1
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2024. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
2
|
Characterization of a 36 kDa antigenic protein of fish-specific monoclonal-antibody 8F5. Food Chem 2022; 379:132149. [DOI: 10.1016/j.foodchem.2022.132149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022]
|
3
|
Reindl T, Giese S, Greve JN, Reinke PY, Chizhov I, Latham SL, Mulvihill DP, Taft MH, Manstein DJ. Distinct actin–tropomyosin cofilament populations drive the functional diversification of cytoskeletal myosin motor complexes. iScience 2022; 25:104484. [PMID: 35720262 PMCID: PMC9204724 DOI: 10.1016/j.isci.2022.104484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022] Open
Abstract
The effects of N-terminal acetylation of the high molecular weight tropomyosin isoforms Tpm1.6 and Tpm2.1 and the low molecular weight isoforms Tpm1.12, Tpm3.1, and Tpm4.2 on the actin affinity and the thermal stability of actin-tropomyosin cofilaments are described. Furthermore, we show how the exchange of cytoskeletal tropomyosin isoforms and their N-terminal acetylation affects the kinetic and chemomechanical properties of cytoskeletal actin-tropomyosin-myosin complexes. Our results reveal the extent to which the different actin-tropomyosin-myosin complexes differ in their kinetic and functional properties. The maximum sliding velocity of the actin filament as well as the optimal motor density for continuous unidirectional movement, parameters that were previously considered to be unique and invariant properties of each myosin isoform, are shown to be influenced by the exchange of the tropomyosin isoform and the N-terminal acetylation of tropomyosin. Tpm diversity is largely determined by sequences contributing to the overlap region Global sequence differences are of greater importance than variable exon 6 usage Tpm isoforms confer distinctly altered properties to cytoskeletal myosin motors Cytoskeletal myosins are differentially affected by N-terminal acetylation of Tpm
Collapse
|
4
|
Chen L, Kashina A. Post-translational Modifications of the Protein Termini. Front Cell Dev Biol 2021; 9:719590. [PMID: 34395449 PMCID: PMC8358657 DOI: 10.3389/fcell.2021.719590] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTM) involve enzyme-mediated covalent addition of functional groups to proteins during or after synthesis. These modifications greatly increase biological complexity and are responsible for orders of magnitude change between the variety of proteins encoded in the genome and the variety of their biological functions. Many of these modifications occur at the protein termini, which contain reactive amino- and carboxy-groups of the polypeptide chain and often are pre-primed through the actions of cellular machinery to expose highly reactive residues. Such modifications have been known for decades, but only a few of them have been functionally characterized. The vast majority of eukaryotic proteins are N- and C-terminally modified by acetylation, arginylation, tyrosination, lipidation, and many others. Post-translational modifications of the protein termini have been linked to different normal and disease-related processes and constitute a rapidly emerging area of biological regulation. Here we highlight recent progress in our understanding of post-translational modifications of the protein termini and outline the role that these modifications play in vivo.
Collapse
Affiliation(s)
| | - Anna Kashina
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Schuldt M, Johnston JR, He H, Huurman R, Pei J, Harakalova M, Poggesi C, Michels M, Kuster DWD, Pinto JR, van der Velden J. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol 2021; 150:77-90. [PMID: 33148509 PMCID: PMC10616699 DOI: 10.1016/j.yjmcc.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Roy Huurman
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jiayi Pei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol 2020; 11:580167. [PMID: 33281616 PMCID: PMC7689297 DOI: 10.3389/fphys.2020.580167] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acetate is a major end product of bacterial fermentation of fiber in the gut. Acetate, whether derived from the diet or from fermentation in the colon, has been implicated in a range of health benefits. Acetate is also generated in and released from various tissues including the intestine and liver, and is generated within all cells by deacetylation reactions. To be utilized, all acetate, regardless of the source, must be converted to acetyl coenzyme A (acetyl-CoA), which is carried out by enzymes known as acyl-CoA short-chain synthetases. Acyl-CoA short-chain synthetase-2 (ACSS2) is present in the cytosol and nuclei of many cell types, whereas ACSS1 is mitochondrial, with greatest expression in heart, skeletal muscle, and brown adipose tissue. In addition to acting to redistribute carbon systemically like a ketone body, acetate is becoming recognized as a cellular regulatory molecule with diverse functions beyond the formation of acetyl-CoA for energy derivation and lipogenesis. Acetate acts, in part, as a metabolic sensor linking nutrient balance and cellular stress responses with gene transcription and the regulation of protein function. ACSS2 is an important task-switching component of this sensory system wherein nutrient deprivation, hypoxia and other stressors shift ACSS2 from a lipogenic role in the cytoplasm to a regulatory role in the cell nucleus. Protein acetylation is a critical post-translational modification involved in regulating cell behavior, and alterations in protein acetylation status have been linked to multiple disease states, including cancer. Improving our fundamental understanding of the "acetylome" and how acetate is generated and utilized at the subcellular level in different cell types will provide much needed insight into normal and neoplastic cellular metabolism and the epigenetic regulation of phenotypic expression under different physiological stressors. This article is Part 1 of 2 - for Part 2 see doi: 10.3389/fphys.2020.580171.
Collapse
Affiliation(s)
- John R. Moffett
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
Lapteva YS, Vologzhannikova AA, Sokolov AS, Ismailov RG, Uversky VN, Permyakov SE. In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Appl Biochem Biotechnol 2020; 193:1365-1378. [PMID: 32394317 DOI: 10.1007/s12010-020-03324-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Most eukaryotic proteins are N-terminally acetylated (Nt-acetylated) by specific N-terminal acetyltransferases (NATs). Although this co-/post-translational protein modification may affect different aspects of protein functioning, it is typically neglected in studies of bacterially expressed eukaryotic proteins, lacking this modification. To overcome this limitation of bacterial expression, we have probed the efficiency of recombinant Escherichia coli NATs (RimI, RimJ, and RimL) with regard to in vitro Nt-acetylation of several parvalbumins (PAs) expressed in E. coli. PA is a calcium-binding protein of vertebrates, which is sensitive to Nt-acetylation. Our analyses revealed that only metal-free PAs were prone to Nt-acetylation (up to 100%), whereas Ca2+ binding abolished this modification, thereby indicating that Ca2+-induced structural stabilization of PAs impedes their Nt-acetylation. RimJ and RimL were active towards all PAs with N-terminal serine. Their activity towards PAs beginning with alanine was PA-specific, suggesting the importance of the subsequent residues. RimI showed the least activity regardless of the PA studied. Overall, NATs from E. coli are suited for post-translational Nt-acetylation of bacterially expressed eukaryotic proteins with decreased structural stability.
