1
|
Tokugawa M, Inoue Y, Aoki H, Miyajima C, Ishiuchi K, Tsurumi K, Kujirai C, Morishita D, Matsuno M, Mizukami H, Ri M, Iida S, Makino T, Aoyama M, Hayashi H. Involvement of cardiac glycosides targeting Na/K-ATPase in their inhibitory effects on c-Myc expression via its transcription, translation and proteasomal degradation. J Biochem 2024; 175:253-263. [PMID: 37948630 DOI: 10.1093/jb/mvad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Cardiac glycosides (CGs) have been used for decades to treat heart failure and arrhythmic diseases. Recent non-clinical and epidemiological findings have suggested that CGs exhibit anti-tumor activities. Therefore, CGs may be repositioned as drugs for the treatment of cancer. A detailed understanding of the anti-cancer mechanisms of CGs is essential for their application to the treatment of targetable cancer types. To elucidate the factors associated with the anti-tumor effects of CGs, we performed transcriptome profiling on human multiple myeloma AMO1 cells treated with periplocin, one of the CGs. Periplocin significantly down-regulated the transcription of MYC (c-Myc), a well-established oncogene. Periplocin also suppressed c-Myc expression at the protein levels. This repression of c-Myc was also observed in several cell lines. To identify target proteins for the inhibition of c-Myc, we generated CG-resistant (C9) cells using a sustained treatment with digoxin. We confirmed that C9 cells acquired resistance to the inhibition of c-Myc expression and cell proliferation by CGs. Moreover, the sequencing of genomic DNA in C9 cells revealed the mutation of D128N in α1-Na/K-ATPase, indicating the target protein. These results suggest that CGs suppress c-Myc expression in cancer cells via α1-Na/K-ATPase, which provides further support for the anti-tumor activities of CGs.
Collapse
Affiliation(s)
- Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kan'ichiro Ishiuchi
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kento Tsurumi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chisane Kujirai
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- Chordia Therapeutics Inc., 26-1 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Michiyo Matsuno
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Hajime Mizukami
- Plant research section, The Kochi Prefectural Makino Botanical Garden, 4200-6 Godaiyama, Kochi 781-8125, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
2
|
Holzinger F, Wink M. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na(+),K (+)-ATPase. J Chem Ecol 2013; 22:1921-37. [PMID: 24227116 DOI: 10.1007/bf02028512] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1996] [Accepted: 05/16/1996] [Indexed: 12/01/2022]
Abstract
The Monarch butterfly (Danaus plexippus) sequesters cardiac glycosides (CG) for its chemical defense against predators. Larvae and adults of this butterfly are insensitive towards dietary cardiac glycosides, whereas other Lepidoptera are sensitive and intoxicated by ouabain. Ouabain inhibits Na(+),K(+)-ATPase by binding to its α-subunit. We have amplified and cloned the DNA-sequence encoding the respective ouabain binding site. Instead of the amino acid asparagine at position 122 in ouabain-sensitive insects, the Monarch has a histidine in the putative ouabain binding site, which consists of 12 amino acids. Starting with the CG-sensitive Na(+),K(+)-ATPase gene fromDrosophila, we converted pos. 122 to a histidine residue as inDanaus plexippus by site-directed mutagenesis. Human embryonic kidney cells (HEK) (which are sensitive to ouabain) were transfected with the mutated Na(+),K(+)-ATPase gene in a pSVDF-expression vector and showed a transient expression of the mutatedDrosophila Na(+),K(+)-ATPase. When treated with ouabain, the transfected cells tolerated ouabain at a concentration of 50 mM, whereas untransformed controls or controls transfected with the unmutatedDrosophila gene, showed a substantial mortality. This result implies that the asparagine to histidine exchange contributes to ouabain insensitivity in the Monarch. In two other CG-sequestering insects, e.g.,Danaus gilippus andSyntomeida epilais, the pattern of amino acid substitution differed, indicating that the Monarch has acquired this mutation independently during evolution.
Collapse
Affiliation(s)
- F Holzinger
- Institut für Pharmazeutische Biologie, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | | |
Collapse
|
3
|
Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. STEPWISE EVOLUTION OF RESISTANCE TO TOXIC CARDENOLIDES VIA GENETIC SUBSTITUTIONS IN THE NA+/K+-ATPASE OF MILKWEED BUTTERFLIES (LEPIDOPTERA: DANAINI). Evolution 2013; 67:2753-61. [DOI: 10.1111/evo.12152] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Georg Petschenka
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Steffi Fandrich
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Nils Sander
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Vera Wagschal
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Michael Boppré
- Forstzoologisches Institut; Albert-Ludwigs-Universität; 79085; Freiburg; Germany
| | - Susanne Dobler
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| |
Collapse
|
4
|
Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. Parallel molecular evolution in an herbivore community. Science 2012; 337:1634-7. [PMID: 23019645 PMCID: PMC3770729 DOI: 10.1126/science.1226630] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Numerous insects have independently evolved the ability to feed on plants that produce toxic secondary compounds called cardenolides and can sequester these compounds for use in their defense. We surveyed the protein target for cardenolides, the alpha subunit of the sodium pump, Na(+),K(+)-ATPase (ATPα), in 14 species that feed on cardenolide-producing plants and 15 outgroups spanning three insect orders. Despite the large number of potential targets for modulating cardenolide sensitivity, amino acid substitutions associated with host-plant specialization are highly clustered, with many parallel substitutions. Additionally, we document four independent duplications of ATPα with convergent tissue-specific expression patterns. We find that unique substitutions are disproportionately associated with recent duplications relative to parallel substitutions. Together, these findings support the hypothesis that adaptation tends to take evolutionary paths that minimize negative pleiotropy.
