1
|
Kint N, Viollier PH. Extracellular transfer of a conserved polymerization factor for multi-flagellin filament assembly in Caulobacter. Cell Rep 2023; 42:112890. [PMID: 37515768 DOI: 10.1016/j.celrep.2023.112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Unidirectional growth of filamentous protein assemblies including the bacterial flagellum relies on dedicated polymerization factors (PFs). The molecular determinants and structural transitions imposed by PFs on multi-subunit assembly are poorly understood. Here, we unveil FlaY from the polarized α-proteobacterium Caulobacter crescentus as a defining member of an alternative class of specialized flagellin PFs. Unlike the paradigmatic FliD capping protein, FlaY relies on a funnel-like β-propeller fold for flagellin polymerization. FlaY binds flagellin and is secreted by the flagellar secretion apparatus, yet it can also promote flagellin polymerization exogenously when donated from flagellin-deficient cells, serving as a transferable, extracellular public good. While the surge in FlaY abundance precedes bulk flagellin synthesis, FlaY-independent filament assembly is enhanced by mutation of a conserved region in multiple flagellin paralogs. We suggest that FlaYs are (multi-)flagellin PFs that evolved convergently to FliDs yet appropriated the versatile β-propeller fold implicated in human diseases for chaperone-assisted filament assembly.
Collapse
Affiliation(s)
- Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Genève, Switzerland.
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211 Genève, Switzerland.
| |
Collapse
|
2
|
Shapiro L. A Half Century Defining the Logic of Cellular Life. Annu Rev Genet 2022; 56:1-15. [DOI: 10.1146/annurev-genet-071719-021436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. Caulobacter's interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.
Collapse
Affiliation(s)
- Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
A localized adaptor protein performs distinct functions at the Caulobacter cell poles. Proc Natl Acad Sci U S A 2021; 118:2024705118. [PMID: 33753507 PMCID: PMC8020655 DOI: 10.1073/pnas.2024705118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Asymmetric cell division yields two distinct daughter cells by mechanisms that underlie stem cell behavior and cellular diversity in all organisms. The bacterium Caulobacter crescentus is able to orchestrate this complex process with less than 4,000 genes. This article describes a strategy deployed by Caulobacter where a regulatory protein, PopA, is programed to perform distinct roles based on its subcellular address. We demonstrate that, depending on the availability of a second messenger molecule, PopA adopts either a monomer or dimer form. The two oligomeric forms interact with different partners at the two cell poles, playing a critical role in the degradation of a master transcription factor at one pole and flagellar assembly at the other pole. Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.
Collapse
|
4
|
Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage ϕ CbK Predation of Multiflagellin Bacteria. J Bacteriol 2021; 203:JB.00399-20. [PMID: 33288623 DOI: 10.1128/jb.00399-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Caulobacter crescentus is a Gram-negative alphaproteobacterium that commonly lives in oligotrophic fresh- and saltwater environments. C. crescentus is a host to many bacteriophages, including ϕCbK and ϕCbK-like bacteriophages, which require interaction with the bacterial flagellum and pilus complexes during adsorption. It is commonly thought that the six paralogs of the flagellin gene present in C. crescentus are important for bacteriophage evasion. Here, we show that deletion of specific flagellins in C. crescentus can indeed attenuate ϕCbK adsorption efficiency, although no single deletion completely ablates ϕCbK adsorption. Thus, the bacteriophage ϕCbK likely recognizes a common motif among the six known flagellins in C. crescentus with various degrees of efficiency. Interestingly, we observe that most deletion strains still generate flagellar filaments, with the exception of a strain that contains only the most divergent flagellin, FljJ, or a strain that contains only FljN and FljO. To visualize the surface residues that are likely recognized by ϕCbK, we determined two high-resolution structures of the FljK filament, with and without an amino acid substitution that induces straightening of the filament. We observe posttranslational modifications on conserved surface threonine residues of FljK that are likely O-linked glycans. The possibility of interplay between these modifications and ϕCbK adsorption is discussed. We also determined the structure of a filament composed of a heterogeneous mixture of FljK and FljL, the final resolution of which was limited to approximately 4.6 Å. Altogether, this work builds a platform for future investigations of how phage ϕCbK infects C. crescentus at the molecular level.IMPORTANCE Bacterial flagellar filaments serve as an initial attachment point for many bacteriophages to bacteria. Some bacteria harbor numerous flagellin genes and are therefore able to generate flagellar filaments with complex compositions, which is thought to be important for evasion from bacteriophages. This study characterizes the importance of the six flagellin genes in C. crescentus for infection by bacteriophage ϕCbK. We find that filaments containing the FljK flagellin are the preferred substrate for bacteriophage ϕCbK. We also present a high-resolution structure of a flagellar filament containing only the FljK flagellin, which provides a platform for future studies on determining how bacteriophage ϕCbK attaches to flagellar filaments at the molecular level.
Collapse
|
5
|
Canals R, Vilches S, Wilhelms M, Shaw JG, Merino S, Tomás JM. Non-structural flagella genes affecting both polar and lateral flagella-mediated motility in Aeromonas hydrophila. Microbiology (Reading) 2007; 153:1165-1175. [PMID: 17379726 DOI: 10.1099/mic.0.2006/000687-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An Aeromonas hydrophila AH-3 miniTn5 mutant unable to produce polar and lateral flagella was isolated, in which the transposon was inserted into a gene whose encoded protein was an orthologue of the Campylobacter jejuni motility accessory factor (Maf) protein. In addition to this gene, several other related genes were found in this cluster that was adjacent to the region 2 genes of the polar flagellum. Mutation of the A. hydrophila AH-3 maf-2, neuB-like, flmD or neuA-like genes resulted in non-motile cells that were unable to swim or swarm due to the absence of both polar and lateral flagella. However, both polar and lateral flagellins were present but were unglycosylated. Although the A. hydrophila AH-3 or Aeromonas caviae Sch3N genes did not hybridize with each other at the nucleotide level, the gene products were able to fully complement the mutations in either bacterium. Furthermore, well-characterized C. jejuni genes involved in flagella glycosylation (Cj1293, -1294 and -1317) were fully able to complement A. hydrophila mutants in the corresponding genes (flmA, flmB and neuB-like). It was concluded that the maf-2, neuB-like, flmD and neuA-like genes are involved in the glycosylation of both the polar and the lateral flagella in Aeromonas strains.