Collapse
Affiliation(s)
- Yulia S Lapteva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alisa A Vologzhannikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Andrey S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Ramis G Ismailov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia. .,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
8
|
Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomyosins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
Collapse
|
9
|
Yu R, Cao S, Liu Y, Si X, Fang T, Sun X, Dai H, Xu J, Fang H, Chen W. Highly effective biosynthesis of N-acetylated human thymosin β4 (Tβ4) in Escherichia coli. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S95-S104. [DOI: 10.1080/21691401.2018.1489268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Rui Yu
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Sai Cao
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Yanhong Liu
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Xinxi Si
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Ting Fang
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Xu Sun
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Hongmei Dai
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Hongqing Fang
- Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, P. R. China
| |
Collapse
|
10
|
Varland S, Myklebust LM, Goksøyr SØ, Glomnes N, Torsvik J, Varhaug JE, Arnesen T. Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30. Gene 2017; 644:27-37. [PMID: 29247799 DOI: 10.1016/j.gene.2017.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
N-terminal acetylation is a highly abundant and important protein modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs). In humans, six different NATs have been identified (NatA-NatF), each composed of individual subunits and acetylating a distinct set of substrates. Along with most NATs, NatC acts co-translationally at the ribosome. The NatC complex consists of the catalytic subunit Naa30 and the auxiliary subunits Naa35 and Naa38, and can potentially Nt-acetylate cytoplasmic proteins when the initiator methionine is followed by a bulky hydrophobic/amphipathic residue at position 2. Here, we have identified a splice variant of human NAA30, which encodes a truncated protein named Naa30288. The splice variant was abundantly present in thyroid cancer tissues and in several different human cancer cell lines. Surprisingly, Naa30288 localized predominantly to the nucleus, as opposed to annotated Naa30 which has a cytoplasmic localization. Full-length Naa30 acetylated a classical NatC substrate peptide in vitro, whereas no significant NAT activity was detected for Naa30288. Due to the nuclear localization, we also examined acetyltransferase activity towards lysine residues. Neither full-length Naa30 nor Naa30288 displayed any lysine acetyltransferase activity. Overexpression of full-length Naa30 increased cell viability via inhibition of apoptosis. In contrast, Naa30288 did not exert an anti-apoptotic effect. In sum, we identified a novel and widely expressed Naa30 isoform with a potential non-catalytic role in the nucleus.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Siri Øfsthus Goksøyr
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Nina Glomnes
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway; Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Janniche Torsvik
- Department of Neurology, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Jan Erik Varhaug
- Department of Surgery, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway; Department of Surgery, Haukeland University Hospital, Jonas Lies vei 87, 5021 Bergen, Norway.
| |
Collapse
|
11
|
Jin Y, Wei L, Cai W, Lin Z, Wu Z, Peng Y, Kohmoto T, Moss RL, Ge Y. Complete Characterization of Cardiac Myosin Heavy Chain (223 kDa) Enabled by Size-Exclusion Chromatography and Middle-Down Mass Spectrometry. Anal Chem 2017; 89:4922-4930. [PMID: 28366003 PMCID: PMC5526197 DOI: 10.1021/acs.analchem.7b00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myosin heavy chain (MHC), the major component of the myosin motor molecule, plays an essential role in force production during muscle contraction. However, a comprehensive analysis of MHC proteoforms arising from sequence variations and post-translational modifications (PTMs) remains challenging due to the difficulties in purifying MHC (∼223 kDa) and achieving complete sequence coverage. Herein, we have established a strategy to effectively purify and comprehensively characterize MHC from heart tissue by combining size-exclusion chromatography (SEC) and middle-down mass spectrometry (MS). First, we have developed a MS-compatible SEC method for purifying MHC from heart tissue with high efficiency. Next, we have optimized the Glu-C, Asp-N, and trypsin limited digestion conditions for middle-down MS. Subsequently, we have applied this strategy with optimized conditions to comprehensively characterize human MHC and identified β-MHC as the predominant isoform in human left ventricular tissue. Full sequence coverage based on highly accurate mass measurements has been achieved using middle-down MS combining 1 Glu-C, 1 Asp-N, and 1 trypsin digestion. Three different PTMs: acetylation, methylation, and trimethylation were identified in human β-MHC and the corresponding sites were localized to the N-terminal Gly, Lys34, and Lys129, respectively, by electron capture dissociation (ECD). Taken together, we have demonstrated this strategy is highly efficient for purification and characterization of MHC, which can be further applied to studies of the role of MHC proteoforms in muscle-related diseases. We also envision that this integrated SEC/middle-down MS strategy can be extended for the characterization of other large proteins over 200 kDa.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liming Wei
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Takushi Kohmoto
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Alioto SL, Garabedian MV, Bellavance DR, Goode BL. Tropomyosin and Profilin Cooperate to Promote Formin-Mediated Actin Nucleation and Drive Yeast Actin Cable Assembly. Curr Biol 2016; 26:3230-3237. [PMID: 27866892 DOI: 10.1016/j.cub.2016.09.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Tropomyosins comprise a large family of actin-binding proteins with critical roles in diverse actin-based processes [1], but our understanding of how they mechanistically contribute to actin filament dynamics has been limited. We addressed this question in S. cerevisiae, where tropomyosins (Tpm1 and Tpm2), profilin (Pfy1), and formins (Bni1 and Bnr1) are required for the assembly of an array of actin cables that facilitate polarized vesicle delivery and daughter cell growth. Formins drive cable formation by promoting actin nucleation and by accelerating actin filament elongation together with profilin [2]. In contrast, how tropomyosins contribute mechanistically to cable formation has been unclear, but genetic studies demonstrate that Tpm1 plays a more important role than Tpm2 [3, 4]. Here, we found that loss of TPM1 in strains lacking BNR1, but not BNI1, leads to severe defects in cable formation, polarized secretion, and cell growth, suggesting that TPM1 function is required for proper Bni1-mediated cable assembly. Furthermore, in vitro total internal reflection fluorescence (TIRF) microscopy demonstrated that Tpm1 strongly enhances Bni1-mediated, but not Bnr1-mediated, actin nucleation without affecting filament elongation rate, whereas Tpm2 has no effects on Bni1 or Bnr1. Tpm1 stimulation of Bni1-mediated nucleation also requires profilin and its interactions with both G-actin and formins. Together, these results demonstrate that yeast Tpm1 works in concert with profilin to promote formin-dependent nucleation of actin cables, thus expanding our understanding of how specific tropomyosin isoforms influence actin dynamics.
Collapse
Affiliation(s)
- Salvatore L Alioto
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Mikael V Garabedian
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Danielle R Bellavance
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
13
|
Gao J, Barroso C, Zhang P, Kim HM, Li S, Labrador L, Lightfoot J, Gerashchenko MV, Labunskyy VM, Dong MQ, Martinez-Perez E, Colaiácovo MP. N-terminal acetylation promotes synaptonemal complex assembly in C. elegans. Genes Dev 2016; 30:2404-2416. [PMID: 27881602 PMCID: PMC5131780 DOI: 10.1101/gad.277350.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022]
Abstract
N-terminal acetylation of the first two amino acids on proteins is a prevalent cotranslational modification. Despite its abundance, the biological processes associated with this modification are not well understood. Here, we mapped the pattern of protein N-terminal acetylation in Caenorhabditis elegans, uncovering a conserved set of rules for this protein modification and identifying substrates for the N-terminal acetyltransferase B (NatB) complex. We observed an enrichment for global protein N-terminal acetylation and also specifically for NatB substrates in the nucleus, supporting the importance of this modification for regulating biological functions within this cellular compartment. Peptide profiling analysis provides evidence of cross-talk between N-terminal acetylation and internal modifications in a NAT substrate-specific manner. In vivo studies indicate that N-terminal acetylation is critical for meiosis, as it regulates the assembly of the synaptonemal complex (SC), a proteinaceous structure ubiquitously present during meiosis from yeast to humans. Specifically, N-terminal acetylation of NatB substrate SYP-1, an SC structural component, is critical for SC assembly. These findings provide novel insights into the biological functions of N-terminal acetylation and its essential role during meiosis.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Consuelo Barroso
- Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Pan Zhang
- College of Life Science, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shangtong Li
- College of Life Science, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Leticia Labrador
- Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - James Lightfoot
- Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Maxim V. Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Vyacheslav M. Labunskyy
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02218, USA
| | - Meng-Qiu Dong
- College of Life Science, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Enrique Martinez-Perez
- Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Brooker HR, Geeves MA, Mulvihill DP. Analysis of biophysical and functional consequences of tropomyosin-fluorescent protein fusions. FEBS Lett 2016; 590:3111-21. [PMID: 27501521 PMCID: PMC5053231 DOI: 10.1002/1873-3468.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023]
Abstract
The dynamic nature of actin polymers is modulated to facilitate a diverse range of cellular processes. These dynamic properties are determined by different isoforms of tropomyosin which are recruited to distinct subpopulations of actin polymers to differentially regulate their functional properties. This makes tropomyosin an attractive target for labelling discrete actin populations. We have assessed the effect of different fluorescent labelling strategies for this protein. Although tropomyosin–fluorescent fusions decorate actin in vivo, they are either nonfunctional or perturb regulation of actin nucleation and cell cycle timings. Thus, conclusions and physiological relevance should be carefully evaluated when using tropomyosin fusions.