Collapse
Affiliation(s)
- Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthew L. Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edgar M. Medina
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 11001, Colombia
| | - Molly Schumer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
5
|
Hauck C, Potter T, Bartz M, Wittwer T, Wahlers T, Mehlhorn U, Scheiner-Bobis G, McDonough AA, Bloch W, Schwinger RHG, Müller-Ehmsen J. Isoform specificity of cardiac glycosides binding to human Na+,K+-ATPase alpha1beta1, alpha2beta1 and alpha3beta1. Eur J Pharmacol 2009; 622:7-14. [PMID: 19751721 DOI: 10.1016/j.ejphar.2009.08.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 08/20/2009] [Accepted: 08/25/2009] [Indexed: 12/22/2022]
Abstract
Cardiac glycosides inhibit the Na(+),K(+)-ATPase and are used for the treatment of symptomatic heart failure and atrial fibrillation. In human heart three isoforms of Na(+),K(+)-ATPase are expressed: alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1). It is unknown, if clinically used cardiac glycosides differ in isoform specific affinities, and if the isoforms have specific subcellular localization in human cardiac myocytes. Human Na(+),K(+)-ATPase isoforms alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1) were expressed in yeast which has no endogenous Na(+),K(+)-ATPase. Isoform specific affinities of digoxin, digitoxin, beta-acetyldigoxin, methyldigoxin and ouabain were assessed in [(3)H]-ouabain binding assays in the absence or presence of K(+) (each n=5). The subcellular localizations of the Na(+),K(+)-ATPase isoforms were investigated in isolated human atrial cardiomyocytes by immunohistochemistry. In the absence of K(+), methyldigoxin (alpha(1)>alpha(3)>alpha(2)) and ouabain (alpha(1)=alpha(3)>alpha(2)) showed distinct isoform specific affinities, while for digoxin, digitoxin and beta-acetyldigoxin no differences were found. In the presence of K(+), also digoxin (alpha(2)=alpha(3)>alpha(1)) and beta-acetyldigoxin (alpha(1)>alpha(3)) had isoform specificities. A comparison between the cardiac glycosides demonstrated highly different affinity profiles for the isoforms. Immunohistochemistry showed that all three isoforms are located in the plasma membrane and in intracellular membranes, but only alpha(1)beta(1) and alpha(2)beta(1) are located in the T-tubuli. Cardiac glycosides show distinct isoform specific affinities and different affinity profiles to Na(+),K(+)-ATPase isoforms which have different subcellular localizations in human cardiomyocytes. Thus, in contrast to current notion, different cardiac glycoside agents may significantly differ in their pharmacological profile which could be of hitherto unknown clinical relevance.
Collapse
Affiliation(s)
- Christian Hauck
- Laboratory of Muscle Research and Molecular Cardiology, Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Roles of transmembrane segment M1 of Na+,K+-ATPase and Ca2-ATPase, the gatekeeper and the pivot. J Bioenerg Biomembr 2008; 39:357-66. [PMID: 18058007 DOI: 10.1007/s10863-007-9106-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this review we summarize mutagenesis work on the structure-function relationship of transmembrane segment M1 in the Na+,K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca2+ interaction/occlusion in Ca2+-ATPase and K+ interaction/occlusion in Na+,K+-ATPase. Leu65 of the Ca2+-ATPase and Leu99 of the Na+,K+-ATPase, located at homologous positions in M1, function as gate-locking residues that restrict the mobility of the side chain of the cation binding/gating residue of transmembrane segment M4, Glu309/Glu329. A pivot formed between a pair of a glycine and a bulky residue in M1 and M3 seems critical to the opening of the extracytoplasmic gate in both the Ca2+-ATPase and the Na+,K+-ATPase.
