1
|
Pande S, Lakshminarasimhan D, Guo HC. Crystal structure of a mutant glycosylasparaginase shedding light on aspartylglycosaminuria-causing mechanism as well as on hydrolysis of non-chitobiose substrate. Mol Genet Metab 2017; 121:150-156. [PMID: 28457719 PMCID: PMC5504686 DOI: 10.1016/j.ymgme.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Glycosylasparaginase (GA) is an amidase that cleaves Asn-linked glycoproteins in lysosomes. Deficiency of this enzyme causes accumulation of glycoasparagines in lysosomes of cells, resulting in a genetic condition called aspartylglycosaminuria (AGU). To better understand the mechanism of a disease-causing mutation with a single residue change from a glycine to an aspartic acid, we generated a model mutant enzyme at the corresponding position (named G172D mutant). Here we report a 1.8Å resolution crystal structure of mature G172D mutant and analyzed the reason behind its low hydrolase activity. Comparison of mature G172D and wildtype GA models reveals that the presence of Asp 172 near the catalytic site affects substrate catabolism in mature G172D, making it less efficient in substrate processing. Also recent studies suggest that GA is capable of processing substrates that lack a chitobiose (Glycan, N-acetylchiobios, NAcGlc) moiety, by its exo-hydrolase activity. The mechanism for this type of catalysis is not yet clear. l-Aspartic acid β-hydroxamate (β-AHA) is a non-chitobiose substrate that is known to interact with GA. To study the underlying mechanism of non-chitobiose substrate processing, we built a GA-β-AHA complex structure by comparing to a previously published G172D mutant precursor in complex with a β-AHA molecule. A hydrolysis mechanism of β-AHA by GA is proposed based on this complex model.
Collapse
Affiliation(s)
- Suchita Pande
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Damodharan Lakshminarasimhan
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Hwai-Chen Guo
- Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
2
|
Abstract
Aspartylglucosaminuria (AGU), a recessively inherited lysosomal storage disease, is the most common disorder of glycoprotein degradation with a high prevalence in the Finnish population. It is a lifelong condition affecting on the patient's appearance, cognition, adaptive skills, physical growth, personality, body structure, and health. An infantile growth spurt and development of macrocephalia associated to hernias and respiratory infections are the key signs to an early identification of AGU. Progressive intellectual and physical disability is the main symptom leading to death usually before the age of 50 years.The disease is caused by the deficient activity of the lysosomal enzyme glycosylasparaginase (aspartylglucosaminidase, AGA), which leads to a disorder in the degradation of glycoasparagines - aspartylglucosamine or other glycoconjugates with an aspartylglucosamine moiety at their reducing end - and accumulation of these undegraded glycoasparagines in tissues and body fluids. A single nucleotide change in the AGA gene resulting in a cysteine to serine substitution (C163S) in the AGA enzyme protein causes the deficiency of the glycosylasparaginase activity in the Finnish population. Homozygosity for the single nucleotide change causing the C163S mutation is responsible for 98% of the AGU cases in Finland simplifying the carrier detection and prenatal diagnosis of the disorder in the Finnish population. A mouse strain, which completely lacks the Aga activity has been generated through targeted disruption of the Aga gene in embryonic stem cells. These Aga-deficient mice share most of the clinical, histopathologic and biochemical characteristics of human AGU disease. Treatment of AGU mice with recombinant AGA resulted in rapid correction of the pathophysiologic characteristics of AGU in non-neuronal tissues of the animals. The accumulation of aspartylglucosamine was reduced by up to 40% in the brain tissue of the animals depending on the age of the animals and the therapeutic protocol. Enzyme replacement trials on human AGU patients have not been reported so far. Allogenic stem cell transplantation has not proved effective in curing AGU.