Collapse
Affiliation(s)
- Rocío Canals
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Silvia Vilches
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Markus Wilhelms
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Jonathan G Shaw
- Division of Molecular and Genetic Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | - Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
| |
Collapse
|
6
|
Nachamkin I, Angeletti RH, Prystowsky MB. Biochemical similarity among serologically distinct flagellins of Campylobacter jejuni. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1988.tb02987.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Ozin AJ, Claret L, Auvray F, Hughes C. The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett 2003; 219:219-24. [PMID: 12620624 DOI: 10.1016/s0378-1097(02)01208-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Assembly of each Salmonella typhimurium flagellum filament requires export and polymerisation of ca. 30000 flagellin (FliC) subunits. This is facilitated by the cytosolic chaperone FliS, which binds to the 494 residue FliC and inhibits its polymerisation. Yeast two-hybrid assays, co-purification and affinity blotting showed that FliS binds specifically to the C-terminal 40 amino acid component of the disordered D0 domain central to polymerisation. Without FliS binding, the C-terminus is degraded. Our data provide further support for the view that FliS is a domain-specific bodyguard preventing premature monomer interaction.
Collapse
Affiliation(s)
- Amanda J Ozin
- Cambridge University Department of Pathology, Tennis Court Road, CB2 1QP, Cambridge, UK
| | | | | | | |
Collapse
|
8
|
Rabaan AA, Gryllos I, Tomás JM, Shaw JG. Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect Immun 2001; 69:4257-67. [PMID: 11401962 PMCID: PMC98495 DOI: 10.1128/iai.69.7.4257-4267.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 03/19/2001] [Indexed: 11/20/2022] Open
Abstract
Aeromonas caviae is increasingly being recognized as a cause of gastroenteritis, especially among the young. The adherence of aeromonads to human epithelial cells in vitro has been correlated with enteropathogenicity, but the mechanism is far from well understood. Initial investigations demonstrated that adherence of A. caviae to HEp-2 cells was significantly reduced by either pretreating bacterial cells with an antipolar flagellin antibody or by pretreating HEp-2 cells with partially purified flagella. To precisely define the role of the polar flagellum in aeromonad adherence, we isolated the A. caviae polar flagellin locus and identified five polar flagellar genes, in the order flaA, flaB, flaG, flaH, and flaJ. Each gene was inactivated using a kanamycin resistance cartridge that ensures the transcription of downstream genes, and the resulting mutants were tested for motility, flagellin expression, and adherence to HEp-2 cells. N-terminal amino acid sequencing, mutant analysis, and Western blotting demonstrated that A. caviae has a complex flagellum filament composed of two flagellin subunits encoded by flaA and flaB. The predicted molecular mass of both flagellins was approximately 31,700 Da; however, their molecular mass estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was approximately 35,500 Da. This aberrant migration was thought to be due to their glycosylation, since the proteins were reactive in glycosyl group detection assays. Single mutations in either flaA or flaB did not result in loss of flagella but did result in decreased motility and adherence by approximately 50%. Mutation of flaH, flaJ, or both flagellin genes resulted in the complete loss of motility, flagellin expression, and adherence. However, mutation of flaG did not affect motility but did significantly reduce the level of adherence. Centrifugation of the flagellate mutants (flaA, flaB, and flaG) onto the cell monolayers did not increase adherence, whereas centrifugation of the aflagellate mutants (flaH, flaJ, and flaA flaB) increased adherence slightly. We conclude that maximum adherence of A. caviae to human epithelial cells in vitro requires motility and optimal flagellar function.
Collapse
Affiliation(s)
- A A Rabaan
- Division of Molecular and Genetic Medicine, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | | | | | | |
Collapse
|
9
|
Ely B, Ely TW, Crymes WB, Minnich SA. A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. J Bacteriol 2000; 182:5001-4. [PMID: 10940048 PMCID: PMC111384 DOI: 10.1128/jb.182.17.5001-5004.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2000] [Accepted: 06/08/2000] [Indexed: 11/20/2022] Open
Abstract
The Caulobacter crescentus flagellar filament is assembled from multiple flagellin proteins that are encoded by six genes. The amino acid sequences of the FljJ and FljL flagellins are divergent from those of the other four flagellins. Since these flagellins are the first to be assembled in the flagellar filament, one or both might have specialized to facilitate the initiation of filament assembly.
Collapse
Affiliation(s)
- B Ely
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
10
|
Mimori-Kiyosue Y, Yamashita I, Fujiyoshi Y, Yamaguchi S, Namba K. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J Mol Biol 1998; 284:521-30. [PMID: 9813134 DOI: 10.1006/jmbi.1998.2184] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mutant strain of Salmonella typhimurium, SJW46, has flagellar filaments supercoiled in the same form as the wild-type strain, SJW1103, and swims normally. However, its flagellar filaments are mechanically unstable and show anomalous behaviors of polymorphism. Flagellin from SJW46 has a large central deletion from Ala204 to Lys292 of SJW1103 flagellin, which has been thought to be located in the outer surface of the filament. Since the filament structure is determined by intersubunit interactions of the terminal regions in the densely packed core of the filament, no serious involvement of the deleted portion was expected in the filament stability and polymorphism. In order to locate the deleted portion and to understand the underlying mechanism of these anomalous characteristics, we carried out structure analysis of the L-type straight filament reconstituted from a mutant flagellin of SJW46 (SJW46S) and compared the structure with that of the SJW1660 filament, which is also the L-type but composed of flagellin with no deletion. The deleted portion was identified as the outermost subdomain, and the structure in the core region showed no appreciable differences. The structure revealed the previously identified folding of flagellin in further detail, and the significance of intersubunit interactions between outer domains, which are present in the SJW1660 filament but absent in the SJW46 filament. This suggests that these contacts have a significant contribution to the filament stability and polymorphic behavior, despite the fact that the contacting surface area occupies only a minor portion of the whole intersubunit interactions.
Collapse
Affiliation(s)
- Y Mimori-Kiyosue
- International Institute for Advanced Research, Matsushita Electric Industrial Co., Ltd, 3-4 Hikaridai, Seika, 619-0237, Japan
| | | | | | | | | |
Collapse
|
11
|
Abstract
Eight Caulobacter crescentus flagellar genes, flmA, flmB, flmC, flmD, flmE, flmF, flmG, and flmH, have been cloned and characterized. These eight genes are clustered in pairs (flmAB, flmCD, flmEF, and flmGH) that appear to be structurally organized as operons. Homology comparisons suggest that the proteins encoded by the flm genes may be involved in posttranslational modification of flagellins or proteins that interact with flagellin monomers prior to their assembly into a flagellar filament. Expression of the flmAB, flmEF, and flmGH operons was shown to occur primarily in predivisional cells. In contrast, the flmCD operon was expressed throughout the cell cycle, with only a twofold increase in predivisional cells. The expression of the three temporally regulated operons was subject to positive regulation by the CtrA response regulator protein. Mutations in class II and III flagellar genes had no significant effect on the expression of the flm genes. Furthermore, the flm genes did not affect the expression of class II or class III flagellar genes. However, mutations in the flm genes did result in reduced synthesis of the class IV flagellin proteins. Taken together, these data indicate that the flm operons belong to a new class of flagellar genes.
