1
|
Pandiarajan I, Walunj SB, Banerjee N, Rout J, Srivastava S, Patankar S, Kaledhonkar S. Application of bio-layer interferometry for the analysis of ribosome-protein interactions. Front Mol Biosci 2024; 11:1398964. [PMID: 39148630 PMCID: PMC11325027 DOI: 10.3389/fmolb.2024.1398964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
The ribosome, a ribonucleoprotein complex, performs the function of protein translation. While ribosomal RNA catalyzes polypeptide formation, several proteins assist the ribosome throughout the translation process. Studying the biochemical and kinetic properties of these proteins interacting with the ribosome is vital for elucidating their roles. Various techniques, such as zonal centrifugation, pull-down assays, dynamic light scattering (DLS), fluorescence polarization, and surface plasmon resonance (SPR) are employed for this purpose, each presenting unique advantages and limitations. We add to the repertoire of techniques by using Bio-Layer Interferometry (BLI) to examine interactions between the ribosome and translation factors. Our findings demonstrate that BLI can detect interactions of Escherichia coli ribosomes with two proteins: E. coli initiation factor 2 (IF2) and P. falciparum translation enhancing factor (PTEF). A protein (Green Fluorescent Protein; GFP) known not to bind to E. coli ribosomes, shows no binding in the BLI assay. We show that BLI could be used to study the ribosome-protein interactions as it has key advantages like label-free procedures, ease of assay performance, and ribosome sample reuse. Our results highlight the comprehensive use of BLI in studying the ribosome-protein interactions, in addition to studying protein-protein and protein-ligand interactions.
Collapse
Affiliation(s)
- Ilamathy Pandiarajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sujata B Walunj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nirjhar Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Janmejaya Rout
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kaledhonkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Wu X, Zhang Q, Guo Y, Zhang H, Guo X, You Q, Wang L. Methods for the Discovery and Identification of Small Molecules Targeting Oxidative Stress-Related Protein–Protein Interactions: An Update. Antioxidants (Basel) 2022; 11:antiox11040619. [PMID: 35453304 PMCID: PMC9025695 DOI: 10.3390/antiox11040619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The oxidative stress response pathway is one of the hotspots of current pharmaceutical research. Many proteins involved in these pathways work through protein–protein interactions (PPIs). Hence, targeting PPI to develop drugs for an oxidative stress response is a promising strategy. In recent years, small molecules targeting protein–protein interactions (PPIs), which provide efficient methods for drug discovery, are being investigated by an increasing number of studies. However, unlike the enzyme–ligand binding mode, PPIs usually exhibit large and dynamic binding interfaces, which raise additional challenges for the discovery and optimization of small molecules and for the biochemical techniques used to screen compounds and study structure–activity relationships (SARs). Currently, multiple types of PPIs have been clustered into different classes, which make it difficult to design stationary methods for small molecules. Deficient experimental methods are plaguing medicinal chemists and are becoming a major challenge in the discovery of PPI inhibitors. In this review, we present current methods that are specifically used in the discovery and identification of small molecules that target oxidative stress-related PPIs, including proximity-based, affinity-based, competition-based, structure-guided, and function-based methods. Our aim is to introduce feasible methods and their characteristics that are implemented in the discovery of small molecules for different types of PPIs. For each of these methods, we highlight successful examples of PPI inhibitors associated with oxidative stress to illustrate the strategies and provide insights for further design.
Collapse
Affiliation(s)
- Xuexuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuqi Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; (X.W.); (Q.Z.); (Y.G.); (H.Z.)
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (X.G.); (Q.Y.); (L.W.); Tel.: +86-025-83271351 (Q.Y.); +86-15261483858 (L.W.)
| |
Collapse
|
3
|
Zhou M, Li Q, Wang R. Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem 2016; 11:738-56. [PMID: 26864455 PMCID: PMC7162211 DOI: 10.1002/cmdc.201500495] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Qing Li
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China
| | - Renxiao Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Macau, 999078, People's Republic of China.