Collapse
|
7
|
Morrill GA, Kostellow AB, Askari A. Progesterone binding to the alpha1-subunit of the Na/K-ATPase on the cell surface: insights from computational modeling. Steroids 2008; 73:27-40. [PMID: 17936318 PMCID: PMC2275170 DOI: 10.1016/j.steroids.2007.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
Abstract
Progesterone triggers the resumption of meiosis in the amphibian oocyte through a signaling system at the plasma membrane. Analysis of [(3)H]ouabain and [(3)H]progesterone binding to the plasma membrane of the Rana pipiens oocyte indicates that progesterone competes with ouabain for a low affinity ouabain binding site on a 112kDa alpha1-subunit of the membrane Na/K-ATPase. Published amino acid sequences from both low and high affinity ouabain binding alpha1-subunits are compared, together with published site-directed mutagenesis studies of ouabain binding. We propose that the progesterone binding site is located in the external loop (23 amino acids) between the M1-M2 transmembrane helices. Analysis of loop topology and the countercurrent hydrophobicity/polarity gradients within the M1-M2 loop further suggest that the polar beta and hydrophobic alpha surfaces of the planar progesterone molecule interact with opposite sides of the amino acid loop. The 19-angular methyl group of progesterone is essential for activity; it could bind to the C-terminal region of the M1-M2 loop. Maximum biological activity requires formation of hydrogen-bond networks between the 3-keto group of progesterone and Arg(118), Asp(129) and possibly Glu(122-124) in the C-terminal region of the loop. The 20-keto group hydrogen may in turn hydrogen bond to Cys(111) near the M1 helix. Peptide flexibility undergoes a maximal transition near the midway point in the M1-M2 loop, suggesting that folding occurs within the loop, which further stabilizes progesterone binding.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
8
|
Qiu LY, Krieger E, Schaftenaar G, Swarts HGP, Willems PHGM, De Pont JJHHM, Koenderink JB. Reconstruction of the Complete Ouabain-binding Pocket of Na,K-ATPase in Gastric H,K-ATPase by Substitution of Only Seven Amino Acids. J Biol Chem 2005; 280:32349-55. [PMID: 16051601 DOI: 10.1074/jbc.m505168200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although cardiac glycosides have been used as drugs for more than 2 centuries and their primary target, the sodium pump (Na,K-ATPase), has already been known for 4 decades, their exact binding site is still elusive. In our efforts to define the molecular basis of digitalis glycosides binding we started from the fact that a closely related enzyme, the gastric H,K-ATPase, does not bind glycosides like ouabain. Previously, we showed that a chimera of these two enzymes, in which only the M3-M4 and M5-M6 hairpins were of Na,K-ATPase, bound ouabain with high affinity (Koenderink, J. B., Hermsen, H. P. H., Swarts, H. G. P., Willems, P. H. G. M., and De Pont, J. J. H. H. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11209-11214). We also demonstrated that only three amino acids (Phe(783), Thr(797), and Asp(804)) present in the M5-M6 hairpin of Na,K-ATPase were sufficient to confer high affinity ouabain binding to a chimera which contained in addition the M3-M4 hairpin of Na,K-ATPase (Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H., and De Pont, J. J. H. H. M. (2003) J. Biol. Chem. 278, 47240-47244). To further pinpoint the ouabain-binding site here we used a chimera-based loss-of-function strategy and identified four amino acids (Glu(312), Val(314), Ile(315), Gly(319)), all present in M4, as being important for ouabain binding. In a final gain-of-function study we showed that a gastric H,K-ATPase that contained Glu(312), Val(314), Ile(315), Gly(319), Phe(783), Thr(797), and Asp(804) of Na,K-ATPase bound ouabain with the same affinity as the native enzyme. Based on the E(2)P crystal structure of Ca(2+)-ATPase we constructed a homology model for the ouabain-binding site of Na,K-ATPase involving all seven amino acids as well as several earlier postulated amino acids.
Collapse
Affiliation(s)
- Li Yan Qiu
- Department of Biochemistry (160), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Smith CA, Hinman CL. Evidence that L1AD3, an apoptosis-inducing cyclic peptide, binds a leukemic T-cell membrane protein receptor. Arch Biochem Biophys 2004; 432:88-101. [PMID: 15519300 DOI: 10.1016/j.abb.2004.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 08/11/2004] [Indexed: 12/18/2022]
Abstract
Human leukemic T-lymphocytes undergo extensive and rapid apoptosis in the presence of L1AD3, a small cyclic peptide derivative of cobra cardiotoxin. The first step in this process involves its binding to membranes of susceptible cells. By the use of a biotin "handle" synthetically incorporated at the N-terminus of L1AD3, we show that binding is saturable and selective: normal human peripheral blood lymphocytes do not bind this peptide. Fluorescence resonance energy transfer experiments indicate that the binding sites are separated by at least 55 A. Loss of binding occurs if membrane proteins are enzymatically degraded, suggesting that L1AD3's target is a cell-membrane surface protein receptor. Finally, crosslinking of cyclic BTNL1AD3 peptide to a leukemic T-cell membrane surface receptor, as examined using a biotin-avidin blot, indicated a molecular weight of approximately 34,400.