Collapse
|
15
|
Janco M, Bonello TT, Byun A, Coster ACF, Lebhar H, Dedova I, Gunning PW, Böcking T. The impact of tropomyosins on actin filament assembly is isoform specific. BIOARCHITECTURE 2016; 6:61-75. [PMID: 27420374 DOI: 10.1080/19490992.2016.1201619] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.
Collapse
Affiliation(s)
- Miro Janco
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| | - Teresa T Bonello
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Alex Byun
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Adelle C F Coster
- c School of Mathematics and Statistics , University of New South Wales , Sydney , NSW , Australia
| | - Helene Lebhar
- d School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Irina Dedova
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Peter W Gunning
- b School of Medical Sciences , University of New South Wales , Sydney , NSW , Australia
| | - Till Böcking
- a Single Molecule Science , School of Medical Sciences and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales , Sydney , NSW , Australia
| |
Collapse
|
16
|
Kentache T, Jouenne T, Dé E, Hardouin J. Proteomic characterization of Nα- and Nε-acetylation in Acinetobacter baumannii. J Proteomics 2016; 144:148-58. [PMID: 27222042 DOI: 10.1016/j.jprot.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Nα- and Nε-acetylation represent a pivotal post-translational modification used by both eukaryotes and prokaryotes to modulate diverse biological processes. Acinetobacter baumannii has been described as an important nosocomial pathogen for the past 30 years, frequently involved in ventilator-associated pneumonia, bloodstream and urinary tract infections. Many aspects of the biology of A. baumannii remain elusive, in particular the extent and function of N-acetylation. We investigated here N-acetylation in A. baumannii strain ATCC 17978 by proteomic analysis, and we showed the usefulness of using different analytical approaches. Overall, we identified 525 N-acetylated proteins in which, 145 were Nα-acetylated and 411 were Nε-acetylated. Among them, 41 proteins carried both types of N-acetylation. We found that N-acetylation may play a role in biofilm formation, bacterial virulence (e.g. in several iron acquisition pathways), as well as a number of phenotypes, such as, stress adaptation and drug resistance. BIOLOGICAL SIGNIFICANCE This study is the first to perform the N-acetylome of A. baumannii using different analytical approaches. Each analytical tool permitted to characterize distinctive modified peptides. The combination of all these methods allowed us to identify 145 and 411 Nα- and Nε-acetylated proteins. Besides the fact that acetylation was involved in central metabolism as previously described in other bacteria, some N-acetylated proteins showed interesting role in bacterial virulence (iron acquisition), biofilm formation, stress adaptation and drug resistance of A. baumannii.
Collapse
Affiliation(s)
- Takfarinas Kentache
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France
| | - Thierry Jouenne
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- CNRS, UMR 6270, Polymères, Biopolymères, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France; Normandie Univ, UR, France; PISSARO proteomic facility, IRIB, F-76821 Mont-Saint-Aignan, France.
| |
Collapse
|
17
|
Colpan M, Tolkatchev D, Grover S, Helms GL, Cort JR, Moroz N, Kostyukova AS. Localization of the binding interface between leiomodin-2 and α-tropomyosin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:523-30. [PMID: 26873245 DOI: 10.1016/j.bbapap.2016.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/20/2022]
Abstract
The development of some familial dilated cardiomyopathies (DCM) correlates with the presence of mutations in proteins that regulate the organization and function of thin filaments in cardiac muscle cells. Harmful effects of some mutations might be caused by disruption of yet uncharacterized protein-protein interactions. We used nuclear magnetic resonance spectroscopy to localize the region of striated muscle α-tropomyosin (Tpm1.1) that interacts with leiomodin-2 (Lmod2), a member of tropomodulin (Tmod) family of actin-binding proteins. We found that 21 N-terminal residues of Tpm1.1 are involved in interactions with residues 7-41 of Lmod2. The K15N mutation in Tpm1.1, known to be associated with familial DCM, is located within the newly identified Lmod2 binding site of Tpm1.1. We studied the effect of this mutation on binding Lmod2 and Tmod1. The mutation reduced binding affinity for both Lmod2 and Tmod1, which are responsible for correct lengths of thin filaments. The effect of the K15N mutation on Tpm1.1 binding to Lmod2 and Tmod1 provides a molecular rationale for the development of familial DCM.
Collapse
Affiliation(s)
- Mert Colpan
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA
| | - Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA
| | - Samantha Grover
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA
| | - Gregory L Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, WA 99164-4630, USA
| | - John R Cort
- Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Natalia Moroz
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164-6515, USA.
| |
Collapse
|
18
|
A small molecule inhibitor of tropomyosin dissociates actin binding from tropomyosin-directed regulation of actin dynamics. Sci Rep 2016; 6:19816. [PMID: 26804624 PMCID: PMC4726228 DOI: 10.1038/srep19816] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022] Open
Abstract
The tropomyosin family of proteins form end-to-end polymers along the actin filament. Tumour cells rely on specific tropomyosin-containing actin filament populations for growth and survival. To dissect out the role of tropomyosin in actin filament regulation we use the small molecule TR100 directed against the C terminus of the tropomyosin isoform Tpm3.1. TR100 nullifies the effect of Tpm3.1 on actin depolymerisation but surprisingly Tpm3.1 retains the capacity to bind F-actin in a cooperative manner. In vivo analysis also confirms that, in the presence of TR100, fluorescently tagged Tpm3.1 recovers normally into stress fibers. Assembling end-to-end along the actin filament is thereby not sufficient for tropomyosin to fulfil its function. Rather, regulation of F-actin stability by tropomyosin requires fidelity of information communicated at the barbed end of the actin filament. This distinction has significant implications for perturbing tropomyosin-dependent actin filament function in the context of anti-cancer drug development.