Collapse
Affiliation(s)
- G Leclerc
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | |
Collapse
|
12
|
Umelo E, Trust TJ. Identification and molecular characterization of two tandemly located flagellin genes from Aeromonas salmonicida A449. J Bacteriol 1997; 179:5292-9. [PMID: 9286979 PMCID: PMC179395 DOI: 10.1128/jb.179.17.5292-5299.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two tandemly located flagellin genes, flaA and flaB, with 79% nucleotide sequence identity were identified in Aeromonas salmonicida A449. The fla genes are conserved in typical and atypical strains of A. salmonicida, and they display significant divergence at the nucleotide level from the fla genes of the motile species Aeromonas hydrophila and Aeromonas veronii biotype sobria. flaA and flaB encode unprocessed flagellins with predicted Mrs of 32,351 and 32,056, respectively. When cloned under the control of the Ptac promoter, flaB was highly expressed when induced in Escherichia coli DH5alpha, and the FlaB protein was detectable even in the uninduced state. In flaA clones containing intact upstream sequence, FlaA was barely detectable when uninduced and poorly expressed on induction. The A. salmonicida flagellins are antigenically cross-reactive with the A. hydrophila TF7 flagellin(s) and evolutionarily closely related to the flagellins of Pseudomonas aeruginosa and Vibrio anguillarum. Electron microscopy showed that A. salmonicida A449 expresses unsheathed polar flagella at an extremely low frequency under normal laboratory growth conditions, suggesting the presence of a full complement of genes whose products are required to make flagella; e.g., immediately downstream of flaA and flaB are open reading frames encoding FlaG and FlaH homologs.
Collapse
Affiliation(s)
- E Umelo
- Department of Biochemistry and Microbiology and Canadian Bacterial Diseases Network, University of Victoria, British Columbia, Canada
| | | |
Collapse
|
13
|
Mangan EK, Bartamian M, Gober JW. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J Bacteriol 1995; 177:3176-84. [PMID: 7768816 PMCID: PMC177008 DOI: 10.1128/jb.177.11.3176-3184.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transcription of flagellar genes in Caulobacter crescentus is regulated by cell cycle events that culminate in the synthesis of a new flagellum once every cell division. Early flagellar gene products regulate the expression of late flagellar genes at two distinct stages of the flagellar trans-acting hierarchy. Here we investigate the coupling of early flagellar biogenesis with middle and late flagellar gene expression. We have isolated mutants (bfa) that do not require early class II flagellar gene products for the transcription of middle or late flagellar genes. bfa mutant strains are apparently defective in a negative regulatory pathway that couples early flagellar biogenesis to late flagellar gene expression. The bfa regulatory pathway functions solely at the level of transcription. Although flagellin promoters are transcribed in class II/bfa double mutants, there is no detectable flagellin protein on immunoblots prepared from mutant cell extracts. This finding suggests that early flagellar biogenesis is coupled to gene expression by two distinct mechanisms: one that negatively regulates transcription, mediated by bfa, and another that functions posttranscriptionally. To determine whether bfa affects the temporal pattern of late flagellar gene expression, cell cycle experiments were performed in bfa mutant strains. In a bfa mutant strain, flagellin expression fails to shut off at its normal time in the cell division cycle. This experimental result indicates that bfa may function as a regulator of flagellar gene transcription late in the cell cycle, after early flagellar structures have been assembled.
Collapse
Affiliation(s)
- E K Mangan
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1569, USA
| | | | | |
Collapse
|
14
|
Abstract
In Caulobacter crescentus, asymmetry is generated in the predivisional cell, resulting in the formation of two distinct cell types upon cell division: a motile swarmer cell and a sessile stalked cell. These progeny cell types differ in their relative programs of gene expression and DNA replication. In progeny swarmer cells, DNA replication is silenced for a defined period, but stalked cells reinitiate chromosomal DNA replication immediately following cell division. The establishment of these differential programs of DNA replication may be due to the polar localization of DNA replication proteins, differences in chromosome higher-order structure, or pole-specific transcription. The best-understood aspect of Caulobacter development is biogenesis of the polar flagellum. The genes encoding the flagellum are expressed under cell cycle control predominantly in the predivisional cell type. Transcription of flagellar genes is regulated by a trans-acting hierarchy that responds to both flagellar assembly and cell cycle cues. As the flagellar genes are expressed, their products are targeted to the swarmer pole of the predivisional cell, where assembly occurs. Specific protein targeting and compartmentalized transcription are two mechanisms that contribute to the positioning of flagellar gene products at the swarmer pole of the predivisional cell.
Collapse
Affiliation(s)
- J W Gober
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1569
| | | |
Collapse
|
15
|
Power ME, Guerry P, McCubbin WD, Kay CM, Trust TJ. Structural and antigenic characteristics of Campylobacter coli FlaA flagellin. J Bacteriol 1994; 176:3303-13. [PMID: 7515043 PMCID: PMC205501 DOI: 10.1128/jb.176.11.3303-3313.1994] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The polar flagellar filament of Campylobacter coli VC167 is composed of two highly related (98%) flagellin subunit proteins, FlaA and FlaB, whose antigenic specificities result from posttranslational modification. FlaA is the predominant flagellin species, and mutants expressing only FlaA form a full-length flagellar filament. Although the deduced M(r) of type 2 (T2) FlaA is 58,884 and the apparent M(r) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 59,500, the solution weight-average M(r) by sedimentation analysis was 63,000. Circular dichroism studies in the presence or absence of 0.1% sodium dodecyl sulfate or 50% trifluorethanol showed that the secondary structure of T2 FlaA flagellin was altered, with alpha-helix structure being increased to 25% in the nonpolar environment. The molecule also contained 35 to 48% beta-sheet and 11 to 29% beta-turn structure. Mimeotope analysis of octapeptides representing the sequence of FlaA together with immunoelectron microscopy and enzyme-linked immunosorbent assay with a panel of antisera indicated that many residues in presumed linear epitopes were inaccessible or nonepitopic in the assembled filament, with the majority being in the N-terminal 337 residues of the 572-residue flagellin. Residues at the carboxy-terminal end of the T2 FlaA subunit also become inaccessible upon assembly. Digestion with trypsin, chymotrypsin, and endoproteinase Glu-C revealed a protease-resistant domain with an approximate M(r) of 18,700 between residues 193 and 375. Digestion with endoproteinase Arg-C and endoproteinase Lys-C allowed the mapping of a segment of surface-exposed FlaA sequence which contributes serospecificity to the VC167 T2 flagellar filament at residues between 421 and 480.
Collapse
Affiliation(s)
- M E Power
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
16
|
Trachtenberg S, DeRosier DJ. A three-start helical sheath on the flagellar filament of Caulobacter crescentus. J Bacteriol 1992; 174:6198-206. [PMID: 1400169 PMCID: PMC207688 DOI: 10.1128/jb.174.19.6198-6206.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An unusual feature in preparations of the Caulobacter crescentus flagellar filaments is that some filaments are surrounded by a set of three windings that form a sheath. We provide evidence that the sheath is composed of subunits having a molecular mass of 24,000 Da. We suggest that the sheath could be composed of protofilaments of flagellin wound around the filament.