Collapse
Affiliation(s)
- Maria Arvio
- Päijät-Häme Social Welfare & Healthcare Joint Municipal Board, Lahti, Finland. .,KTO, The Special Welfare District of Southwestern Finland, Paimio, Finland. .,PEDEGO Research Unit, Oulu University Hospital, Finland, Oulu, Finland.
| | - Ilkka Mononen
- Newborn Screening Center Finland, Saske, Turku University Central Hospital, Turku, Finland.,The Joint Clinical Chemistry Laboratory at Turku University Hospital, Turku, Finland.,Department of Clinical Chemistry, University of Turku, PO Box 52, FIN-20521, Turku, Finland
| |
Collapse
|
3
|
Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med 2016; 51:89-103. [DOI: 10.1016/j.mam.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
|
4
|
Kelo E, Noronkoski T, Mononen I. Depletion of L-asparagine supply and apoptosis of leukemia cells induced by human glycosylasparaginase. Leukemia 2009; 23:1167-71. [DOI: 10.1038/leu.2008.387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Dieterich DC, Landwehr M, Reissner C, Smalla KH, Richter K, Wolf G, Böckers TM, Gundelfinger ED, Kreutz MR. Gliap--a novel untypical L-asparaginase localized to rat brain astrocytes. J Neurochem 2003; 85:1117-25. [PMID: 12753071 DOI: 10.1046/j.1471-4159.2003.01766.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L-asparaginases catalyse the formation of the neuroactive amino acid L-aspartate by deamination of asparagine. The major pathophysiological significance of L-asparaginase activity is in its clinical use for the treatment of acute lymphatic leukaemia and neoplasias that require asparagine and obtain it from circulating pools. Here we report the identification and characterization of Gliap, a cytosolic L-asparaginase, which is the founding member of a new group of L-asparaginases in mammalia. Structural modelling suggests that Gliap is an atypical mammalian type-I asparaginase inasmuch as it harbours the active centre of a type-I glycosylasparaginase but, like plant-type asparaginases, lacks their auto-proteolytic site and, in addition, exhibits significant type-II L-asparaginase enzymatic activity. Moreover, in contrast to glycosylasparaginases Gliap is enriched in the cytosolic fraction and not in lysosomes. The protein is particularly abundant in liver, testis and brain. In brain Gliap is exclusively expressed in astrocytes and prominently present in structures reminiscent of glial endfeet. These data suggest that Gliap is involved in astroglial production of the neuroactive amino acid L-aspartate.
Collapse
Affiliation(s)
- Daniela C Dieterich
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kelo E, Noronkoski T, Stoineva IB, Petkov DD, Mononen I. β-Aspartylpeptides as substrates ofL-asparaginases fromEscherichia coliandErwinia chrysanthemi. FEBS Lett 2002; 528:130-2. [PMID: 12297292 DOI: 10.1016/s0014-5793(02)03273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-Asparaginase is known to catalyze the hydrolysis of L-asparagine to L-aspartic and ammonia, but little is known about its action on peptides. When we incubated L-asparaginases purified either from Escherichia coli or Erwinia chrysanthemi - commonly used as chemotherapeutic agents because of their antitumour activity - with eight small beta-aspartylpeptides such as beta-aspartylserineamide, beta-aspartylalanineamide, beta-aspartylglycineamide and beta-aspartylglycine, we found that both L-asparaginases could catalyze the hydrolysis of five of them yielding L-aspartic acid and amino acids or peptides. Our data show that L-asparaginases can hydrolyze beta-aspartylpeptides and suggest that L-asparaginase therapy may affect the metabolism of beta-aspartylpeptides present in human body.
Collapse
Affiliation(s)
- Eira Kelo
- Department of Clinical Chemistry, Kuopio University Hospital, Finland.
| | | | | | | | | |
Collapse
|
7
|
Risley JM, Huang DH, Kaylor JJ, Malik JJ, Xia YQ. Glycosylasparaginase inhibition studies: competitive inhibitors, transition state mimics, noncompetitive inhibitors. JOURNAL OF ENZYME INHIBITION 2002; 16:269-74. [PMID: 11697047 DOI: 10.1080/14756360109162375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between asparagine and N-acetylglucosamine in the catabolism of N-linked glycoproteins. Previously only three competitive inhibitors, one noncompetitive inhibitor, and one irreversible inhibitor of glycosylasparaginase activity had been reported. Using human glycosylasparaginase from human amniotic fluid, L-aspartic acid and four of its analogues, where the alpha-amino group was substituted with a chloro, bromo, methyl or hydrogen, were competitive inhibitors having Ki values between 0.6-7.7 mM. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction. A proposed phosphono transition state mimic and a sulfo transition state mimic were competitive inhibitors with Ki values 0.9 mM and 1.4 mM, respectively. These results support a mechanism for the enzyme-catalyzed reaction involving formation of a tetrahedral high-energy intermediate. Three analogues of the natural substrate were noncompetitive inhibitors with Ki values between 0.56-0.75 mM, indicating the presence of a second binding site that may recognize (substituted)acetamido groups.