Collapse
|
19
|
Varland S, Osberg C, Arnesen T. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects. Proteomics 2015; 15:2385-401. [PMID: 25914051 PMCID: PMC4692089 DOI: 10.1002/pmic.201400619] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023]
Abstract
The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Camilla Osberg
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Fudge KR, Heeley DH. Biochemical Characterization of the Roles of Glycines 24 and 27 and Threonine 179 in Tropomyosin from the Fast Skeletal Trunk Muscle of the Atlantic Salmon. Biochemistry 2015; 54:2769-76. [DOI: 10.1021/acs.biochem.5b00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Korrina R. Fudge
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| | - David H. Heeley
- Department
of Biochemistry, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X9, Canada
| |
Collapse
|
21
|
Clayton JE, Pollard LW, Murray GG, Lord M. Myosin motor isoforms direct specification of actomyosin function by tropomyosins. Cytoskeleton (Hoboken) 2015; 72:131-45. [PMID: 25712463 DOI: 10.1002/cm.21213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 11/08/2022]
Abstract
Myosins and tropomyosins represent two cytoskeletal proteins that often work together with actin filaments in contractile and motile cellular processes. While the specialized role of tropomyosin in striated muscle myosin-II regulation is well characterized, its role in nonmuscle myosin regulation is poorly understood. We previously showed that fission yeast tropomyosin (Cdc8p) positively regulates myosin-II (Myo2p) and myosin-V (Myo52p) motors. To understand the broader implications of this regulation we examined the role of two mammalian tropomyosins (Tpm3.1cy/Tm5NM1 and Tpm4.2cy/Tm4) recently implicated in cancer cell proliferation and metastasis. Like Cdc8p, the Tpm3.1cy and Tpm4.2cy isoforms significantly enhance Myo2p and Myo52p motor activity, converting nonprocessive Myo52p molecules into processive motors that can walk along actin tracks as single molecules. In contrast to the positive regulation of Myo2p and Myo52p, Cdc8p and the mammalian tropomyosins potently inhibited skeletal muscle myosin-II, while having negligible effects on the highly processive mammalian myosin-Va. In support of a conserved role for certain tropomyosins in regulating nonmuscle actomyosin structures, Tpm3.1cy supported normal contractile ring function in fission yeast. Our work reveals that actomyosin regulation by tropomyosin is dependent on the myosin isoform, highlighting a general role for specific isoforms of tropomyosin in sorting myosin motor outputs.
Collapse
Affiliation(s)
- Joseph E Clayton
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | | | | | | |
Collapse
|
22
|
Chang AN, Greenfield NJ, Singh A, Potter JD, Pinto JR. Structural and protein interaction effects of hypertrophic and dilated cardiomyopathic mutations in alpha-tropomyosin. Front Physiol 2014; 5:460. [PMID: 25520664 PMCID: PMC4251307 DOI: 10.3389/fphys.2014.00460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022] Open
Abstract
The potential alterations to structure and associations with thin filament proteins caused by the dilated cardiomyopathy (DCM) associated tropomyosin (Tm) mutants E40K and E54K, and the hypertrophic cardiomyopathy (HCM) associated Tm mutants E62Q and L185R, were investigated. In order to ascertain what the cause of the known functional effects may be, structural and protein-protein interaction studies were conducted utilizing actomyosin ATPase activity measurements and spectroscopy. In actomyosin ATPase measurements, both HCM mutants and the DCM mutant E54K caused increases in Ca2+-induced maximal ATPase activities, while E40K caused a decrease. Investigation of Tm's ability to inhibit actomyosin ATPase in the absence of troponin showed that HCM-associated mutant Tms did not inhibit as well as wildtype, whereas the DCM associated mutant E40K inhibited better. E54K did not inhibit the actomyosin ATPase activity at any concentration of Tm tested. Thermal denaturation studies by circular dichroism and molecular modeling of the mutations in Tm showed that in general, the DCM mutants caused localized destabilization of the Tm dimers, while the HCM mutants resulted in increased stability. These findings demonstrate that the structural alterations in Tm observed here may affect the regulatory function of Tm on actin, thereby directly altering the ATPase rates of myosin.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Molecular and Cellular Pharmacology, Leonard Miller School of Medicine, University of Miami Miami, FL, USA
| | - Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University New Jersey, NJ, USA
| | - Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University New Jersey, NJ, USA ; Department of Cardiology, UCSF Medical Center, University of California, San Francisco San Francisco, CA, USA
| | - James D Potter
- Department of Molecular and Cellular Pharmacology, Leonard Miller School of Medicine, University of Miami Miami, FL, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine Tallahassee, FL, USA
| |
Collapse
|
23
|
Masedunskas A, Appaduray M, Hardeman EC, Gunning PW. What makes a model system great? INTRAVITAL 2014. [DOI: 10.4161/intv.26287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Lewis RA, Yamashiro S, Gokhin DS, Fowler VM. Functional effects of mutations in the tropomyosin-binding sites of tropomodulin1 and tropomodulin3. Cytoskeleton (Hoboken) 2014; 71:395-411. [PMID: 24922351 DOI: 10.1002/cm.21179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 01/16/2023]
Abstract
Tropomodulins (Tmods) interact with tropomyosins (TMs) via two TM-binding sites and cap the pointed ends of TM-coated actin filaments. To study the functional interplay between TM binding and TM-actin filament capping by Tmods, we introduced disabling mutations into the first, second, or both TM-binding sites of full-length Tmod1 (Tmod1-L27G, Tmod1-I131D, and Tmod1-L27G/I131D, respectively) and full-length Tmod3 (Tmod3-L29G, Tmod3-L134D, and Tmod3-L29G/L134D, respectively). Tmod1 and Tmod3 showed somewhat different TM-binding site utilization, but nearly all TM binding was abolished in Tmod1-L27G/I131D and Tmod3-L29G/L134D. Disruption of Tmod-TM binding had a modest effect on Tmod1's ability and no effect on Tmod3's ability to stabilize TM-actin pointed ends against latrunculin A-induced depolymerization. However, disruption of Tmod-TM binding did significantly impair the ability of Tmod3 to reduce elongation rates at pointed ends with α/βTM, albeit less so with TM5NM1, and not at all with TM5b. For Tmod1, disruption of Tmod-TM binding only slightly impaired its ability to reduce elongation rates with α/βTM and TM5NM1, but not at all with TM5b. Thus, Tmod-TM binding has a greater influence on Tmods' ability to inhibit subunit association as compared to dissociation from TM-actin pointed ends, particularly for α/βTM, with Tmod3's activity being more dependent on TM binding than Tmod1's activity. Nevertheless, disruption of Tmod1-TM binding precluded Tmod1 targeting to thin filament pointed ends in cardiac myocytes, suggesting that the functional effects of Tmod-TM binding on TM-coated actin filament capping can be significantly modulated by the in vivo conformation of the pointed end or other factors in the intracellular environment.
Collapse
Affiliation(s)
- Raymond A Lewis
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
25
|
Yamashiro S, Gokhin DS, Sui Z, Bergeron SE, Rubenstein PA, Fowler VM. Differential actin-regulatory activities of Tropomodulin1 and Tropomodulin3 with diverse tropomyosin and actin isoforms. J Biol Chem 2014; 289:11616-11629. [PMID: 24644292 DOI: 10.1074/jbc.m114.555128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ~5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037; Laboratory of Single-Molecule Cell Biology, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Zhenhua Sui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Sarah E Bergeron
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | | | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
26
|
Sousa DR, Stagg SM, Stroupe ME. Cryo-EM structures of the actin:tropomyosin filament reveal the mechanism for the transition from C- to M-state. J Mol Biol 2013; 425:4544-55. [PMID: 24021812 PMCID: PMC3845445 DOI: 10.1016/j.jmb.2013.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/18/2022]
Abstract
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca(2+) binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.