Collapse
Affiliation(s)
- S Trachtenberg
- Department of Membrane and Ultrastructure Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
17
|
Dons L, Rasmussen OF, Olsen JE. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes. Mol Microbiol 1992; 6:2919-29. [PMID: 1479884 DOI: 10.1111/j.1365-2958.1992.tb01751.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene, flaA, encoding the flagellin protein of Listeria monocytogenes (strain 12067) has been isolated from an expression library in Escherichia coli using a flagellin-specific monoclonal antibody. DNA sequence analysis of a positive clone revealed the presence of an open reading frame of 287 amino acid residues with a calculated molecular mass of 30.4 kDa. Comparison of this sequence with flagellins from other bacteria showed a significant degree of homology in both the N- and C-terminal parts of the protein. The flagellin mRNA was determined to be 1 kb in size, which is the expected size for a monocistronic mRNA, and the temperature-dependent expression of flagellin was found to be regulated at the transcriptional level. Southern blot analysis, using the flagellin gene as probe, indicated that L. monocytogenes can be divided into two groups. These groups correspond to the flagellar antigens AB and ABC, respectively, as well as to the two types of L. monocytogenes based on the DNA sequence of the listeriolysin gene.
Collapse
Affiliation(s)
- L Dons
- Department of Molecular Food Technology, Biotechnological Institute, Lyngby, Denmark
| | | | | |
Collapse
|
18
|
Schoenlein PV, Lui J, Gallman L, Ely B. The Caulobacter crescentus flaFG region regulates synthesis and assembly of flagellin proteins encoded by two genetically unlinked gene clusters. J Bacteriol 1992; 174:6046-53. [PMID: 1400155 PMCID: PMC207669 DOI: 10.1128/jb.174.19.6046-6053.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
At a specific time in the Caulobacter crescentus cell cycle, a single flagellar filament and multiple receptor sites for the swarmer-specific phage phi Cbk are assembled at one pole of the predivisional cell. One cluster of genes required for this morphogenesis, the flaYG region, includes the flgJKL genes, which encode structural proteins of the flagellar filament. These flagellin genes are flanked by genes required for filament assembly, the flaYE genes at one end and the flaF-flbT-flbA-flaG genes at the other. In this study, we characterized mutants carrying large chromosomal deletions within this region. Several of these strains are phi CbK resistant and produce a novel 22-kDa flagellin that is not assembled into flagella. Merodiploid strains containing either the entire flaFG region or individual fla transcription units from this region were constructed. These strains were used to correlate the presence or absence of specific gene products to changes in flagellin synthesis, filament assembly, or phage sensitivity. As a result of these studies, we were able to conclude that (i) the production of the 22-kDa flagellin results from the absence of the flbA and flaG gene products, which appear to be components of a flagellin-processing pathway common to the 25-, 27-, and 29-kDa flagellins; (ii) flbT negatively modulates the synthesis of the 27- and 25-kDa flagellins from two genetically unlinked gene clusters; (iii) flgL is the only flagellin gene able to encode the 27-kDa flagellin, and this flagellin appears to be required for the efficient assembly of the 25-kDa flagellins; (iv) flaF is required for filament assembly; and (v) phi CbK resistance results from the deletion of at least two genes in the flaFG region.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
19
|
Vonderviszt F, Aizawa S, Namba K. Role of the disordered terminal regions of flagellin in filament formation and stability. J Mol Biol 1991; 221:1461-74. [PMID: 1942062 DOI: 10.1016/0022-2836(91)90946-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Terminal regions of flagellin from Salmonella typhimurium, residues 1 to 65 and 451 to 494, have no ordered tertiary structure in solution, which makes them very susceptible to proteolytic degradation. Flagellin was subjected to mild controlled proteolytic treatment with highly specific proteases to remove terminal segments from the disordered regions. It is demonstrated here that various fragments can be readily prepared that differ from each other in 1 x 10(3) to 2 x 10(3) Mr segments in their NH2- or COOH-terminal regions. Terminally deleted fragments of flagellin were used to clarify the role of the disordered regions in the self-assembly of flagellin. The polymerization ability of the fragments was tested by inducing filament formation with ammonium sulfate. We found that fragments of flagellin containing large terminal deletions could form straight filaments, although the stability of these filaments required high salt concentrations. Even a fragment lacking the whole mobile COOH-terminal part of flagellin and 36 residues from the NH2-terminal region could form long filaments. The fragments could be also polymerized onto native flagellar seeds, suggesting that the subunit packing of the filaments of fragments is similar to that of the native ones. The fragments could also copolymerize with native flagellin, resulting in various helical forms. Filaments of fragments were found to be straight at both pH 4.0 and pH 12.5, indicating that they might have lost their polymorphic ability. Our results show that the major part of the disordered terminal regions of flagellin is not essential for polymerization, but it does play an important role in stabilization of the filaments and in influencing their polymorphic conformation.
Collapse
Affiliation(s)
- F Vonderviszt
- ERATO, Molecular Dynamic Assembly Project, Tsukuba, Japan
| | | | | |
Collapse
|
20
|
Kostrzynska M, Betts JD, Austin JW, Trust TJ. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J Bacteriol 1991; 173:937-46. [PMID: 1704004 PMCID: PMC207209 DOI: 10.1128/jb.173.3.937-946.1991] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Flagellar filaments were isolated from Helicobacter pylori by shearing, and flagellar proteins were further purified by a variety of techniques, including CsCl density gradient ultracentrifugation, pH 2.0 acid disassociation-neutral pH reassociation, and differential ultracentrifugation followed by molecular sieving with a Sephacryl S-500 column or Mono Q anion-exchange column, and purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to an Immobilon membrane. Two flagellin species of pI 5.2 and with apparent subunit molecular weights (Mrs) of 57,000 and 56,000 were obtained. N-terminal amino acid analysis showed that the two H. pylori flagellin species were related to each other and shared sequence similarity with the N-terminal amino acid sequence of Campylobacter coli, Bacillus, Salmonella, and Caulobacter flagellins. Analysis of the amino acid composition of the predominant 56,000-Mr flagellin species isolated from two strains showed that it was comparable to the flagellins of other species. The minor 57,000-Mr flagellin species contained a higher content of proline. Immunoelectron microscopic studies with polyclonal monospecific H. pylori antiflagellin antiserum and monoclonal antibody (MAb) 72c showed that the two different-Mr flagellin species were located in different regions of the assembled flagellar filament. The minor 57,000-Mr species was located proximal to the hook, and the major 56,000-Mr flagellin composed the remainder of the filament. Western immunoblot analysis with polyclonal rabbit antisera raised against H. pylori or Campylobacter jejuni flagellins and MAb 72c showed that the 56,000-Mr flagellin carried sequences antigenetically cross-reactive with the 57,000-Mr H. pylori flagellin and the flagellins of Campylobacter species. This antigenic cross-reactivity did not extend to the flagellins of other gram-negative bacteria. The 56,000-Mr flagellin also carried H. pylori-specific sequences recognized by two additional MAbs. The epitopes for these MAbs were not surface exposed on the assembled inner flagellar filament of H. pylori but were readily detected by immunodot blot assay of sodium dodecyl sulfate-lysed cells of H. pylori, suggesting that this serological test could be a useful addition to those currently employed in the rapid identification of this important pathogen.
