dAK (e.g. self-inactivity and MgATP being the leading substrate) were unaltered by this substitution, thus localizing the responsible domains even further upstream.
Collapse
Affiliation(s)
- S Guo
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
23
|
Wild K, Bohner T, Folkers G, Schulz GE. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci 1997; 6:2097-106. [PMID: 9336833 PMCID: PMC2143568 DOI: 10.1002/pro.5560061005] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments.
Collapse
Affiliation(s)
- K Wild
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, Freiburg im Breisgau, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Evolutionary biotechnology applies the principles of molecular evolution to biotechnology, leading to novel techniques for the creation of biomolecules with a great variety of functions for technical and medical purposes. Several basic principles for the application of evolutionary strategies can be derived from a comprehensive theory of molecular evolution. Prerequisites for evolutionary biotechnology are summarized with respect to the different classes of biomolecules and a few, selected applications are described in detail. Concepts for the technical implementation of evolutionary strategies are presented which allow automatized, high throughput processes.
Collapse
Affiliation(s)
- A Koltermann
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Biochemische Kinetik, Göttingen, Germany
| | | |
Collapse
|
25
|
Bösl MR, Takaku K, Oshima M, Nishimura S, Taketo MM. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci U S A 1997; 94:5531-4. [PMID: 9159106 PMCID: PMC20812 DOI: 10.1073/pnas.94.11.5531] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selenoprotein biosynthesis is mediated by tRNASec, which inserts selenocysteine at UGA codons in a complex, context-specific manner. This opal suppressor serves in the conversion of serine to selenocysteine as well. The mouse tRNASec gene (Trsp) maps to a proximal segment of chromosome 7. We constructed mice carrying a targeted deletion of the Trsp gene. The heterozygous mutants were viable, fertile, and appeared normal. Although the level of tRNASec was reduced to about 50%-80% of the wild type in most organs, one of the selenoproteins, glutathione peroxidase, remained unaffected in the levels of its mRNA, protein, and enzyme activity, indicating that the haploid amount of tRNASec is not limiting in its biosynthesis. In contrast, the homozygous mutants died shortly after implantation, and the embryos were resorbed before 6.5 days post coitum. When the preimplantation embryos were placed in culture, however, the trophoectoderm cells showed outgrowths and the inner cell mass cells of the homozygous embryos were able to proliferate. These results indicate that Trsp expression is essential for early development of the embryo, and its lack causes peri-implantation lethality. However, the lethality does not appear to be due to a cell-autonomous function of tRNASec.
Collapse
Affiliation(s)
- M R Bösl
- Banyu Tsukuba Research Institute (Merck), Tsukuba 300-26, Japan
| | | | | | | | | |
Collapse
|
26
|
Fastrez J. In vivo versus in vitro screening or selection for catalytic activity in enzymes and abzymes. Mol Biotechnol 1997; 7:37-55. [PMID: 9163721 DOI: 10.1007/bf02821543] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent development of catalytic antibodies and the introduction of new techniques to generate huge libraries of random mutants of existing enzymes have created the need for powerful tools for finding in large populations of cells those producing the catalytically most active proteins. Several approaches have been developed and used to reach this goal. The screening techniques aim at easily detecting the clones producing active enzymes or abzymes; the selection techniques are designed to extract these clones from mixtures. These techniques have been applied both in vivo and in vitro. This review describes the advantages and limitations of the various methods in terms of ease of use, sensitivity, and convenience for handling large libraries. Examples are analyzed and tentative rules proposed. These techniques prove to be quite powerful to study the relationship between structure and function and to alter the properties of enzymes.
Collapse
Affiliation(s)
- J Fastrez
- Laboratoire de Biochimie Physique et des Biopolymères, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Suzuki M, Christians FC, Kim B, Skandalis A, Black ME, Loeb LA. Tolerance of different proteins for amino acid diversity. Mol Divers 1996; 2:111-8. [PMID: 9238641 DOI: 10.1007/bf01718708] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Random mutagenesis of genes followed by positive genetic selection in bacteria requires that the variant molecules confer biological activity, and is thus the most demanding approach for generating new functionally active molecules. Furthermore, one can learn much about the protein in question by comparing the population of selected molecules to the library from which they were selected. Described here is a mathematical method designed to guide such comparisons. We use as examples the results of randomization-selection studies of four different proteins. There exists, in general, a positive correlation between the number of amino acid substitutions in a critical region of a protein and the likelihood of inactivation of that protein; a correlation long suspected, but developed here in detail. At this time, we are comparing regions in different proteins and our conclusions must be limited. However, the method presented can serve as a guideline for anticipating the yield of new active mutants in genetic complementation assays based on the extent of randomization.