Collapse
Affiliation(s)
- Charles A Smith
- Department of Medicinal and Biological Chemistry, College of Pharmacy, The University of Toledo, 2801 W. Bancroft, Wolfe Hall, Toledo, OH 43606, USA.
| | | |
Collapse
|
10
|
Farr CD, Burd C, Tabet MR, Wang X, Welsh WJ, Ball WJ. Three-dimensional quantitative structure-activity relationship study of the inhibition of Na(+),K(+)-ATPase by cardiotonic steroids using comparative molecular field analysis. Biochemistry 2002; 41:1137-48. [PMID: 11802712 DOI: 10.1021/bi011511g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na(+),K(+)-ATPase is a transmembrane protein that transports sodium and potassium ions across cell membranes during an activity cycle that uses the energy released by ATP hydrolysis. Cardiotonic steroids (digitalis) inhibit this activity and consequently produce a positive inotropic response in the heart. To identify the structural features of the steroids that are important for this inhibition, we have tested the inhibitory properties of 47 cardiotonic and hormonal steroids and developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model for the inhibition of Na(+),K(+)-ATPase using comparative molecular field analysis (CoMFA). We also developed a 3D-QSAR model for the binding of digoxin to the murine anti-digoxin monoclonal antibody (mAb) 26-10 because we have previously shown that the environment of the binding sites of 26-10 and the enzyme are similar (Kasturi et al. (1998) Biochemistry 37, 6658-6666). These statistically predictive 3D-QSAR models indicate that both binding sites are about 20 A long and have a close fit or complementarity about the beta side of the lactone ring of digitalis. Furthermore, steric bulk about the lactone ring and the alpha sugar may be critical for drug binding. However, the binding site of Na(+),K(+)-ATPase differs from that of mAb in that it has a greater number of electrostatic interactions along the alpha-sugar, steroid, and lactone moieties. In addition, the availability of the structure of the 26-10 Fab-digoxin complex (Jeffrey et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10310-10314) enabled us to compare the CoMFA-derived contour maps with the known locations for amino acid residues comprising the mAb ligand binding site.
Collapse
Affiliation(s)
- Carol D Farr
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
11
|
Asano S, Matsuda S, Hoshina S, Sakamoto S, Takeguchi N. A chimeric gastric H+,K+-ATPase inhibitable with both ouabain and SCH 28080. J Biol Chem 1999; 274:6848-54. [PMID: 10066737 DOI: 10.1074/jbc.274.11.6848] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
2-Methyl-8-(phenylmethoxy)imidazo(1,2-a)pyridine-3acetonitrile+ ++ (SCH 28080) is a K+ site inhibitor specific for gastric H+,K+-ATPase and seems to be a counterpart of ouabain for Na+,K+-ATPase from the viewpoint of reaction pattern (i.e. reversible binding, K+ antagonism, and binding on the extracellular side). In this study, we constructed several chimeric molecules between H+,K+-ATPase and Na+,K+-ATPase alpha-subunits by using rabbit H+,K+-ATPase as a parental molecule. We found that the entire extracellular loop 1 segment between the first and second transmembrane segments (M1 and M2) and the luminal half of the M1 transmembrane segment of H+, K+-ATPase alpha-subunit were exchangeable with those of Na+, K+-ATPase, respectively, preserving H+,K+-ATPase activity, and that these segments are not essential for SCH 28080 binding. We found that several amino acid residues, including Glu-822, Thr-825, and Pro-829 in the M6 segment of H+,K+-ATPase alpha-subunit are involved in determining the affinity for this inhibitor. Furthermore, we found that a chimeric H+,K+-ATPase acquired ouabain sensitivity and maintained SCH 28080 sensitivity when the loop 1 segment and Cys-815 in the loop 3 segment of the H+,K+-ATPase alpha-subunit were simultaneously replaced by the corresponding segment and amino acid residue (Thr) of Na+,K+-ATPase, respectively, indicating that the binding sites of ouabain and SCH 28080 are separate. In this H+, K+-ATPase chimera, 12 amino acid residues in M1, M4, and loop 1-4 that have been suggested to be involved in ouabain binding of Na+, K+-ATPase alpha-subunit are present; however, the low ouabain sensitivity indicates the possibility that the sensitivity may be increased by additional amino acid substitutions, which shift the overall structural integrity of this chimeric H+,K+-ATPase toward that of Na+,K+-ATPase.
Collapse
Affiliation(s)
- S Asano
- Molecular Genetics Research Center, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | |
Collapse
|
12
|
Coppi MV, Compton LA, Guidotti G. Isoform-specific effects of charged residues at borders of the M1-M2 loop of the Na,K-ATPase alpha subunit. Biochemistry 1999; 38:2494-505. [PMID: 10029544 DOI: 10.1021/bi982180j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Na,K-ATPase is specifically inhibited by the cardiac glycoside, ouabain. Via a largely undefined mechanism, the ouabain affinity of the Na,K-ATPase can be manipulated by mutating the residues at the borders of the first extracellular (M1-M2) loop of the alpha subunit [Price, E. M., Rice, D. A., and Lingrel, J. B. (1990) J. Biol. Chem. 265, 6638-6641]. To address this issue, we compared the effects of two combinations of charged residues at the M1-M2 loop border, R113, D124 and D113,R124 (numbered according to the rat alpha1 subunit), on the ouabain sensitivity of the alpha1 and alpha2 isoforms. We report that ouabain sensitivity is dependent not only upon the identity of the residues at the M1-M2 loop border but also upon the context into which they are introduced. Furthermore, at low concentrations of ATP, the identity of the residues at the M1-M2 loop border affects the regulation of ATP hydrolysis by potassium in an isoform-specific manner. Analysis of chimeric alpha subunits reveals that the effects of potassium are determined primarily by the interaction of the N-terminus and M1-M2 loop with the C-terminal third of the alpha subunit. M1-M2 loop border residues may, therefore, influence ouabain sensitivity indirectly by altering the stability or structure of the intermediate of the Na,K-ATPase catalytic cycle which is competent to bind ouabain.