Collapse
Affiliation(s)
- M Kostrzynska
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
21
|
Bryan R, Glaser D, Shapiro L. Genetic regulatory hierarchy in Caulobacter development. ADVANCES IN GENETICS 1990; 27:1-31. [PMID: 2112299 DOI: 10.1016/s0065-2660(08)60022-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Bryan
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | |
Collapse
|
22
|
O'Neill EA, Bender RA. Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: roles of phospholipid, DNA, and protein syntheses. J Bacteriol 1989; 171:4814-20. [PMID: 2768189 PMCID: PMC210284 DOI: 10.1128/jb.171.9.4814-4820.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During swarmer cell differentiation in Caulobacter crescentus, morphogenesis at the swarmer pole is characterized by the loss of the flagellum, by the loss of phage receptor activity (PRA) (the ability of the cell to adsorb phage phi CbK), and finally by the initiation of stalk outgrowth at the site formerly occupied by the flagellum and the PRA. We show here that each of these events is a cell cycle-dependent event requiring continuous protein synthesis for its execution but occurring normally in the absence of DNA synthesis or phospholipid synthesis. During stalked-cell differentiation, the flagellum and PRA reappear and the stalk elongates considerably. We show here that these events are also cell cycle dependent, requiring not only de novo protein synthesis but also DNA and phospholipid syntheses. When synchronous cells dividing 160 min after collection were used, PRA reappearance occurred at 110 min. This PRA reappearance was dependent on a phospholipid synthesis-requiring event occurring at 70 min, a DNA synthesis-requiring event occurring at 95 min, and a protein synthesis-requiring event occurring at 108 min. In the absence of net phospholipid synthesis, stalk elongation appeared more or less normal, but the stalks eventually became fragile, and by 240 min, most of the stalks had broken off, leaving only stubs attached to the cell body.
Collapse
Affiliation(s)
- E A O'Neill
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
23
|
Driks A, Bryan R, Shapiro L, DeRosier DJ. The organization of the Caulobacter crescentus flagellar filament. J Mol Biol 1989; 206:627-36. [PMID: 2738912 DOI: 10.1016/0022-2836(89)90571-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural organization of the flagellar filament of Caulobacter crescentus, as revealed by immunoelectron microscopy, shows five antigenically distinct regions within the hook-filament complex. The first region is the hook. The second region is adjacent to the hook and is approximately 10 nm in length. On the basis of its location in the hook-filament complex, this region may contain hook-associated proteins. Next to this is the third region, which is approximately 60 nm in length. Antibody decoration experiments using mutant strains with deletions of the structural gene for the 29 x 10(3) Mr flagellin (flgJ) showed that the presence of this region is correlated with the expression of the 29 x 10(3) Mr flagellin gene. The next region (region IV), of length approximately 1 to 2 microns, appears to contain the 27.5 x 10(3) Mr flagellin, but at its distal end includes, in gradually increasing amounts, the 25 x 10(3) Mr flagellin. The rest of the filament (region V) is made up predominantly, if not completely, of the 25 x 10(3) Mr flagellin. Except for the hook, there are no morphological features that would otherwise distinguish these regions. A functional flagellum, having the wild-type length and morphology, is assembled by mutant strains deficient in the 29 x 10(3) Mr flagellin and 27.5 x 10(3) Mr flagellin.
Collapse
Affiliation(s)
- A Driks
- Graduate Program in Biology, Brandeis University, Waltham, MA 02254
| | | | | | | |
Collapse
|
24
|
Schoenlein PV, Gallman LS, Ely B. Organization of the flaFG gene cluster and identification of two additional genes involved in flagellum biogenesis in Caulobacter crescentus. J Bacteriol 1989; 171:1544-53. [PMID: 2921244 PMCID: PMC209779 DOI: 10.1128/jb.171.3.1544-1553.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Caulobacter crescentus, mutations have been isolated in more than 30 flagellar genes (fla, flb, and flg) which are required in the cell cycle event of flagellum biogenesis. The flaF and flaG mutations and two newly identified mutations, flbT and flbA (P.V. Schoenlein and B. Ely, J. Bacteriol. 171:000-000, 1989), have been localized to the flaFG region. In this study, the genetic and physical organization of this region was analyzed, using the cloned 4.0-kilobase flaFG region in the recombinant plasmid pPLG727. Plasmid pPLG727 complemented flaF, flaG, flbA, and flbT mutations. Further complementation studies with pPLG727 derivatives indicated that flaF and flbT are unique but overlapping transcription units, whereas flbA and flaG constitute a single transcription unit. To determine the direction of transcription of the putative flbA-flaG operon, the promoterless chloramphenicol transacetylase gene was inserted into various positions in the flbA-flaG region, and merodiploid strains containing these transcriptional fusions were assayed for gene function and expression of chloramphenicol resistance. These studies showed that transcription proceeds from flbA to flaG. To confirm the complementation analysis, Southern analyses were performed on chromosomal DNAs isolated from strains containing insertion and deletion mutations. Taken together, these studies defined the relative gene order at one end of the flaYG flagellar gene cluser as flgL-flaF-flbT-flbA-flaG.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Biology, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
25
|
Schoenlein PV, Ely B. Characterization of strains containing mutations in the contiguous flaF, flbT, or flbA-flaG transcription unit and identification of a novel fla phenotype in Caulobacter crescentus. J Bacteriol 1989; 171:1554-61. [PMID: 2646286 PMCID: PMC209780 DOI: 10.1128/jb.171.3.1554-1561.1989] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During the Caulobacter crescentus cell cycle, flagellin synthesis and filament assembly are temporally controlled events which require the products encoded by the contiguous flaF, flbT, and flbA-flaG transcription units (P.V. Schoenlein, L.S. Gallman, and B. Ely, J. Bacteriol. 171:000-000, 1989). To better define the functions of these genes, immunoprecipitation studies, Western blot (immunoblot) analyses, and electron microscopic analyses characterized flagellin synthesis and assembly in mutant and merodiploid strains. Mutations in the flaF or flbA-flaG transcription unit resulted in reduced synthesis of the 25- and 27-kilodalton (kDa) flagellins. In contrast, mutations in flbT resulted in overproduction of these flagellins. The FlbT phenotype is unique, since all other identified C. crescentus fla mutations cause a reduction in the levels of the 25- and 27-kDa flagellins. Furthermore, the flbT mutant showed a chemotaxis deficiency even though it was motile. Thus, the flbT gene product appears to be involved in the regulation of both flagellin synthesis and chemotactic function. Mutations in the flbT and flbA-flaG transcription units also resulted in the production of a 22-kDa flagellin species that is not normally detected in wild-type cells. This flagellin species was not detected in the flbT filaments. Furthermore, the 22-kDa flagellin was no longer detected in flbA pseudorevertants that assembled functional filaments. Thus, the 22-kDa flagellin does not appear to be assembled into filaments. Since many of the flbT filaments are shorter than wild-type filaments, we discuss the possibility that the 22-kDa flagellin species may adversely affect flagellin assembly in this mutant.