Collapse
Affiliation(s)
- M Suzuki
- Department of Pathology, Joseph Gottstein Memorial Cancer Research Laboratory, University of Washington, Seattle 98195-7705, USA
| | | | | | | | | | | |
Collapse
|
28
|
Loeb LA. Unnatural nucleotide sequences in biopharmaceutics. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 35:321-47. [PMID: 8920210 DOI: 10.1016/s1054-3589(08)60280-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle 98195, USA
| |
Collapse
|
29
|
Rémond M, Sheldrick P, Lebreton F, Foulon T. Sequence of the canine herpesvirus thymidine kinase gene: taxon-preferred amino acid residues in the alphaherpesviral thymidine kinases. Virus Res 1995; 39:341-54. [PMID: 8837896 DOI: 10.1016/0168-1702(95)00089-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sequence alignments of evolutionarily related proteins are finding increasing use as indicators of critical amino acid residues necessary for structural stability or involved in functional domains responsible for catalytic activities. In the past, a number of alignments have provided such information for the herpesviral thymidine kinases, for which three-dimensional structures are not yet available. We have sequenced the thymidine kinase gene of a canine herpesvirus, and with a multiple alignment have identified amino acids preferentially conserved in either of two taxons, the genera Varicellovirus and Simplexvirus, of the subfamily Alphaherpesvirinae. Since some regions of the thymidine kinases show otherwise elevated levels of substitutional tolerance, these conserved amino acids are candidates for critical residues which have become fixed through selection during the evolutionary divergence of these enzymes. Several pairs with distinctive patterns of distribution among the various viruses occur in or near highly conserved sequence motifs previously proposed to form the catalytic site, and we speculate that they may represent interacting, co-ordinately variable residues.
Collapse
Affiliation(s)
- M Rémond
- Laboratoire de Virologie de l'Herpès, CNRS, UPR 9045, Villejuif, France
| | | | | | | |
Collapse
|
30
|
Brown DG, Visse R, Sandhu G, Davies A, Rizkallah PJ, Melitz C, Summers WC, Sanderson MR. Crystal structures of the thymidine kinase from herpes simplex virus type-1 in complex with deoxythymidine and ganciclovir. NATURE STRUCTURAL BIOLOGY 1995; 2:876-81. [PMID: 7552712 DOI: 10.1038/nsb1095-876] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structures of thymidine kinase from herpes simplex virus type-1 complexed with its natural substrate deoxythymidine (dT) and complexed with the guanosine analogue Ganciclovir have been solved. Both structures are in the C222(1) crystal form with two molecules per asymmetric unit related by a non-crystallographic two-fold axis. The present models have been refined to 2.8 A and 2.2 A, with crystallographic R factors of 24.1% and 23.3% for the dT and Ganciclovir complexes respectively, without the inclusion of any solvent molecules. The core of the molecule exhibits high structural homology with adenylate kinase and other nucleotide binding proteins. These structural similarities provide an insight into the mechanism of nucleoside phosphorylation by thymidine kinase.
Collapse
Affiliation(s)
- D G Brown
- Division of Biomedical Sciences, Randall Institute, King's College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Trott DA, Cuthbert AP, Todd CM, Themis M, Newbold RF. Novel use of a selectable fusion gene as an "in-out" marker for studying genetic loss in mammalian cells. Mol Carcinog 1995; 12:213-24. [PMID: 7727043 DOI: 10.1002/mc.2940120406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent demonstrations of loss of heterozygosity in a wide variety of human cancers suggest that large multilocus genetic deletions (presumably including tumor suppressor genes) constitute a major class of genetic alteration in human carcinogenesis. Here we show that a bifunctional fusion gene (Hytk), suitable for both positive and negative selection, is an effective marker for studying genetic loss in mammalian cells with minimal interference from point-mutational changes. Studies with a transgenic V79 cell line in which a single functional copy of Hytk was stably inserted into the genome in a retroviral vector showed that loss of the marker (and presumably flanking cellular genetic material) could be induced efficiently by ionizing radiation (gamma-rays and fast neutrons) but only weakly by the powerful point-mutagen benzo[a]pyrene diol epoxide. In a first application of the system, we provide evidence that radiation-induced loss can occur through an indirect mechanism after a high-frequency event. Collectively, our results suggest that the Hytk marker should be a valuable tool for studying genome position effects on the tolerance of genetic loss in cultured human cells that represent different stages in clonal evolution and tumor progression.