Collapse
Affiliation(s)
- M V Coppi
- Department of Microbiology, University of Massachusetts, Amherst 01003, USA.
| | | | | |
Collapse
|
13
|
Kasturi R, Yuan J, McLean LR, Margolies MN, Ball WJ. Identification of a model cardiac glycoside receptor: comparisons with Na+,K+-ATPase. Biochemistry 1998; 37:6658-66. [PMID: 9578549 DOI: 10.1021/bi973037d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of high-affinity anti-digoxin monoclonal antibodies (mAbs) offers the potential for their use as models for the characterization of the relationship between receptor structure and cardiac glycoside binding. We have characterized the binding of anthroylouabain (AO), a fluorescent derivative of the cardiac glycoside ouabain, to mAbs 26-10, 45-20, and 40-50 [Mudgett-Hunter, M., et al. (1995) Mol. Immunol. 22, 477] and lamb kidney Na+, K+-ATPase by monitoring the resultant AO fluorescence emission spectra, anisotropy, lifetime values, and Förster resonance energy transfer (FRET) from protein tryptophan(s) (Trp) to AO. These data suggest that the structural environment in the vicinity of the AO-binding site of Na+,K+-ATPase is similar to that of mAb 26-10 but not mAbs 45-20 and 40-50. A model of AO complexed to the antigen binding fragment (Fab) of mAb 26-10 which was generated using known X-ray crystal structural data [Jeffrey, P. D., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10310] shows a heavy chain Trp residue (Trp-H100) that is close ( approximately 3 A) to the anthroyl moiety. This is consistent with the energy transfer seen upon AO binding to mAb 26-10 and suggests that Trp-H100, which is part of the antibody's cardiac glycoside binding site, is a major determinant of the fluorescence properties of bound AO. In contrast, the generated model of AO complexed to Fab 40-50 [Jeffrey, P. D., et al. (1995) J. Mol. Biol. 248, 344] shows a heavy chain Tyr residue (Tyr-H100) which is part of the cardiac glycoside binding site, located approximately 10 A from the anthroyl moiety. The closest Trp residues (H52 and L35) are located approximately 17 A from the anthroyl moiety, and no FRET is observed despite the fact that these Trp residues are close enough for significant FRET to occur. The energy transfer seen upon AO binding to Na+,K+-ATPase suggests the presence of one completely quenched or two highly quenched enzyme Trp residues approximately 10 and approximately 17 A, respectively, from the anthroyl moiety. These data suggest that the Na+,K+-ATPase Trp residue(s) involved in fluorescence energy transfer to AO is likely to be part of the cardiac glycoside binding site.
Collapse
Affiliation(s)
- R Kasturi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
14
|
Djamgoz MB, Ready PD, Billingsley PF, Emery AM. Insect Na(+)/K(+)-ATPase. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:197-210. [PMID: 12769954 DOI: 10.1016/s0022-1910(97)00168-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Na(+)/K(+)-ATPase (sodium/potassium pump) is a P-type ion-motive ATPase found in the plasma membranes of animal cels. In vertebrates, the functions of this enzyme in nerves, heart and kidney are well characterized and characteristics a defined by different isoforms. In contrast, despite different tissue distributions, insects possess a single isoform of the alpha-subunit. A comparison of insect and vertebrate Na(+)/K(+)-ATPases reveals that although the mode of action and structure are very highly conserved, the specific roles of the enzyme in most tissues varies. However, the enzyme is essential for the function of nerve cells, and in this respect Na(+)/K(+)-ATPase appears to be fundamental in metazoan evolution.