Collapse
Affiliation(s)
- Duncan R. Sousa
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street Boston MA 02118-2526 USA
| | - Scott M. Stagg
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
| | - M. Elizabeth Stroupe
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306 USA
| |
Collapse
|
27
|
Liu B, Gong X, Chang S, Sun P, Wu J. Generation of mature Nα-terminal acetylated thymosin α 1 by cleavage of recombinant prothymosin α. ScientificWorldJournal 2013; 2013:387282. [PMID: 24288480 PMCID: PMC3830889 DOI: 10.1155/2013/387282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/16/2013] [Indexed: 01/13/2023] Open
Abstract
N(α)-terminal acetylation of peptides plays an important biological role but is rarely observed in prokaryotes. N(α)-terminal acetylated thymosin α1 (Tα1), a 28-amino-acid peptide, is an immune modifier that has been used in the clinic to treat hepatitis B and C virus (HBV/HCV) infections. We previously documented N(α)-terminal acetylation of recombinant prothymosin α (ProTα) in E. coli. Here we present a method for production of N(α)-acetylated Tα1 from recombinant ProTα. The recombinant ProTα was cleaved by human legumain expressed in Pichia pastoris to release Tα1 in vitro. The N(α)-acetylated Tα1 peptide was subsequently purified by reverse phase and cation exchange chromatography. Mass spectrometry indicated that the molecular mass of recombinant N(α)-acetylated Tα1 was 3108.79 in, which is identical to the mass of N(α)-acetylated Tα1 produced by total chemical synthesis. This mass corresponded to the nonacetylated Tα1 mass with a 42 Da increment. The retention time of recombinant N(α)-acetylated Tα1 and chemosynthetic N(α)-acetylated Tα1 were both 15.4 min in RP-high performance liquid chromatography (HPLC). These data support the use of an E. coli expression system for the production of recombinant human N(α)-acetylated Tα1 and also will provide the basis for the preparation of recombinant acetylated peptides in E. coli.
Collapse
Affiliation(s)
- Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Shaohong Chang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
28
|
Peng Y, Chen X, Zhang H, Xu Q, Hacker TA, Ge Y. Top-down targeted proteomics for deep sequencing of tropomyosin isoforms. J Proteome Res 2013; 12:187-98. [PMID: 23256820 PMCID: PMC3596867 DOI: 10.1021/pr301054n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosins (Tm) constitute a family of ubiquitous and highly conserved actin-binding proteins, playing essential roles in a variety of biological processes. Tm isoforms produced by multiple Tm encoding genes and alternatively expressed exons along with post-translational modifications (PTMs) regulate Tm function. Therefore, to gain a better understanding of the functional role of Tm, it is essential to fully characterize Tm isoforms. Herein, we developed a top-down high-resolution mass spectrometry (MS)-based targeted proteomics method for comprehensive characterization of Tm isoforms. α-Tm was identified to be the predominant isoform in swine cardiac muscle. We further characterized its sequence and localized the PTMs such as acetylation and phosphorylation as well as amino acid polymorphisms. Interestingly, we discovered a "novel" Tm isoform that does not match with any of the currently available swine Tm sequences. A deep sequencing of this isoform by top-down MS revealed an exact match with mouse β-Tm sequence, suggesting that this "novel" isoform is swine β-Tm which is 100% conserved between swine and mouse. Taken together, we demonstrated that top-down targeted proteomics provides a powerful tool for deep sequencing of Tm isoforms from genetic variations together with complete mapping of the PTM sites.
Collapse
Affiliation(s)
- Ying Peng
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Xin Chen
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Han Zhang
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Qingge Xu
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
| | - Timothy A. Hacker
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706
| | - Ying Ge
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
29
|
Tropomyosin Ser-283 pseudo-phosphorylation slows myofibril relaxation. Arch Biochem Biophys 2012; 535:30-8. [PMID: 23232082 DOI: 10.1016/j.abb.2012.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022]
Abstract
Tropomyosin (Tm) is a central protein in the Ca(2+) regulation of striated muscle. The αTm isoform undergoes phosphorylation at serine residue 283. While the biochemical and steady-state muscle function of muscle purified Tm phosphorylation have been explored, the effects of Tm phosphorylation on the dynamic properties of muscle contraction and relaxation are unknown. To investigate the kinetic regulatory role of αTm phosphorylation we expressed and purified native N-terminal acetylated Ser-283 wild-type, S283A phosphorylation null and S283D pseudo-phosphorylation Tm mutants in insect cells. Purified Tm's regulate thin filaments similar to that reported for muscle purified Tm. Steady-state Ca(2+) binding to troponin C (TnC) in reconstituted thin filaments did not differ between the 3 Tm's, however disassociation of Ca(2+) from filaments containing pseudo-phosphorylated Tm was slowed compared to wild-type Tm. Replacement of pseudo-phosphorylated Tm into myofibrils similarly prolonged the slow phase of relaxation and decreased the rate of the fast phase without altering activation kinetics. These data demonstrate that Tm pseudo-phosphorylation slows deactivation of the thin filament and muscle force relaxation dynamics in the absence of dynamic and steady-state effects on muscle activation. This supports a role for Tm as a key protein in the regulation of muscle relaxation dynamics.
Collapse
|
30
|
Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA. Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 2012; 287:28243-62. [PMID: 22718772 DOI: 10.1074/jbc.m112.383711] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal acetylation is a very common post-translational modification, although its role in regulating protein physical properties and function remains poorly understood. α-Synuclein (α-syn), a protein that has been linked to the pathogenesis of Parkinson disease, is constitutively N(α)-acetylated in vivo. Nevertheless, most of the biochemical and biophysical studies on the structure, aggregation, and function of α-syn in vitro utilize recombinant α-syn from Escherichia coli, which is not N-terminally acetylated. To elucidate the effect of N(α)-acetylation on the biophysical and biological properties of α-syn, we produced N(α)-acetylated α-syn first using a semisynthetic methodology based on expressed protein ligation (Berrade, L., and Camarero, J. A. (2009) Cell. Mol. Life Sci. 66, 3909-3922) and then a recombinant expression strategy, to compare its properties to unacetylated α-syn. We demonstrate that both WT and N(α)-acetylated α-syn share a similar secondary structure and oligomeric state using both purified protein preparations and in-cell NMR on E. coli overexpressing N(α)-acetylated α-syn. The two proteins have very close aggregation propensities as shown by thioflavin T binding and sedimentation assays. Furthermore, both N(α)-acetylated and WT α-syn exhibited similar ability to bind synaptosomal membranes in vitro and in HeLa cells, where both internalized proteins exhibited prominent cytosolic subcellular distribution. We then determined the effect of attenuating N(α)-acetylation in living cells, first by using a nonacetylable mutant and then by silencing the enzyme responsible for α-syn N(α)-acetylation. Both approaches revealed similar subcellular distribution and membrane binding for both the nonacetylable mutant and WT α-syn, suggesting that N-terminal acetylation does not significantly affect its structure in vitro and in intact cells.
Collapse
Affiliation(s)
- Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Station 19, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Bernal-Perez LF, Prokai L, Ryu Y. Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation. Anal Biochem 2012; 428:13-5. [PMID: 22677627 DOI: 10.1016/j.ab.2012.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
A fluorogenic derivatization method was developed to distinguish the protein N-terminal acetylation status. The unacetylated protein selectively reacted with 4-chloro-7-nitrobenzofurazan (NBD-Cl) at neutral pH to provide high fluorescence. In contrast, the protein with N-terminal acetylation was essentially nonfluorescent under the same conditions despite the presence of many internal lysine residues. Fluorescence of the NBD-labeled protein was very stable, and only micromolar concentrations of proteins were required for reliable detection. This method also provides a general and practical way to quantify proteins when their N-terminal amino group is available.