Collapse
Affiliation(s)
- P V Schoenlein
- Department of Biology, University of South Carolina, Columbia 29208
| | | |
Collapse
|
26
|
Kaplan JB, Dingwall A, Bryan R, Champer R, Shapiro L. Temporal regulation and overlap organization of two Caulobacter flagellar genes. J Mol Biol 1989; 205:71-83. [PMID: 2648000 DOI: 10.1016/0022-2836(89)90365-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of the bacterial flagellum and chemotaxis apparatus in both Escherichia coli and Caulobacter crescentus requires the ordered expression of over 40 genes whose expression is controlled by a trans-acting regulatory hierarchy. In C. crescentus, additional control mechanisms ensure that the transcription of these genes is initiated at the correct time in the cell cycle. We demonstrate here that two flagellar genes, flaE and flaY, whose products function in trans to modulate the level of transcription of other flagellar genes, are themselves temporally controlled. DNA sequence analysis of the 3413 base-pairs encompassing the flaE and flaY coding sequences and the 5' regulatory region showed that flaE encodes a protein of 16,000 Mr and flaY a protein of 17,000 Mr. Evidence that flaE and flaY are transcribed as a polycistronic message includes (1) the polar effect of Tn5 insertions; (2) deletion analysis showing that the flaE promoter is essential for complementation of both flaE and flaY alleles; and (3) nuclease S1 assays showing protection of a transcript spanning both genes. The transcript start site in front of flaE was determined and the -10 region conforms to the E. coli sigma 28 promoter consensus sequence. Nuclease S1 analysis also revealed a protected fragment whose size was consistent with a transcript initiating in vivo at a consensus "nif" promoter sequence in front of the flaY gene. The entire promoter region and an upstream consensus sequence that might be a regulatory element for the flaY gene lies within the carboxyl-terminal coding sequence of the flaE gene.
Collapse
Affiliation(s)
- J B Kaplan
- Department of Microbiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | | | | | | | | |
Collapse
|
27
|
Norris SJ, Charon NW, Cook RG, Fuentes MD, Limberger RJ. Antigenic relatedness and N-terminal sequence homology define two classes of periplasmic flagellar proteins of Treponema pallidum subsp. pallidum and Treponema phagedenis. J Bacteriol 1988; 170:4072-82. [PMID: 3045083 PMCID: PMC211411 DOI: 10.1128/jb.170.9.4072-4082.1988] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.
Collapse
Affiliation(s)
- S J Norris
- Department of Pathology and Laboratory Medicine, Medical School, University of Texas Health Science Center, Houston 77225
| | | | | | | | | |
Collapse
|
28
|
Minnich SA, Ohta N, Taylor N, Newton A. Role of the 25-, 27-, and 29-kilodalton flagellins in Caulobacter crescentus cell motility: method for construction of deletion and Tn5 insertion mutants by gene replacement. J Bacteriol 1988; 170:3953-60. [PMID: 2842293 PMCID: PMC211395 DOI: 10.1128/jb.170.9.3953-3960.1988] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Caulobacter crescentus incorporates two distinct, but related proteins into the polar flagellar filament: a 27-kilodalton (kDa) flagellin is assembled proximal to the hook and a 25-kDa flagellin forms the distal end of the filament. These two proteins and a third, related flagellin protein of 29 kDa are encoded by three tandem genes (alpha-flagellin cluster) in the flaEY gene cluster (S.A. Minnich and A. Newton, Proc. Natl. Acad. Sci. USA 84: 1142-1146, 1987). Since point mutations in flagellin genes had not been isolated their requirement for flagellum function and fla gene expression was not known. To address these questions, we developed a gene replacement protocol that uses cloned flagellin genes mutagenized by either Tn5 transposons in vivo or the replacement of specific DNA fragments in vitro by the antibiotic resistance omega cassette. Analysis of gene replacement mutants constructed by this procedure led to several conclusions. (i) Mutations in any of the three flagellin genes do not cause complete loss of motility. (ii) Tn5 insertions in the 27-kDa flagellin gene and a deletion mutant of this gene do not synthesize the 27-kDa flagellin, but they do synthesize wild-type levels of the 25-kDa flagellin, which implies that the 27-kDa flagellin is not required for expression and assembly of the 25-kDa flagellin; these mutants show slightly impaired motility on swarm plates. (iii) Mutant PC7810, which is deleted for the three flagellin genes in the flaEY cluster, does not synthesize the 27- or 29-kDa flagellin, and it is significantly more impaired for motility on swarm plates than mutants with defects in only the 27-kDa flagellin gene. The synthesis of essentially normal levels of 25-kDa flagellin by strain PC7810 confirms that additional copies of the 25-kDa flagellin map outside the flaEY cluster (beta-flagellin cluster) and that these flagellin genes are active. Thus, while the 29- and 27-kDa flagellins are not absolutely essential for motility in C. crescentus, their assembly into the flagellar structure is necessary for normal flagellar function.
Collapse
Affiliation(s)
- S A Minnich
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | |
Collapse
|
29
|
Trachtenberg S, DeRosier DJ. Three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus. A flagellin lacking the outer domain and its amino acid sequence lacking an internal segment. J Mol Biol 1988; 202:787-808. [PMID: 3172239 DOI: 10.1016/0022-2836(88)90559-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We obtained a three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus CB15 from electron micrographs of negatively stained preparations. The C. crescentus filament appears, both in negative stain and in the frozen-hydrated state, significantly smoother and narrower than other filaments. Its helical symmetry, and unit cell size, however, are similar to that of other filaments. Although the molecular weight of the C. crescentus flagellin is about half that of other plain flagellins, there is only one monomer per unit cell as indicated by diffraction studies and by linear mass density measurements with the scanning transmission electron microscope. Alignment of the primary amino acid sequences of Salmonella typhimurium (serotype i) and C. crescentus (29,000 Mr) flagellins shows that whereas there is homology at the amino and carboxyterminal ends of the two sequences, the central segment of the S. typhimurium sequence has no homology to that of C. crescentus. A correlated comparison between the three-dimensional reconstructions of the two filaments and primary amino acid sequences of the two flagellins suggests that: (1) the C. crescentus subunit is missing the outer molecular domain but is, otherwise, similar to that of S. typhimurium; (2) the outer molecular domain in S. typhimurium corresponds, therefore, to a central stretch of the primary amino acid sequence; and (3) the outer molecular domain, missing in C. crescentus, is not obligatory for flagellar motility.