Collapse
Affiliation(s)
- J M Risley
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | | | | | | | |
Collapse
|
8
|
Risley JM, Huang DH, Kaylor JJ, Malik JJ, Xia YQ, York WM. Glycosylasparaginase activity requires the alpha-carboxyl group, but not the alpha-amino group, on N(4)-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine. Arch Biochem Biophys 2001; 391:165-70. [PMID: 11437347 DOI: 10.1006/abbi.2001.2416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond in N(4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine in the catabolism of N-linked oligosaccharides. A deficiency, or absence, of enzyme activity gives rise to aspartylglycosaminuria, the most common disorder of glycoprotein metabolism. The enzyme catalyzes the hydrolysis of a variety of asparagine and aspartyl compounds containing a free alpha-carboxyl group and a free alpha-amino group; computational studies suggest that the alpha-amino group actively participates in the catalytic mechanism. In order to study the importance of the alpha-carboxyl group and the alpha-amino group on the natural substrate to the reaction catalyzed by the enzyme, 14 analogues of the natural substrate were studied where the structure of the aspartyl group of the substrate was changed. The incremental binding energy (DeltaDeltaGb) for those analogues that were substrates was calculated. The results show that the alpha-amino group may be substituted with a group of comparable size, for the alpha-amino group contributes little, if any, to the transition state binding energy of the natural substrate. The alpha-amino group position acts as an "anchor" in the binding site for the substrate. On the other hand, the alpha-carboxyl group is necessary for enzyme activity; removal of the alpha-carboxyl group or changing it to an alpha-carboxamide group results in no hydrolysis reaction. Also, N-acetyl-D-glucosamine is not sufficient for binding to the active site for efficient hydrolysis by the enzyme. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction for the enzyme. However, the results raise a question as to an important role for the alpha-amino group in the catalytic mechanism as indicated in computational studies.
Collapse
Affiliation(s)
- J M Risley
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Aronson NN. Aspartylglycosaminuria: biochemistry and molecular biology. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:139-54. [PMID: 10571008 DOI: 10.1016/s0925-4439(99)00076-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aspartylglucosaminuria (AGU, McKusick 208400) is an autosomal recessive lysosomal storage disease caused by defective degradation of Asn-linked glycoproteins. AGU mutations occur in the gene (AGA) for glycosylasparaginase, the enzyme necessary for hydrolysis of the protein oligosaccharide linkage in Asn-linked glycoprotein substrates undergoing metabolic turnover. Loss of glycosylasparaginase activity leads to accumulation of the linkage unit Asn-GlcNAc in tissue lysosomes. Storage of this fragment affects the pathophysiology of neuronal cells most severely. The patients notably suffer from decreased cognitive abilities, skeletal abnormalities and facial grotesqueness. The progress of the disease is slower than in many other lysosomal storage diseases. The patients appear normal during infancy and generally live from 25 to 45 years. A specific AGU mutation is concentrated in the Finnish population with over 200 patients. The carrier frequency in Finland has been estimated to be in the range of 2.5-3% of the population. So far there are 20 other rare family AGU alleles that have been characterized at the molecular level in the world's population. Recently, two knockout mouse models for AGU have been developed. In addition, the crystal structure of human leukocyte glycosylasparaginase has been determined and the protein has a unique alphabetabetaalpha sandwich fold shared by a newly recognized family of important enzymes called N-terminal nucleophile (Ntn) hydrolases. The nascent single-chain precursor of glycosylase araginase self-cleaves into its mature alpha- and beta-subunits, a reaction required to activate the enzyme. This interesting biochemical feature is also shared by most of the Ntn-hydrolase family of proteins. Many of the disease-causing mutations prevent proper folding and subsequent activation of the glycosylasparaginase.