Collapse
Affiliation(s)
- M B.A. Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London, UK
| | | | | | | |
Collapse
|
15
|
Brinkmann K, Linnertz H, Amler E, Lanz E, Herman P, Schoner W. Fluoresceinyl-ethylenediamine-ouabain detects an acidic environment in the cardiac glycoside binding site of Na+/K+-ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:301-8. [PMID: 9363783 DOI: 10.1111/j.1432-1033.1997.t01-2-00301.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To probe the pH value in the microenvironment of the cardiac glycoside-binding site of Na+/K+-ATPase, pH-sensitive fluorescent derivatives of ouabain were synthesized. The fluoresceinyl derivative of ethylenediamino-ouabain (FEDO) had a pKs of 6.0 and showed a H+-dependent fluorescence change, when its ratio of excitation at 490 nm/450 nm was recorded at 530 nm. Binding of FEDO inactivated Na+/K+-ATPase at 37 degrees C and pH 7.25 in a slow time-dependent process under the conditions of backdoor phosphorylation with k(on) of 891 s(-1) M(-1). The complex dissociated with k(on) of 0.35 x 10(-3) s(-1) resulting in a Kd value of 0.4 microM for the FEDO x enzyme complex. Binding of FEDO was associated with a decrease of the excitatory fluorescence ratio at 490 nm/450 nm which could be used to convert this change into a pH value. A pH value of 5.1 +/- 0.2 was calculated to exist in the microenvironment of the FEDO x enzyme complex. This pH value was independent of the pH of the incubation medium used to form the FEDO x enzyme complex. Analysis of the accessibility of the fluorophore in the FEDO x enzyme complex to the dynamic quencher potassium iodide detected a decrease of the Stern-Volmer constant from 6.2 mM(-1) (free FEDO) to 1.5 mM(-1) (FEDO x enzyme complex) indicating thereby a limited accessibility of the fluorophore to anions. Analysis of the microenvironment of the fluorescein residue of the FEDO x enzyme complex by measurements of the anisotropy and the fluorescence half-life time revealed that both processes differed significantly when H2O was replaced by D2O. We conclude, therefore, that a pH of 5.1 +/- 0.2 exists in the vicinity of ouabain that is hidden in the depth of the receptor site when the ouabain receptor complex has been formed.
Collapse
Affiliation(s)
- K Brinkmann
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Croyle ML, Woo AL, Lingrel JB. Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity--implications for ouabain binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:488-95. [PMID: 9346307 DOI: 10.1111/j.1432-1033.1997.00488.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Random mutagenesis with ouabain selection has been used to comprehensively scan the extracellular and transmembrane domains of the alpha1 subunit of the sheep Na+/K+-ATPase for amino acid residues that alter ouabain sensitivity. The four random mutant libraries used in this study include all of the transmembrane and extracellular regions of the molecule as well as 75% of the cytoplasmic domains. Through an extensive number of HeLa cell transfections of these libraries and subsequent ouabain selection, 24 ouabain-resistant clones have been identified. All previously described amino acids that confer ouabain resistance were identified, confirming the completeness of this random mutagenesis screen. The amino acid substitutions that confer the greatest ouabain resistance, such as Gln111-->Arg, Asp121-->Gly, Asp121-->Glu, Asn122-->Asp, and Thr797-->Ala were identified more than once in this study. This extensive survey of the extracellular and transmembrane regions of the Na+/K+-ATPase molecule has identified two new regions of the molecule that affect ouabain sensitivity: the H4 and the H10 transmembrane regions. The new substitutions identified in this study are Leu330-->Gln, Ala331-->Gly, Thr338-->Ala, and Thr338-->Asn in the H4 transmembrane domain and Phe982-->Ser in the H10 transmembrane domain. These substitutions confer modest increases in the concentration of cardiac glycoside needed to produce 50% inhibition of activity (IC50 values), 3.1-7.9-fold difference. The results of this extensive screening of the Na+/K+-ATPase alpha1 subunit to identify amino acids residues that are important in ouabain sensitivity further supports our hypothesis that the H1-H2 and H4-H8 regions represent the major binding sites for the cardiac glycoside class of drugs.
Collapse
Affiliation(s)
- M L Croyle
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, Ohio 45267-0524, USA
| | | | | |
Collapse
|
17
|
Lyu RM, Farley RA. Amino acids Val115-Ile126 of rat gastric H(+)-K(+)-ATPase confer high affinity for Sch-28080 to Na(+)-K(+)-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:C1717-25. [PMID: 9176164 DOI: 10.1152/ajpcell.1997.272.5.c1717] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Na(+)-K(+)-ATPase is inhibited by cardiac glycosides and is insensitive to Sch-28080, an inhibitor of gastric H(+)-K(+)-ATPase. Gastric H(+)-K(+)-ATPase is not inhibited by cardiac glycosides. Both ouabain and, Sch-28080 binding are inhibited by K+, and it has been suggested that the inhibitors bind to corresponding regions on the alpha-subunit of each ion pump. For identification of regions of each pump that interact with the specific inhibitors, chimeric alpha-subunits consisting of selected regions from Na(+)-K(+)-ATPase and gastric H(+)-K(+)-ATPase have been prepared. One chimera (gM1/2) has been constructed from cDNA of the sheep alpha1-subunit of Na(+)-K(+)-ATPase by replacement of the last 12 amino acids of the first predicted transmembrane region (Ile99-Ile110) with corresponding amino acids from rat gastric H(+)-K(+)-ATPase. gM1/2 was expressed in yeast cells together with either the rat Na(+)-K(+)-ATPase beta 1-subunit (NK beta 1) or rat gastric H(+)-K(+)-ATPase beta-subunit (HK beta). Western blots show that the expression level of the chimeric alpha-subunit was comparable to the Na(+)-K(+)-ATPase alpha 1. Ouabain binds with high affinity to gM1/2+NK beta 1 [ouabain binding affinity (Kd) = 9.5 nM] but not to gM1/2+HK beta. The Kd for ouabain binding to Na(+)-K(+)-ATPase was 7.8 nM. Na(+)-K(+)-ATPase activity of gM1/2+NK beta 1 was inhibited both by ouabain and Sch-28080. The 50% inhibition concentration for Sch-28080 was 20-60 nM. Sch-28080 at 10 microM did not inhibit Mg(2+)- and Pi-dependent ouabain binding to gM1/2+NK beta 1. Ouabain (0.75 mM) inhibited palytoxin-induced K+ efflux from yeast cells expressing either gM1/2+NK beta 1 or gM1/2+NK beta, and Sch-28080 increased the palytoxin-induced K+ efflux from yeast cells expressing gM1/2+NK beta 1 or gM1/2+HK beta. These results implicate a small number of amino acids in the first transmembrane part of gastric H(+)-K(+)-ATPase as partial determinants of the sensitivity to Sch-28080. The data also suggest that ouabain and Sch-28080 do not bind to the same site on the chimera.