Collapse
Affiliation(s)
- S Trachtenberg
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University Waltham, MA 02254
| | | |
Collapse
|
30
|
Loewy ZG, Bryan RA, Reuter SH, Shapiro L. Control of synthesis and positioning of a Caulobacter crescentus flagellar protein. Genes Dev 1987; 1:626-35. [PMID: 3315855 DOI: 10.1101/gad.1.6.626] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Caulobacter crescentus flagellum is assembled during a defined time period in the cell cycle. Two genes encoding the major components of the flagellar filament, the 25K and the 27.5K flagellins, are expressed coincident with flagellar assembly. A third gene, flgJ, is also temporally regulated. The synthesis of the product of flgJ, the 29K flagellin, occurs prior to the synthesis of the other flagellin proteins. We demonstrate here that the time of initiation of flgJ expression is independent of chromosomal location but is dependent upon cis-acting sequences present upstream of the flgJ structural gene. Evidence that there is transcriptional control of flgJ expression includes the following: (1) The initial appearance of flgJ message was coincident with the onset of 29K flagellin protein synthesis, and (2) expression of an NPT II reporter gene driven by the flgJ promoter was temporally correct. Post-transcriptional regulation might contribute to the control of expression, because the flgJ mRNA persisted for a longer period of time than did the synthesis of the 29K protein. The 29K flagellin was found only in the progeny swarmer cell after cell division. In a mutant strain that failed to assemble a flagellum, the 29K flagellin still segregated to the presumptive swarmer cell, demonstrating that positioning of the protein is independent of filament assembly. Analysis of a chimeric flgJ-NPT II transcriptional fusion showed that the flgJ regulatory sequences do not control the segregation of the 29K flagellin to the swarmer cell progeny, suggesting that correct segregation depends on the protein product.
Collapse
Affiliation(s)
- Z G Loewy
- Albert Einstein College of Medicine, Department of Molecular Biology, Bronx, New York 10461
| | | | | | | |
Collapse
|
31
|
Abstract
The assembly of a functional flagellum in the bacterium Caulobacter crescentus requires the protein products of approximately 30 genes expressed in a temporally discrete and spatially distinct manner. Our current understanding of this system has been limited by the fact that purified protein products are available for only about one-fifth of these genes. A genetically engineered transposon promoter probe, Tn5-VB32, containing a promoterless gene encoding neomycin phosphotransferase II (NPTase II) was used to generate a series of non-motile (fla-), kanamycin resistant strains of C. crescentus. These transcription-fusions allow the expression of NPTase II to be controlled by flagellar promoters, and thus questions of temporal regulation of flagellar genes can be addressed without the need to obtain purified protein products. The flagellar promoters accessed by Tn5-VB32 exhibited temporal regulation analogous to the known flagellar and chemotaxis gene products. The expression of NPTase II in these mutants is read from a chimeric mRNA that initiates in a chromosomal fla promoter and continues through the inserted NPTase II gene. Thus, temporal regulation is controlled by modulating either the initiation of transcription, or transcript turnover, at specific times in the cell cycle. Epistatic interactions between the genes accessed by the promoter probe and other flagellar loci were studied in double fla mutants generated by transducing the promoter-probe mutations into spontaneously derived second-site fla-mutant backgrounds. The synthesis of both natural fla gene products and the accessed NPTase II was assayed in these strains using antisera to purified components of the flagellum and to purified NPTase II. On the basis of these interactions, a trans-acting hierarchy of flagellar and chemotaxis gene expression is proposed.
Collapse
|
32
|
Hahnenberger KM, Shapiro L. Identification of a gene cluster involved in flagellar basal body biogenesis in Caulobacter crescentus. J Mol Biol 1987; 194:91-103. [PMID: 3039149 DOI: 10.1016/0022-2836(87)90718-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The bacterial flagellum is a complex structure composed of a transmembrane basal body, a hook, and a filament. In Caulobacter crescentus the biosynthesis and assembly of this structure is under temporal and spatial control. To help to define the order of assembly of the flagellar components and to identify the genes involved in the early steps of basal body construction, mutants defective in basal body formation have been analyzed. Mutants in the flaD flaB flaC gene cluster were found to be unable to assemble a complete basal body. The flaD BC motC region was cloned and the genes were localized by subcloning and complementation analysis. A series of Tn5 insertion mutations in the flaD BC region were mapped. Complementation analysis of the Tn5 insertion mutants indicated the existence of at least four transcriptional units in the region and identified the presence of two new genes designated flbN and flbO. Mutants in flbN, flaB, flaC and flbO were unable to assemble any basal body structure and are likely to be involved in the early steps of basal body formation. The flaD mutant, however, was found to contain a partially assembled basal body consisting of the rod and three hook-distal rings. All of the mutants in this cluster exhibited pleiotropic effects on the expression of other flagellar and chemotaxis functions, including the level of synthesis of flagellins, the hook protein and hook protein precursor, and the level of chemotaxis methylation.
Collapse
|
33
|
Trachtenberg S, DeRosier DJ, Aizawa S, Macnab RM. Pairwise perturbation of flagellin subunits. The structural basis for the differences between plain and complex bacterial flagellar filaments. J Mol Biol 1986; 190:569-76. [PMID: 3537316 DOI: 10.1016/0022-2836(86)90242-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although plain and complex bacterial flagellar filaments differ in their physical properties and helical symmetry, they both appear to derive from a common underlying structure. Analysis of electron micrographs of complex filaments of Rhizobium lupini revealed that the unit cell has twice the length of that of plain filaments, with a corresponding reduction in helical symmetry whereby the six-start helical family present in plain filaments collapses into a three-start family. Mass per unit length measurements were made by scanning transmission electron microscopy. These, together with the unit cell dimensions and the molecular weight of the flagellin monomer, enabled the number of monomers per unit cell to be estimated. Whereas plain filaments have a single monomer per unit cell, complex filaments have two. These results suggest that complex filament structure differs from plain filament structure by a pairwise perturbation, or interaction, of the flagellin monomers. The additional bonding interactions involved in the perturbation in the complex filament may make it more rigid than the plain filament, which has no such perturbation.
Collapse
|
34
|
Limberger RJ, Charon NW. Treponema phagedenis has at least two proteins residing together on its periplasmic flagella. J Bacteriol 1986; 166:105-12. [PMID: 3957864 PMCID: PMC214564 DOI: 10.1128/jb.166.1.105-112.1986] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Treponema phagedenis is an anaerobic, motile spirochete with several periplasmic flagella (PFs) at each cell end. This study provides the first genetic evidence that multiple protein species are associated with the PFs. In addition, these proteins were found to reside together on a given PF. Nonmotile mutants which lacked the PFs were isolated, and spontaneous revertants to motility regained the PFs. These results suggest that the PFs are involved in the motility of T. phagedenis. Isolated PFs had two major protein bands with molecular weights of 33,000 and 39,800, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Western blots with monoclonal and polyclonal antibodies indicated that both proteins were absent in the PF mutants but present in the revertants. Immunoelectron microscopy revealed that the 39,800-molecular-weight protein was distributed along the entire PF. Immunoprecipitation analysis suggested that the 39,800- and 33,000-molecular-weight proteins were closely associated in situ.