Collapse
Affiliation(s)
- N N Aronson
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile 36688-0002, USA.
| |
Collapse
|
10
|
Noronkoski T, Stoineva IB, Ivanov IP, Petkov DD, Mononen I. Glycosylasparaginase-catalyzed synthesis and hydrolysis of beta-aspartyl peptides. J Biol Chem 1998; 273:26295-7. [PMID: 9756857 DOI: 10.1074/jbc.273.41.26295] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Aspartyl di- and tripeptides are common constituents of mammalian metabolism, but their formation and catabolism are not fully understood. In this study we provide evidence that glycosylasparaginase (aspartylglucosaminidase), an N-terminal nucleophile hydrolase involved in the hydrolysis of the N-glycosidic bond in glycoproteins, catalyzes the hydrolysis of beta-aspartyl peptides to form L-aspartic acid and amino acids or peptides. The enzyme also effectively catalyzes the synthesis of beta-aspartyl peptides by transferring the beta-aspartyl moiety from other beta-aspartyl peptides or beta-aspartylglycosylamine to a variety of amino acids and peptides. Furthermore, the enzyme can use L-asparagine as the beta-aspartyl donor in the formation of beta-aspartyl peptides. The data show that synthesis and degradation of beta-aspartyl peptides are new, significant functions of glycosylasparaginase and suggest that the enzyme could have an important role in the metabolism of beta-aspartyl peptides.
Collapse
Affiliation(s)
- T Noronkoski
- Department of Clinical Chemistry, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
11
|
Liu Y, Guan C, Aronson NN. Site-directed mutagenesis of essential residues involved in the mechanism of bacterial glycosylasparaginase. J Biol Chem 1998; 273:9688-94. [PMID: 9545303 DOI: 10.1074/jbc.273.16.9688] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flavobacterium glycosylasparaginase was cloned in an Escherichia coli expression system. Site-directed mutagenesis was performed at residues suggested to be important in the catalytic mechanism based on the crystal structure of the human enzyme and other biochemical studies. In vitro autoproteolysis allowed the mutant enzymes to be activated, including those that were slow to self-cleave. Based on the activity of the mutant enzymes, six catalytically essential amino acids were identified: Trp-11, Asp-66, Thr-152, Thr-170, Arg-180, and Asp-183. Kinetic analysis of each mutant further defined the function of these residues in substrate specificity and reaction rate. Mutagenesis of the N-terminal nucleophile residue Thr-152 confirmed the key function of its side-chain hydroxyl group. Partial activities of mutants T152S/C were in agreement with the general mechanism of N-terminal nucleophile (Ntn)-amidohydrolases. The side-chain hydroxyl of Thr-170 contributes to the reaction rate based on studies of mutants T170S/C/A. Residues Asp-183 and Arg-180 were found to H-bond, respectively, with the charged alpha-amino and alpha-carboxyl group of the substrate (Asn-GlcNAc). Mutants R180Q/L and D183E/N had greatly decreased substrate affinity and reduced reaction rates. Kinetic studies also showed that Trp-11 is involved in regulation of the enzyme reaction rate, contradictory to a previous suggestion that this residue is involved in substrate binding. Asp-66 is a new residue found to be important in enzyme activity. The overall active site structure involving these catalytic residues resembles the glutaminase domain of glucosamine 6-phosphate synthase, another member of the Ntn-amidohydrolase family of enzymes.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
12
|
Noronkoski T, Stoineva IB, Petkov DD, Mononen I. Recombinant human glycosylasparaginase catalyzes hydrolysis of L-asparagine. FEBS Lett 1997; 412:149-52. [PMID: 9257709 DOI: 10.1016/s0014-5793(97)00761-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycosylasparaginase is a lysosomal amidase involved in the degradation of glycoproteins. Recombinant human glycosylasparaginase is capable of catalyzing the hydrolysis of the amino acid L-asparagine to L-aspartic acid and ammonia. For the hydrolysis of L-asparagine the Km is 3-4-fold higher and Vmax 1/5 of that for glycoasparagines suggesting that the full catalytic potential of glycosylasparaginase is not used in the hydrolysis of the free amino acid. L-Asparagine competitively inhibits the hydrolysis of aspartylglucosamine indicating that both the amino acid and glycoasparagine are interacting with the same active site of the enzyme. The hydrolytic mechanism of L-asparagine and glycoasparagines will be discussed.