| |
Collapse
|
4
|
Goyal A, Belardinelli R, Maracci C, Milón P, Rodnina MV. Directional transition from initiation to elongation in bacterial translation. Nucleic Acids Res 2015; 43:10700-12. [PMID: 26338773 PMCID: PMC4678851 DOI: 10.1093/nar/gkv869] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Caban K, Gonzalez RL. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation. Biochimie 2015; 114:30-8. [PMID: 25882682 DOI: 10.1016/j.biochi.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
Decades of genetic, biochemical, biophysical, and structural studies suggest that the conformational dynamics of the translation machinery (TM), of which the ribosome is the central component, play a fundamental role in the mechanism and regulation of translation. More recently, single-molecule fluorescence resonance energy transfer (smFRET) studies have provided a unique and powerful approach for directly monitoring the real-time dynamics of the TM. Indeed, smFRET studies of the elongation stage of translation have significantly enriched our understanding of the mechanisms through which stochastic, thermally driven conformational fluctuations of the TM are exploited to drive and regulate the individual steps of translation elongation [1]. Beyond translation elongation, smFRET studies of the conformational dynamics of the initiation stage of translation offer great potential for providing mechanistic information that has thus far remained difficult or impossible to obtain using traditional methods. This is particularly true of the mechanisms through which the accuracy of initiator tRNA- and start codon selection is established during translation initiation. Given that translation initiation is a major checkpoint for regulating the translation of mRNAs, obtaining such mechanistic information holds great promise for our understanding of the translational regulation of gene expression. Here, we provide an overview of the bacterial translation initiation pathway, summarize what is known regarding the biochemical functions of the IFs, and discuss various new and exciting mechanistic insights that have emerged from several recently published smFRET studies of the mechanisms that guide initiator tRNA- and start codon selection during translation initiation. These studies provide a springboard for future investigations of the conformational dynamics of the more complex eukaryotic translation initiation pathway and mechanistic studies of the role of translational regulation of gene expression in human health and disease.
Collapse
Affiliation(s)
- Kelvin Caban
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
6
|
Wang J, Caban K, Gonzalez RL. Ribosomal initiation complex-driven changes in the stability and dynamics of initiation factor 2 regulate the fidelity of translation initiation. J Mol Biol 2015; 427:1819-34. [PMID: 25596426 DOI: 10.1016/j.jmb.2014.12.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/23/2022]
Abstract
Joining of the large, 50S, ribosomal subunit to the small, 30S, ribosomal subunit initiation complex (IC) during bacterial translation initiation is catalyzed by the initiation factor (IF) IF2. Because the rate of subunit joining is coupled to the IF, transfer RNA (tRNA), and mRNA codon compositions of the 30S IC, the subunit joining reaction functions as a kinetic checkpoint that regulates the fidelity of translation initiation. Recent structural studies suggest that the conformational dynamics of the IF2·tRNA sub-complex forming on the intersubunit surface of the 30S IC may play a significant role in the mechanisms that couple the rate of subunit joining to the IF, tRNA, and codon compositions of the 30S IC. To test this hypothesis, we have developed a single-molecule fluorescence resonance energy transfer signal between IF2 and tRNA that has enabled us to monitor the conformational dynamics of the IF2·tRNA sub-complex across a series of 30S ICs. Our results demonstrate that 30S ICs undergoing rapid subunit joining display a high affinity for IF2 and an IF2·tRNA sub-complex that primarily samples a single conformation. In contrast, 30S ICs that undergo slower subunit joining exhibit a decreased affinity for IF2 and/or a change in the conformational dynamics of the IF2·tRNA sub-complex. These results strongly suggest that 30S IC-driven changes in the stability of IF2 and the conformational dynamics of the IF2·tRNA sub-complex regulate the efficiency and fidelity of subunit joining during translation initiation.
Collapse
Affiliation(s)
- Jiangning Wang
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Kelvin Caban
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, MC3126, New York, NY 10027, USA.
| |
Collapse
|
7
|
Milón P, Maracci C, Filonava L, Gualerzi CO, Rodnina MV. Real-time assembly landscape of bacterial 30S translation initiation complex. Nat Struct Mol Biol 2012; 19:609-15. [PMID: 22562136 DOI: 10.1038/nsmb.2285] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/21/2012] [Indexed: 11/09/2022]
Abstract
Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S-IF2-IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNA(fMet) is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.