Collapse
|
35
|
Ohta N, Chen LS, Swanson E, Newton A. Transcriptional regulation of a periodically controlled flagellar gene operon in Caulobacter crescentus. J Mol Biol 1985; 186:107-15. [PMID: 4078896 DOI: 10.1016/0022-2836(85)90261-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Temporal regulation of flagellar gene expression in Caulobacter crescentus has been examined by a detailed analysis of the flbG-flaJ-flbH-flaK hook operon. The approximate location of the promoter for this 4.4 X 10(3) base-pair transcriptional unit was determined by deletion mapping, and the flaK gene was shown by nucleotide sequencing to code for the hook protein. flaK messenger RNA was quantified by S1 nuclease mapping with an internal restriction fragment of the gene as the 5'-labeled DNA probe. The results of these assays provide the first direct evidence that periodic expression of a flagellar gene in the C. crescentus cell cycle is regulated at the transcriptional level. The effect of altering the time of gene duplication in the cell cycle was examined by subcloning the complete hook operon on a plasmid that replicates throughout the S phase. The normal periodicity of flaK transcription and translation was maintained in this merodiploid strain, which suggests that replication alone is not sufficient to initiate flagellar gene expression. We also show that the three adjacent transcriptional units III, IV and V are required in trans for transcription of the book operon, and we discuss the possible role of these genes in the hierarchical regulation of the flagellar gene expression.
Collapse
|
36
|
Abstract
Bacterial chemotaxis is a primitive behavioral system that shows great promise for being amenable to a description of its molecular mechanism. In Gram-negatives like Escherichia coli, addition of amino acid attractant begins a series of events, starting with binding to certain intrinsic membrane proteins, the MCPs, and ending with a period of smooth swimming. Immediately, methyl-esterification of these MCPs begins and continues during this period. By contrast in the Gram-positive Bacillus subtilis, demethylation of MCPs occurs during the same period. At least two other mechanisms for mediating chemotaxis toward the attractants oxygen and phosphotransferase sugars exist in E. coli, and in these, changes in methylation of MCPs plays no role. Moreover, chemotaxis away from many repellents by B. subtilis appears to involve different mechanisms. Many of the repellents include drugs and toxicants, many of them man-made, so that chemoreceptors could not have specifically evolved; yet the bacteria are often exquisitely sensitive to them. Indeed, the B. subtilis membrane seems to act like a generalized antenna for noxious membrane-active substances.
Collapse
|
37
|
|
38
|
Huguenel ED, Newton A. Evidence that subcellular flagellin pools in Caulobacter crescentus are precursors in flagellum assembly. J Bacteriol 1984; 157:727-32. [PMID: 6698938 PMCID: PMC215318 DOI: 10.1128/jb.157.3.727-732.1984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To study the assembly of the Caulobacter crescentus flagellar filament, we have devised a fractionation protocol that separates the cellular flagellin into three compartments: soluble, membrane, and assembled. Radioactive labeling in pulse-chase and pulse-labeling experiments has demonstrated for the first time that both soluble and membrane-associated flagellin pools are precursors in the assembly of the flagellar filament. The results of these experiments also indicate that flagellar filament assembly occurs via the translocation of newly synthesized flagellins from the soluble pool to the membrane pool to the assembled flagellar filaments. It is not possible to conclude whether the soluble flagellin fraction is synthesized cytoplasmically or as a loosely associated membrane intermediate which is released during lysis. It is clear, however, that the soluble and membrane flagellins are in physically and functionally distinct pools. The implications of these findings for the study of protein secretion from cells and the invariant targeting of flagellar proteins to the stalk-distal pole of the dividing cell during flagellum morphogenesis are discussed.
Collapse
|
39
|
Johnson RC, Ferber DM, Ely B. Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants. J Bacteriol 1983; 154:1137-44. [PMID: 6853442 PMCID: PMC217584 DOI: 10.1128/jb.154.3.1137-1144.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cultures of wild-type Caulobacter crescentus and strains with fla mutations representing 24 genes were pulse-labeled with 14C-amino acids and analyzed by immunoprecipitation to study the synthesis of flagellar components. Most fla mutants synthesize flagellin proteins at a reduced rate, suggesting the existence of some mechanism to prevent the accumulation of unpolymerized flagellin subunits. Two strains contain deletions that appear to remove a region necessary for this regulation. The hook protein does not seem to be subject to this type of regulation and, in addition, appears to be synthesized as a faster-sedimenting precursor. Mutations in a number of genes result in the appearance of degradation products of either the flagellin or the hook proteins. Mutations in flaA, -X, -Y, or -Z result in the production of filaments (stubs) that contain altered ratios of the flagellin proteins. In some flaA mutants, other flagellin-related proteins were assembled into the stub structures in addition to the flagellins normally present. Taken together, these analyses have begun to provide insight into the roles of individual fla genes in flagellum biogenesis in C. crescentus.
Collapse
|
40
|
Gill PR, Agabian N. The nucleotide sequence of the Mr = 28,500 flagellin gene of Caulobacter crescentus. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32192-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Abstract
Molecular processes which promote the spatial localization of subcellular components are fundamental to cell development and differentiation. At various stages in development unequal segregation of molecular information must occur to result in the differentiated characteristics which distinguish cell progeny. Biological attributes of the dimorphic bacterium, Caulobacter crescentus, provide an experimental system permitting examination of the generation of asymmetry at the molecular level. When a Caulobacter cell divides, two different daughter cells are produced--a motile swarmer cell with a polar flagellum and a non-motile cell with a static appendage referred to as a stalk. The two cell types are distinct with respect to surface morphology, developmental potential, protein composition and biosynthetic capabilities. One of the more conspicuous manifestations of asymmetric expression of macromolecules in this system, the flagellum, has been studied extensively. We have cloned the flagellin genes of Caulobacter and report here the use of these sequences as probes to demonstrate that (1) the level of flagellin mRNA is regulated during the cell cycle in a pattern coincident with flagellum polypeptide synthesis and (2) flagellin mRNA synthesized before cell division is segregated with progeny swarmer cells. This provides molecular evidence of specific partitioning of an mRNA at the time of cell division.
Collapse
|
42
|
Shapiro L, Mansour J, Shaw P, Henry S. Synthesis of specific membrane proteins is a function of DNA replication an phospholipid synthesis in Caulobacter crescentus. J Mol Biol 1982; 159:303-22. [PMID: 7143443 DOI: 10.1016/0022-2836(82)90497-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|