Collapse
Affiliation(s)
- T Noronkoski
- Department of Clinical Chemistry, Kuopio University Hospital, Finland
| | | | | | | |
Collapse
|
13
|
Peräkylä M, Kollman PA. A Simulation of the Catalytic Mechanism of Aspartylglucosaminidase Using ab Initio Quantum Mechanics and Molecular Dynamics. J Am Chem Soc 1997. [DOI: 10.1021/ja9628967] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikael Peräkylä
- Contribution from the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446
| | - Peter A. Kollman
- Contribution from the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446
| |
Collapse
|
14
|
Androlewicz MJ. An N-glycosylated tyrosinase epitope associates with newly synthesized MHC class I molecules in melanoma cells. Hum Immunol 1996; 51:81-8. [PMID: 8960909 DOI: 10.1016/s0198-8859(96)00237-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endogenous antigenic epitopes are presented to CD8+ T cells by MHC class I molecules. Many endogenous antigens are glycoproteins, and it is not clear what effect the attachment of carbohydrate to potential immunogenic epitopes has on their processing and presentation (i.e., is the carbohydrate moiety removed prior to presentation, or is it presented along with the peptide to T cells?). A major question in this regard is whether natural antigenic epitopes that possess N-linked carbohydrate can associate with class I molecules during assembly in the endoplasmic reticulum (ER). One such antigenic epitope, corresponding to amino acids 369-377 of the enzyme tyrosinase, possesses an N-linked glycosylation site. We have studied the transport and loading of this epitope in streptolysin O-permeabilized melanoma cells. We show here that that the glycosylated epitope is capable of loading onto newly synthesized HLA-A2 molecules in the ER of two melanoma cell lines. The results are discussed in respect to the processing and presentation of the tyrosinase epitope.
Collapse
Affiliation(s)
- M J Androlewicz
- Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
15
|
Affiliation(s)
- B G Winchester
- Division of Biochemistry and Genetics, Institute of Child Health, London, United Kingdom
| |
Collapse
|
16
|
Chapter 1b Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Oinonen C, Tikkanen R, Rouvinen J, Peltonen L. Three-dimensional structure of human lysosomal aspartylglucosaminidase. NATURE STRUCTURAL BIOLOGY 1995; 2:1102-8. [PMID: 8846222 DOI: 10.1038/nsb1295-1102] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The high resolution crystal structure of human lysosomal aspartylglucosaminidase (AGA) has been determined. This lysosomal enzyme is synthesized as a single polypeptide precursor, which is immediately post-translationally cleaved into alpha- and beta-subunits. Two alpha- and beta-chains are found to pack together forming the final heterotetrameric structure. The catalytically essential residue, the N-terminal threonine of the beta-chain is situated in the deep pocket of the funnel-shaped active site. On the basis of the structure of the enzyme-product complex we present a catalytic mechanism for this lysosomal enzyme with an exceptionally high pH optimum. The three-dimensional structure also allows the prediction of the structural consequences of human mutations resulting in aspartylglucosaminuria (AGU), a lysosomal storage disease.