Collapse
Affiliation(s)
- Lina F Bernal-Perez
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | |
Collapse
|
32
|
Nevzorov IA, Levitsky DI. Tropomyosin: double helix from the protein world. BIOCHEMISTRY (MOSCOW) 2012; 76:1507-27. [PMID: 22339601 DOI: 10.1134/s0006297911130098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns the structure and functions of tropomyosin (TM), an actin-binding protein that plays a key role in the regulation of muscle contraction. The TM molecule is a dimer of α-helices, which form a coiled-coil. Recent views on the TM structure are analyzed, and special attention is concentrated on those structural traits of the TM molecule that distinguish it from the other coiled-coil proteins. Modern data are presented on TM functional properties, such as its interaction with actin and ability to move on the surface of actin filaments, which underlies the regulation of the actin-myosin interaction upon contraction of skeletal and cardiac muscles. Also, part of the review is devoted to analysis of the effects of mutations in TM genes associated with muscle diseases (myopathies) on the structure and functions of TM.
Collapse
Affiliation(s)
- I A Nevzorov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
33
|
Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton (Hoboken) 2012; 69:337-70. [PMID: 22488942 DOI: 10.1002/cm.21031] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/31/2023]
Abstract
Tropomodulins are a family of four proteins (Tmods 1-4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a TM-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods' functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1-3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
34
|
Bobkov DE, Aizenshtadt AA, Kropacheva IV, Pinaev GP. Isolation of tropomyosin particles from cultured cell cytosol and their protein composition assay. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Trexler AJ, Rhoades E. N-Terminal acetylation is critical for forming α-helical oligomer of α-synuclein. Protein Sci 2012; 21:601-5. [PMID: 22407793 DOI: 10.1002/pro.2056] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/13/2023]
Abstract
The aggregation of the protein α-synuclein (AS) is critical to the pathogenesis of Parkinson's disease. Although generally described as an unstructured monomer, recent evidence suggests that the native form of AS may be an α-helical tetramer which resists aggregation. Here, we show that N-terminal acetylation in combination with a mild purification protocol results in an oligomeric form of AS with partial α-helical structure. N-terminal acetylation of AS could have important implications for both the native and pathological structures and functions of AS. Through our demonstration of a recombinant expression system, our results represent an important step toward biochemical and biophysical characterization of this potentially important form of AS.
Collapse
Affiliation(s)
- Adam J Trexler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
36
|
Bernal-Perez LF, Sahyouni F, Prokai L, Ryu Y. RimJ-mediated context-dependent N-terminal acetylation of the recombinant Z-domain protein in Escherichia coli. MOLECULAR BIOSYSTEMS 2012; 8:1128-30. [PMID: 22293616 DOI: 10.1039/c2mb05499j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-terminal acetylation of the recombinant Z-domain protein depends on E. coli strains, expression vectors and amino acid residues near the N-terminus, and is enhanced by a high cellular level of RimJ.
Collapse
Affiliation(s)
- Lina F Bernal-Perez
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | | | |
Collapse
|
37
|
Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. Mol Cell Proteomics 2012; 11:M111.015131. [PMID: 22223895 DOI: 10.1074/mcp.m111.015131] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-terminal modifications play a major role in the fate of proteins in terms of activity, stability, or subcellular compartmentalization. Such modifications remain poorly described and badly characterized in proteomic studies, and only a few comparison studies among organisms have been made available so far. Recent advances in the field now allow the enrichment and selection of N-terminal peptides in the course of proteome-wide mass spectrometry analyses. These targeted approaches unravel as a result the extent and nature of the protein N-terminal modifications. Here, we aimed at studying such modifications in the model plant Arabidopsis thaliana to compare these results with those obtained from a human sample analyzed in parallel. We applied large scale analysis to compile robust conclusions on both data sets. Our data show strong convergence of the characterized modifications especially for protein N-terminal methionine excision, co-translational N-α-acetylation, or N-myristoylation between animal and plant kingdoms. Because of the convergence of both the substrates and the N-α-acetylation machinery, it was possible to identify the N-acetyltransferases involved in such modifications for a small number of model plants. Finally, a high proportion of nuclear-encoded chloroplast proteins feature post-translational N-α-acetylation of the mature protein after removal of the transit peptide. Unlike animals, plants feature in a dedicated pathway for post-translational acetylation of organelle-targeted proteins. The corresponding machinery is yet to be discovered.
Collapse
Affiliation(s)
- Willy V Bienvenut
- CNRS, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Schevzov G, Curthoys NM, Gunning PW, Fath T. Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:33-94. [PMID: 22878104 DOI: 10.1016/b978-0-12-394309-5.00002-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons comprise functionally, molecularly, and spatially distinct subcellular compartments which include the soma, dendrites, axon, branches, dendritic spines, and growth cones. In this chapter, we detail the remarkable ability of the neuronal cytoskeleton to exquisitely regulate all these cytoplasmic distinct partitions, with particular emphasis on the microfilament system and its plethora of associated proteins. Importance will be given to the family of actin-associated proteins, tropomyosin, in defining distinct actin filament populations. The ability of tropomyosin isoforms to regulate the access of actin-binding proteins to the filaments is believed to define the structural diversity and dynamics of actin filaments and ultimately be responsible for the functional outcome of these filaments.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, Australia
| | | | | | | |
Collapse
|
39
|
Altering the stability of the Cdc8 overlap region modulates the ability of this tropomyosin to bind co-operatively to actin and regulate myosin. Biochem J 2011; 438:265-73. [PMID: 21658004 DOI: 10.1042/bj20101316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tm (tropomyosin) is an evolutionarily conserved α-helical coiled-coil protein, dimers of which form end-to-end polymers capable of associating with and stabilizing actin filaments, and regulating myosin function. The fission yeast Schizosaccharomyces pombe possesses a single essential Tm, Cdc8, which can be acetylated on its N-terminal methionine residue to increase its affinity for actin and enhance its ability to regulate myosin function. We have designed and generated a number of novel Cdc8 mutant proteins with N-terminal substitutions to explore how stability of the Cdc8 overlap region affects the regulatory function of this Tm. By correlating the stability of each protein, its propensity to form stable polymers, its ability to associate with actin and to regulate myosin, we have shown that the stability of the N-terminal of the Cdc8 α-helix is crucial for Tm function. In addition we have identified a novel Cdc8 mutant with increased N-terminal stability, dimers of which are capable of forming Tm polymers significantly longer than the wild-type protein. This protein had a reduced affinity for actin with respect to wild-type, and was unable to regulate actomyosin interactions. The results of the present paper are consistent with acetylation providing a mechanism for modulating the formation and stability of Cdc8 polymers within the fission yeast cell. The data also provide evidence for a mechanism in which Tm dimers form end-to-end polymers on the actin filament, consistent with a co-operative model for Tm binding to actin.