Collapse
Affiliation(s)
- R M Lyu
- Department of Physiology and Biophysics, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | |
Collapse
|
18
|
Palasis M, Kuntzweiler TA, Argüello JM, Lingrel JB. Ouabain interactions with the H5-H6 hairpin of the Na,K-ATPase reveal a possible inhibition mechanism via the cation binding domain. J Biol Chem 1996; 271:14176-82. [PMID: 8662895 DOI: 10.1074/jbc.271.24.14176] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cardiac glycosides such as ouabain and digoxin specifically inhibit the Na,K-ATPase. Three new residues in the carboxyl half of the Na, K-ATPase, Phe-786, Leu-793 (PFLIF786IIANIPL793PLGT797), and Phe-863 (FTYF863VIM) have been identified as ouabain sensitivity determinants using random mutagenesis. Polymerase chain reaction was utilized to randomly mutate the DNA sequence encoding the amino acids between Lys-691 and Lys-945 in the alpha subunit of the Na, K-ATPase. This region contains four transmembrane segments (H5, H6, H7, and H8) and the connecting extracellular and cytoplasmic loops. Diverse substitutions of these three residues resulted in proteins displaying 2.8-48-fold increases in the I50 of different cardiac glycosides for inhibition of the Na,K-ATPase activity. By locating these residues, in conjunction with Thr-797 (Feng, J., and Lingrel, J. B (1994) Biochemistry 33, 4218-4224), a new region of the protein containing the H5-H6 hairpin and the H7 transmembrane segment emerges as a major determinant of ouabain inhibition. Thus, a link between the cardiac glycoside binding site and the cation transport sites of the Na,K-ATPase transpires giving a structural base to the cation antagonism of ouabain binding. Furthermore, this link suggests a possible mechanism for cardiac glycoside inhibition of the Na,K-ATPase, such that ouabain binding to the implicated region blocks the movement of the H5 and H6 transmembrane domains which may be required for energy transduction and cation transport.
Collapse
Affiliation(s)
- M Palasis
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
19
|
Møller JV, Juul B, le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:1-51. [PMID: 8634322 DOI: 10.1016/0304-4157(95)00017-8] [Citation(s) in RCA: 563] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J V Møller
- Department of Biophysics, University of Aarhus, Denmark
| | | | | |
Collapse
|
20
|
Monroe JJ, Tashjian AH. Palytoxin modulates cytosolic pH in human osteoblast-like Saos-2 cells via an interaction with Na(+)-K(+)-ATPase. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1277-83. [PMID: 8967426 DOI: 10.1152/ajpcell.1996.270.5.c1277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Palytoxin (PTx) at nanomolar concentrations enhances the permeability of mammalian cell membranes to both Na+ and Ca2+. In basal human osteoblast-like Saos-2 cells, PTx (8 nM) caused a persistent decrease in cytosolic pH (pHi) of about 0.2 units, which required the presence of extracellular Ca2+ (Cae2+) and Na+ (Nae+). We acidified Saos-2 cells by incubation with nigericin to examine the action of PTx in cells with an activated Na+/H+ antiporter. Under these conditions, PTx increased the pHi without requiring Cae2+ or Nae+, and the alkalinization was unaffected by hexamethylene amiloride. We conclude that the PTx-induced rise in pHi did not involve the Na+/H+ antiporter. PTx increased the rate of 86Rb+ efflux. We propose that PTx induced alkalinization in nigericin-acidified cells by collapsing the K+ gradient. Exposure to ouabain had no effect on pHi, but it prevented the actions of PTx on PHi in both basal and nigericin-acidified cells. Ouabain-resistant mutant cells were less sensitive to PTx in extruding 86Rb+ than their ouabain-sensitive parents. We conclude that PTx interacts with the Na(+)-K(+)-adenosinetriphosphatase to regulate pHi in both basal and nigericin-acidified Saos-2 cells.