Collapse
Affiliation(s)
- D A Trott
- Human Cancer Genetics Unit, Brunel University, Uxbridge, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Ma GT, Hong YS, Ives DH. Cloning and Expression of the Heterodimeric Deoxyguanosine Kinase/Deoxyadenosine Kinase of Lactobacillus acidophilus R-26. J Biol Chem 1995. [DOI: 10.1074/jbc.270.12.6595] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Dube DK, Black ME, Munir KM, Loeb LA. Selection of new biologically active molecules from random nucleotide sequences. Gene 1993; 137:41-7. [PMID: 8282199 DOI: 10.1016/0378-1119(93)90249-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genetic diversity can be achieved in vitro by inserting random nucleotide (nt) sequences into cloned genes. In the case of enzymes, subsequent genetic complementation can be used to select for new mutants that exhibit different substrate specificities, altered catalytic activities, or altered temperature sensitivities. Using this technique, one can also analyze the contribution of different amino acid residues to the structure and function of enzyme. Selecting biologically active DNA sequences from large random populations provides a new method for identifying nt sequences with unique functions. Analogous random sequence selection techniques have been applied to determine the consensus sequence of the Escherichia coli promoters, DNA and RNA sequences that bind specific protein(s), DNA regulatory sequences, ribozyme(s) and ligand-specific RNA(s). In this manuscript, we will consider recent data obtained in our laboratory as a result of inserting random sequences into the putative nucleoside-binding site of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK). We have obtained over 2000 new mutant HSV-1 TKs, some of which are stable at higher temperatures or have altered substrate specificity and/or catalytic rates when compared to those of the wild-type enzyme.
Collapse
Affiliation(s)
- D K Dube
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
34
|
Black ME, Loeb LA. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry 1993; 32:11618-26. [PMID: 8218229 DOI: 10.1021/bi00094a019] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Random sequence mutagenesis in conjunction with genetic complementation was used to map the function of amino acid residues within the putative nucleoside binding site of the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK). Six codons of the putative nucleoside binding site of the HSV-1 tk were substituted by a duplex of extended oligonucleotides containing 20% random sequences. Approximately 260 mutants were screened for the ability to genetically complement a TK-deficient Escherichia coli. Of those screened, 32% conferred TK activity. Approximately 60% of the TK positive clones contained single amino acid changes, 23% contained double changes, and 13.4% encoded the wild-type TK amino acid sequence. A small percentage of clones, 2.4% and 1.2%, contained triple or quadruple alterations, respectively. Three residues (D162, H163, and R164) appeared to be highly conserved especially with regard to the type of residues able to substitute. Secondary screening results indicated that several of the mutants had higher affinities for acyclovir and/or 3'-azido-3'-deoxythymidine than thymidine in complementation assays. In addition, a number of clones were unable to form colonies on selection medium at elevated temperatures (42 degrees C). Eight selected mutants were subcloned into an in vitro transcription vector and the derived transcripts used to program a rabbit reticulocyte lysate cell-free translation system. Biologically active translation products were then analyzed in vitro for thymidine kinase activity, for thermal stability, and for the ability to phosphorylate selected nucleoside analogues. Two of the eight mutants had an elevated thymidine kinase activity, two were significantly thermolabile, and three exhibited enhanced efficiency in phosphorylation of nucleoside analogues.
Collapse
Affiliation(s)
- M E Black
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
35
|
Abstract
The mechanisms by which DNA polymerases achieve their remarkable fidelity, including base selection and proofreading, are briefly reviewed. Nine proofreading models from the current literature are evaluated in the light of steady-state and transient kinetic studies of E. coli DNA polymerase I, the best-studied DNA polymerase. One model is demonstrated to predict quantitatively the response of DNA polymerase I to three mutagenic probes of proofreading: exogenous pyrophosphate, deoxynucleoside monophosphates, and the next correct deoxynucleoside triphosphate substrate, as well as the response to combinations of these probes. The theoretical analysis allows elimination of many possible proofreading mechanisms based on the kinetic data. A structural hypothesis links the kinetic analysis with crystallographic, NMR and genetic studies. It would appear that DNA polymerase I proofreads each potential error twice, at the same time undergoing two conformational changes within a catalytic cycle. Multi-stage proofreading is more efficient, and may be utilized in other biological systems as well. In fact, recent evidence suggests that fidelity of transfer RNA charging may be ensured by a similar mechanism.
Collapse
Affiliation(s)
- R A Beckman
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
36
|
Abstract
Thymidine kinases were described for cellular life long before it was shown that they could also be encoded by viruses, but the viral thymidine kinase genes were the first to be sequenced. These enzymes have been extraordinarily useful to the researcher, serving first to help label DNA, then to get thymidine analogs incorporated into DNA for therapeutic and other purposes and more recently to move genes from one genome to another. Knowledge of the nucleotide and amino acid sequences of these enzymes has allowed some deductions about their possible three-dimensional structure, as well as the location on the polypeptide of various functions; it has also allowed their classification into two main groups: the herpesviral thymidine/eukaryotic deoxycytidine kinases and the poxviral and cellular thymidine kinases; the relationships of the mitochondrial enzyme are still not clear.
Collapse
Affiliation(s)
- G A Gentry
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216-4505
| |
Collapse
|