Collapse
|
40
|
Hole K, Van Damme P, Dalva M, Aksnes H, Glomnes N, Varhaug JE, Lillehaug JR, Gevaert K, Arnesen T. The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 2011; 6:e24713. [PMID: 21935442 PMCID: PMC3174195 DOI: 10.1371/journal.pone.0024713] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/16/2011] [Indexed: 12/30/2022] Open
Abstract
Protein Nα-terminal acetylation (Nt-acetylation) is considered one of the most common protein modification in eukaryotes, and 80-90% of all soluble human proteins are modified in this way, with functional implications ranging from altered protein function and stability to translocation potency amongst others. Nt-acetylation is catalyzed by N-terminal acetyltransferases (NATs), and in yeast five NAT types are identified and denoted NatA-NatE. Higher eukaryotes additionally express NatF. Except for NatD, human orthologues for all yeast NATs are identified. yNatD is defined as the catalytic unit Naa40p (Nat4) which co-translationally Nt-acetylates histones H2A and H4. In this study we identified and characterized hNaa40p/hNatD, the human orthologue of the yeast Naa40p. An in vitro proteome-derived peptide library Nt-acetylation assay indicated that recombinant hNaa40p acetylates N-termini starting with the consensus sequence Ser-Gly-Gly-Gly-Lys-, strongly resembling the N-termini of the human histones H2A and H4. This was confirmed as recombinant hNaa40p Nt-acetylated the oligopeptides derived from the N-termini of both histones. In contrast, a synthetically Nt-acetylated H4 N-terminal peptide with all lysines being non-acetylated, was not significantly acetylated by hNaa40p, indicating that hNaa40p catalyzed H4 Nα-acetylation and not H4 lysine Nε-acetylation. Also, immunoprecipitated hNaa40p specifically Nt-acetylated H4 in vitro. Heterologous expression of hNaa40p in a yeast naa40-Δ strain restored Nt-acetylation of yeast histone H4, but not H2A in vivo, probably reflecting the fact that the N-terminal sequences of human H2A and H4 are highly similar to each other and to yeast H4 while the N-terminal sequence of yeast H2A differs. Thus, Naa40p seems to have co-evolved with the human H2A sequence. Finally, a partial co-sedimentation with ribosomes indicates that hNaa40p co-translationally acetylates H2A and H4. Combined, our results strongly suggest that human Naa40p/NatD is conserved from yeast. Thus, the NATs of all classes of N-terminally acetylated proteins in humans now appear to be accounted for.
Collapse
Affiliation(s)
- Kristine Hole
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. BIOARCHITECTURE 2011; 1:135-164. [PMID: 22069507 DOI: 10.4161/bioa.1.4.17897] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 12/29/2022]
Abstract
Tropomyosins are rod-like dimers which form head-to-tail polymers along the length of actin filaments and regulate the access of actin binding proteins to the filaments.1 The diversity of tropomyosin isoforms, over 40 in mammals, and their role in an increasing number of biological processes presents a challenge both to experienced researchers and those new to this field. The increased appreciation that the role of these isoforms expands beyond that of simply stabilizing actin filaments has lead to a surge of reagents and techniques to study their function and mechanisms of action. This report is designed to provide a basic guide to the genes and proteins and the availability of reagents which allow effective study of this family of proteins. We highlight the value of combining multiple techniques to better evaluate the function of different tm isoforms and discuss the limitations of selected reagents. Brief background material is included to demystify some of the unfortunate complexity regarding this multi-gene family of proteins including the unconventional nomenclature of the isoforms and the evolutionary relationships of isoforms between species. Additionally, we present step-by-step detailed experimental protocols used in our laboratory to assist new comers to the field and experts alike.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit; School of Medical Sciences; The University of New South Wales; Sydney, NSW Australia
| | | | | | | | | |
Collapse
|
42
|
Bai F, Weis A, Takeda AK, Chase PB, Kawai M. Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin's HCM mutations. Biophys J 2011; 100:1014-23. [PMID: 21320446 DOI: 10.1016/j.bpj.2011.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022] Open
Abstract
Three HCM-causing tropomyosin (Tm) mutants (V95A, D175N, and E180G) were examined using the thin-filament extraction and reconstitution technique. The effects of Ca(2+), ATP, phosphate, and ADP concentrations on cross-bridge kinetics in myocardium reconstituted with each of these mutants were studied at 25°C, and compared to wild-type (WT) Tm at physiological ionic strength (200 mM). All three mutants showed significantly higher (2-3.5 fold) low Ca(2+) tension (T(LC)) and stiffness than WT at pCa 8.0. High Ca(2+) tension (T(HC)) was significantly higher for E180G than that for WT, whereas T(HC) of V95A and D175N was similar to WT; high Ca(2+) stiffness (Y(HC)) had the same trend. The Ca(2+) sensitivity of isometric force was significantly greater for V95A and E180G than for WT, whereas that of D175N remained the same as for WT; for all mutants, cooperativity was lower than for WT. Nine kinetic constants and the cross-bridge distribution were deduced using sinusoidal analysis. The number of force-generating cross bridges was similar among the D175N, E180G, and WT Tm forms, but it was significantly larger in the case of V95A than WT. We conclude that the increased number of actively cycling cross bridges at pCa 8 is the major cause of Tm mutation-related HCM pathogenesis, which may result in diastolic dysfunction. Decreased contractility (T(act)) in V95A and D175N may further contribute to the severity of myocyte hypertrophy and related prognosis of the disease.
Collapse
Affiliation(s)
- Fan Bai
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
43
|
Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T, Gevaert K. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Mol Cell Proteomics 2011; 10:M110.004580. [PMID: 21383206 DOI: 10.1074/mcp.m110.004580] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The impact of N(α)-terminal acetylation on protein stability and protein function in general recently acquired renewed and increasing attention. Although the substrate specificity profile of the conserved enzymes responsible for N(α)-terminal acetylation in yeast has been well documented, the lack of higher eukaryotic models has hampered the specificity profile determination of N(α)-acetyltransferases (NATs) of higher eukaryotes. The fact that several types of protein N termini are acetylated by so far unknown NATs stresses the importance of developing tools for analyzing NAT specificities. Here, we report on a method that implies the use of natural, proteome-derived modified peptide libraries, which, when used in combination with two strong cation exchange separation steps, allows for the delineation of the in vitro specificity profiles of NATs. The human NatA complex, composed of the auxiliary hNaa15p (NATH/hNat1) subunit and the catalytic hNaa10p (hArd1) and hNaa50p (hNat5) subunits, cotranslationally acetylates protein N termini initiating with Ser, Ala, Thr, Val, and Gly following the removal of the initial Met. In our studies, purified hNaa50p preferred Met-Xaa starting N termini (Xaa mainly being a hydrophobic amino acid) in agreement with previous data. Surprisingly, purified hNaa10p preferred acidic N termini, representing a group of in vivo acetylated proteins for which there are currently no NAT(s) identified. The most prominent representatives of the group of acidic N termini are γ- and β-actin. Indeed, by using an independent quantitative assay, hNaa10p strongly acetylated peptides representing the N termini of both γ- and β-actin, and only to a lesser extent, its previously characterized substrate motifs. The immunoprecipitated NatA complex also acetylated the actin N termini efficiently, though displaying a strong shift in specificity toward its known Ser-starting type of substrates. Thus, complex formation of NatA might alter the substrate specificity profile as compared with its isolated catalytic subunits, and, furthermore, NatA or hNaa10p may function as a post-translational actin N(α)-acetyltransferase.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Targeted amino-terminal acetylation of recombinant proteins in E. coli. PLoS One 2010; 5:e15801. [PMID: 21203426 PMCID: PMC3009751 DOI: 10.1371/journal.pone.0015801] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
One major limitation in the expression of eukaryotic proteins in bacteria is an inability to post-translationally modify the expressed protein. Amino-terminal acetylation is one such modification that can be essential for protein function. By co-expressing the fission yeast NatB complex with the target protein in E.coli, we report a simple and widely applicable method for the expression and purification of functional N-terminally acetylated eukaryotic proteins.