Collapse
Affiliation(s)
- C Oinonen
- Department of Chemistry, University of Joensuu, Finland
| | | | | | | |
Collapse
|
18
|
McCormack AL, Mononen I, Kaartinen V, Yates JR. Localization of the disulfide bond involved in post-translational processing of glycosylasparaginase and disrupted by a mutation in the Finnish-type aspartylglycosaminuria. J Biol Chem 1995; 270:3212-5. [PMID: 7852406 DOI: 10.1074/jbc.270.7.3212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The heavy chain of human glycosylasparaginase (N4-(beta-N-acetylglucosaminyl)-L-asparaginase (EC 3.5.1.26)) has five cysteinyl residues (Cys-61, Cys-64, Cys-69, Cys-163, and Cys-179). A Cys-163 to serine substitution due to a point mutation in the glycosylasparaginase gene causes the most common disorder of glycoprotein degradation, the Finnish-type aspartylglycosaminuria. To localize the potential disulfide bonds, the isolated heavy chain of human leukocyte glycosylasparaginase was treated with the enzyme alpha-chymotrypsin, and the resulting peptides were separated by high performance liquid chromatography prior to and after reduction and S-carboxymethylation. The peptide containing the Cys-163 residue and the peptide to which it is connected with a disulfide were structurally characterized by mass spectrometry. The disulfide bond crucial for catalytic activity, subunit processing, and biological transport of glycosylasparaginase was located close to the carboxyl terminus of the heavy chain at positions 163 and 179.
Collapse
Affiliation(s)
- A L McCormack
- Department of Molecular Biotechnology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
19
|
Lindquist JA, McFadden PN. Incorporation of two 18O atoms into a peptide during isoaspartyl repair reveals repeated passage through a succinimide intermediate. JOURNAL OF PROTEIN CHEMISTRY 1994; 13:553-60. [PMID: 7832984 DOI: 10.1007/bf01901537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To study the mechanism of protein carboxyl methyltransferase-driven repair of age-damaged sites in polypeptides, a model L-isoaspartyl peptide, L-isotetragastrin, was enzymatically repaired to normal L-tetragastrin in the presence of 18O-enriched water. By this design, the enrichment of 18O atoms in the peptide would reflect the number of passages through a hydrolyzable succinimide intermediate during formation of the repaired product. Mass determinations by FAB mass spectrometry revealed repaired peptide with two 18O atoms incorporated, demonstrating that more than a single cycle of methylation and demethylation is necessary to ensure stoichiometric repair.
Collapse
Affiliation(s)
- J A Lindquist
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331
| | | |
Collapse
|
20
|
Fisher KJ, Klein M, Park H, Vettese MB, Aronson NN. Post-translational processing and Thr-206 are required for glycosylasparaginase activity. FEBS Lett 1993; 323:271-5. [PMID: 8500622 DOI: 10.1016/0014-5793(93)81355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lysosomal glycosylasparaginase is encoded as a 36.5 kDa polypeptide that is post-translationally processed to subunits of 19.5 kDa (heavy) and 15 kDa (light). Recombinant glycosylasparaginase has been expressed in Spodoptera frugiperda insect cells enabling the precursor and processed forms to be isolated and their catalytic potential determined. Only the subunit conformation was functional indicating glycosylasparaginase is encoded as an inactive zymogen. The newly created amino terminal residue of the light subunit following maturation, Thr-206, is believed to be involved in the catalytic mechanism [1992, J. Biol. Chem. 267, 6855-6858]. Here we have constructed two amino acid substitution mutants replacing Thr-206 with Ala-206 or Ser-206 and demonstrate that both destroy enzyme activity.
Collapse
Affiliation(s)
- K J Fisher
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | |
Collapse
|
21
|
Keulemans JL, Kleijer WJ, Aula P, Gray GR, van Diggelen OP. Applications of a new fluorimetric enzyme assay for the diagnosis of aspartylglucosaminuria. J Inherit Metab Dis 1993; 16:929-34. [PMID: 8127068 DOI: 10.1007/bf00711507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
L-Aspartic acid-beta-7-amido-4-methylcoumarin is a sensitive and specific fluorogenic substrate for lysosomal glycoasparaginase (aspartylglucosaminidase). Fibroblasts and leukocytes from 8 patients with aspartylglucosaminuria, showed 1-7% of the mean normal glycoasparaginase activity. Heterozygotes showed intermediate activities. Glycoasparaginase activity in chorionic villi, cultured trophoblasts, cultured amniotic fluid cells and amniotic fluid was readily detectable, indicating that prenatal analysis of aspartylglucosaminuria should be possible with this assay. beta-Aspartyl-4-methylumbelliferone was synthesized but this potential substrate can not be used to assay glycoasparaginase since it hydrolyses spontaneously.
Collapse
|