Collapse
Affiliation(s)
- J J Monroe
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
21
|
Yamamoto S, Askew GR, Heiny J, Masaki H, Yatani A. Modulation of pump function by mutations in the first transmembrane region of Na(+)-K(+)-ATPase alpha 1-subunit. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C457-64. [PMID: 8779907 DOI: 10.1152/ajpcell.1996.270.2.c457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Cys in the first transmembrane region of the Na(+)-K(+)-adenosinetriphosphatase (ATPase) alpha 1-subunit has been shown to be a critical determinant of cardiac glycoside binding. To study the role of this Cys on ion transport activity, we measured pump currents in HeLa cells expressing wild-type or mutant alpha 1-subunit cDNAs. The endogenous ouabainsensitive Na(+)-K(+)-ATPase was selectively inhibited by growing the cells in 0.1 microM ouabain. A Cys-to-Tyr substituted mutant exhibited decreased sensitivity to digitoxin but not digoxin compared with wild type. The decreased affinity for digitoxin was due to a faster dissociation rate. In contrast, the Cys-to-Ala substitution did not significantly alter the sensitivity to digitoxin or digoxin. Both wild-type and mutant cells displayed marked external K(+)-dependent pump currents; however, the affinity for K+ was reduced by the mutations. The decrease in K+ affinity was due to a slower association rate. The results show that the Cys that interacts with cardiac glycosides also participates in the sensitivity of the pump to external K+.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
22
|
Repke KR, Sweadner KJ, Weiland J, Megges R, Schön R. In search of ideal inotropic steroids: recent progress. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 47:9-52. [PMID: 8961763 DOI: 10.1007/978-3-0348-8998-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K R Repke
- Max Delbrück Center of Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
23
|
Repke KR, Weiland J, Megges R, Schön R. Modeling of the three-dimensional structure of the digitalis intercalating matrix in Na+/K(+)-ATPase protodimer. JOURNAL OF ENZYME INHIBITION 1996; 10:147-57. [PMID: 8835940 DOI: 10.3109/14756369609030308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Based on the knowledge that the digitalis receptor site in Na+/K(+)-ATPase is the interface between two interacting alpha-subunits of the protodimer (alpha beta)2, the present review makes an approach towards modeling the three-dimensional structure of the digitalis intercalating matrix by exploiting the information on: the primary structure and predicted membrane topology of the catalytic alpha-subunit; the determinants of the secondary, tertiary and quaternary structure of the membrane-spanning protein domains; the impact of mutational amino acid substitutions on the affinity of digitalis compounds, and the structural characteristics in potent representatives. The designed model proves its validity by allowing quantitative interpretations of the contributions of distinct amino acid side chains to the special bondings of the three structural elements of digitalis compounds.
Collapse
Affiliation(s)
- K R Repke
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
24
|
Antolovic R, Schoner W, Geering K, Canessa C, Rossier BC, Horisberger JD. Labeling of a cysteine in the cardiotonic glycoside binding site by the steroid derivative HDMA. FEBS Lett 1995; 368:169-72. [PMID: 7615075 DOI: 10.1016/0014-5793(95)00637-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The digoxigenin derivative N-hydroxysuccinimidyl digoxigenin-3-O-methylcarbonyl-epsilon-aminocaproate (HDMA) has been shown to covalently label the ouabain binding site of the Na,K-ATPase epsilon subunit [Antolovic et al. (1995) Eur. J. Biochem. 227, 61-67]. In the present study we observed both, labeling and inactivation of the activity, of wild type Na,K-ATPase overexpressed in Xenopus oocyte. In contrast, no significant inhibition and no labeling could be detected when a Cys-113 of the first transmembrane segment was mutated to serine, although the affinity of this mutant for digoxigenin or HDMA measured in acute inhibition experiments was similar to the wild type. This indicates that after docking of its genin moiety, HDMA can form a thioester bond with Cys-113.
Collapse
Affiliation(s)
- R Antolovic
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Repke KR, Megges R, Weiland J, Schön R. Location and properties of the digitalis receptor site in Na+/K(+)-ATPase. FEBS Lett 1995; 359:107-9. [PMID: 7867778 DOI: 10.1016/0014-5793(95)00020-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since 1985, several research groups have shown that a number of amino acids in the catalytic alpha-subunit of Na+/K(+)-ATPase more or less strongly modulate the affinity of a digitalis compound like ouabain to the enzyme. However, scrutiny of these findings by means of chimeric Na+/K(+)-ATPase constructs and monoclonal antibodies has recently revealed that the modulatory effect of most of these amino acids does not at all result from direct interaction with ouabain, but rather originates from long-range effects on the properties of the digitalis binding matrix. Starting from this knowledge, the present review brings together the various pieces of evidence pointing to the conclusion that the interface between two interacting alpha-subunits in the Na+/K(+)-ATPase protodimer (alpha beta)2 provides the cleft for inhibitory digitalis intercalation.
Collapse
Affiliation(s)
- K R Repke
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|