Collapse
|
45
|
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken) 2010; 67:808-23. [PMID: 20886612 DOI: 10.1002/cm.20490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022]
Abstract
ArgBP2 (Arg/Abl-Binding Protein) is expressed at high levels in the heart and is localized in the Z-bands of mature myofibrils. ArgBP2 is a member of a small family of proteins that also includes vinexin and CAP (c-Cbl-associated protein), all characterized by having one sorbin homology (SOHO) domain and three C-terminal SH3 domains. Antibodies directed against ArgBP2 also react with the Z-bodies of myofibril precursors: premyofibrils and nascent myofibrils. Expression in cardiomyocytes of plasmids encoding Yellow Fluorescent Protein (YFP) fused to either full length ArgBP2, the SOHO, mid-ArgBP or the SH3 domains of ArgBP2 led to Z-band targeting of the fusion proteins, whereas an N-terminal fragment lacking these domains did not target to Z-bands. Although ArgBP2 is not found in skeletal muscle cells, YFP-ArgBP2 did target to Z-bodies and Z-bands in cultured myotubes. GST-ArgBP2-SH3 bound actin, α-actinin and vinculin proteins in blot overlays, cosedimentation assays, and EM negative staining techniques. Over-expression of ArgBP2 and ArgBP2-SH3 domains, but not YFP alone, led to loss of myofibrils in cardiomyocytes. Fluorescence recovery after photobleaching was used to measure the rapid dynamics of both the full length and some truncated versions of ArgBP2. Our results indicate that ArgBP2 may play an important role in the assembly and maintenance of myofibrils in cardiomyocytes.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Coulton AT, East DA, Galinska-Rakoczy A, Lehman W, Mulvihill DP. The recruitment of acetylated and unacetylated tropomyosin to distinct actin polymers permits the discrete regulation of specific myosins in fission yeast. J Cell Sci 2010; 123:3235-43. [PMID: 20807799 DOI: 10.1242/jcs.069971] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions.
Collapse
Affiliation(s)
- Arthur T Coulton
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | |
Collapse
|
47
|
Assinder SJ, Au E, Dong Q, Winnick C. A novel splice variant of the beta-tropomyosin (TPM2) gene in prostate cancer. Mol Carcinog 2010; 49:525-31. [PMID: 20336778 DOI: 10.1002/mc.20626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Decreased expression of high molecular weight isoforms of tropomyosin (Tm) is associated with oncogenic transformation and is evident in cancers, with isoform Tm1 seemingly an important tumor suppressor. Tm1 expression in prostate cancer has not previously been described. In this study, while demonstrating suppressed levels of Tm1 in the prostate cancer cell lines LNCaP, PC3, and DU-145 compared to normal prostate epithelial cell primary isolates (PrEC), a novel splice variant of the TPM2 gene was identified. Quantitative RT-PCR determined significantly greater levels of the transcript variant in all three prostate cancer cell lines than in normal prostate epithelial cells. Characterization of this novel variant demonstrated it to include exon 6b, previously thought unique to the muscle-specific beta-Tm isoform, with an exon arrangement of 1-2-3-4-5-6a-6b-7-8-10. Inclusion of exon 6b introduces a premature stop codon directly following the 6a-6b exon boundary. Western blot analysis demonstrated the presence of a truncated protein in prostate cancer cell lines that was absent in normal prostate epithelial cells. It is hypothesized that this truncated protein will result in suppression of Tm1 polymer formation required for actin filament association. The lack of Tm polymer-actin association will result in loss of the stable actin microfilament organization and stress fiber formation, a state associated with cell transformation.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
48
|
Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW. Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium. JOURNAL OF BIOPHYSICS (HINDAWI PUBLISHING CORPORATION : ONLINE) 2009; 2009:380967. [PMID: 20130792 PMCID: PMC2814127 DOI: 10.1155/2009/380967] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/29/2009] [Accepted: 07/05/2009] [Indexed: 05/28/2023]
Abstract
Tropomyosin (Tm) consists of 7 quasiequivalent repeats known as "periods," and its specific function may be associated with these periods. To test the hypothesis that either period 2 or 3 promotes force generation by inducing a positive allosteric effect on actin, we reconstituted the thin filament with mutant Tm in which either period 2 (Delta2Tm) or period 3 (Delta3Tm) was deleted. We then studied: isometric tension, stiffness, 6 kinetic constants, and the pCa-tension relationship. N-terminal acetylation of Tm did not cause any differences. The isometric tension in Delta2Tm remained unchanged, and was reduced to approximately 60% in Delta3Tm. Although the kinetic constants underwent small changes, the occupancy of strongly attached cross-bridges was not much different. The Hill factor (cooperativity) did not differ significantly between Delta2Tm (1.79 +/- 0.19) and the control (1.73 +/- 0.21), or Delta3Tm (1.35 +/- 0.22) and the control. In contrast, pCa(50) decreased slightly in Delta2Tm (5.11 +/- 0.07), and increased significantly in Delta3Tm (5.57 +/- 0.09) compared to the control (5.28 +/- 0.04). These results demonstrate that, when ions are present at physiological concentrations in the muscle fiber system, period 3 (but not period 2) is essential for the positive allosteric effect that enhances the interaction between actin and myosin, and increases isometric force of each cross-bridge.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaoying Lu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | | | - Kristen J. Stanton
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Michael W. Wandling
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
RimJ is responsible for N(alpha)-acetylation of thymosin alpha1 in Escherichia coli. Appl Microbiol Biotechnol 2009; 84:99-104. [PMID: 19352641 DOI: 10.1007/s00253-009-1994-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/27/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
Abstract
N(alpha)-Acetylation is one of the most common protein modifications in eukaryotes but a rare event in prokaryotes. Some endogenously N(alpha)-acetylated proteins in eukaryotes are frequently reported not to be acetylated or only very partially when expressed in recombinant Escherichia coli. Thymosin alpha1 (Talpha1), an N(alpha)-acetylated peptide of 28 amino acids, displays a powerful general immunostimulating activity. Here, we revealed that a fusion protein of thymosin alpha1 and L12 is partly N(alpha)-acetylated in E. coli. Through deletion of some N(alpha)-acetyltransferases by Red recombination, we found that, when rimJ is disrupted, the fusion protein is completely unacetylated. The relationship of rimJ and N(alpha)-acetylation of Talpha1 was further investigated by gene rescue and in vitro modification. Our results demonstrate that N(alpha)-acetylation of recombinant Talpha1-fused protein in E. coli is catalyzed by RimJ and that fully acetylated Talpha1 can be obtained by co-expressing with RimJ. This is the first description that an ectopic protein acetylation in bacterial expression systems is catalyzed by RimJ, a known prokaryotic N(alpha)-acetyltransferase.
Collapse
|
50
|
Goonasekara CL, Heeley DH. Effect of Removing the Amino-Terminal Hexapeptide of Tropomyosin on the Properties of the Thin Filament. Biochemistry 2009; 48:3538-44. [DOI: 10.1021/bi802004j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David H. Heeley
- Department of Biochemistry, Memorial University, St. John’s, Newfoundland, Canada A1B 3X9
| |
Collapse
|