Collapse
Affiliation(s)
- Pohl Milón
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Cheng CI, Chang YP, Chu YH. Biomolecular interactions and tools for their recognition: focus on the quartz crystal microbalance and its diverse surface chemistries and applications. Chem Soc Rev 2012; 41:1947-71. [DOI: 10.1039/c1cs15168a] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Qin D, Fredrick K. Control of translation initiation involves a factor-induced rearrangement of helix 44 of 16S ribosomal RNA. Mol Microbiol 2009; 71:1239-49. [PMID: 19154330 DOI: 10.1111/j.1365-2958.2009.06598.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Initiation of translation involves recognition of the start codon by the initiator tRNA in the 30S subunit. To investigate the role of ribosomal RNA (rRNA) in this process, we isolated a number of 16S rRNA mutations that increase translation from the non-canonical start codon AUC. These mutations cluster to distinct regions that overlap remarkably well with previously identified class III protection sites and implicate both IF1 and IF3 in start codon selection. Two mutations map to the 790 loop and presumably act by inhibiting IF3 binding. Another cluster of mutations surrounds the conserved A1413(o)G1487 base pair of helix 44 in a region known to be distorted by IF1 and IF3. Site-directed mutagenesis in this region confirmed that this factor-induced rearrangement of helix 44 helps regulate initiation fidelity. A third cluster of mutations maps to the neck of the 30S subunit, suggesting that the dynamics of the head domain influences translation initiation. In addition to identifying mutations that decrease fidelity, we found that many P-site mutations increase the stringency of start codon selection. These data provide evidence that the interaction between the initiator tRNA and the 30S P site is tuned to balance efficiency and accuracy during initiation.
Collapse
Affiliation(s)
- Daoming Qin
- Ohio State Biochemistry Program, The OhioState University, OH 43210, USA
| | | |
Collapse
|
10
|
Kapralou S, Fabbretti A, Garulli C, Spurio R, Gualerzi CO, Dahlberg AE, Pon CL. Translation initiation factor IF1 of Bacillus stearothermophilus and Thermus thermophilus substitute for Escherichia coli IF1 in vivo and in vitro without a direct IF1-IF2 interaction. Mol Microbiol 2008; 70:1368-77. [PMID: 18976282 DOI: 10.1111/j.1365-2958.2008.06466.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial translation initiation factor IF1 is homologous to archaeal aIF1A and eukaryal eIF1A, which form a complex with their homologous IF2-like factors (aIF5B and eIF5B respectively) during initiation of protein synthesis. A similar IF1-IF2 interaction is assumed to occur in all bacteria and supported by cross-linking data and stabilization of the 30S-IF2 interaction by IF1. Here we compare Escherichia coli IF1 with thermophilic factors from Bacillus stearothermophilus and Thermus thermophilus. All three IF1s are structurally similar and functionally interchangeable in vivo and in vitro. However, the thermophilic factors do not stimulate ribosomal binding of IF2DeltaN, regardless of 30S subunits and IF2 origin. We conclude that an IF1-IF2 interaction is not universally conserved and is not essential for cell survival.
Collapse
Affiliation(s)
- Stavroula Kapralou
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Haque ME, Grasso D, Spremulli LL. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Nucleic Acids Res 2007; 36:589-97. [PMID: 18056078 PMCID: PMC2241858 DOI: 10.1093/nar/gkm1072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ∼30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.12−0.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290, USA
| | | | | |
Collapse
|
12
|
Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS. The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J Mol Biol 2007; 373:551-61. [PMID: 17868695 PMCID: PMC2083563 DOI: 10.1016/j.jmb.2007.07.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
IF3 has a fidelity function in the initiation of translation, inducing the dissociation of fMet-tRNA(fMet) from the 30 S initiation complexes (30SIC) containing a non-canonical initiation triplet (e.g. AUU) in place of a canonical initiation triplet (e.g., AUG). IF2 has a complementary role, selectively promoting initiator tRNA binding to the ribosome. Here, we used parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in intensities of fluorophore-labeled IF2 and fMet-tRNA(fMet) to determine the effects on both 30SIC formation and 30SIC conversion to 70 S initiation complexes (70SIC) of (a) substituting AUG with AUU, and/or (b) omitting IF3, and/or (c) replacing GTP with the non-hydrolyzable analog GDPCP. We demonstrate that the presence or absence of IF3 has, at most, minor effects on the rate of 30SIC formation using either AUG or AUU as the initiation codon, and conclude that the high affinity of IF2 for both 30 S subunit and initiator tRNA overrides any perturbation of the codon-anticodon interaction resulting from AUU for AUG substitution. In contrast, replacement of AUG by AUU leads to a dramatic reduction in the rate of 70SIC formation from 30SIC upon addition of 50 S subunits. Interpreting our results in the framework of a quantitative kinetic scheme leads to the conclusion that, within the overall process of 70SIC formation, the step most affected by substituting AUU for AUG involves the conversion of an initially labile 70 S ribosome into a more stable complex. In the absence of IF3, the difference between AUG and AUU largely disappears, with each initiation codon affording rapid 70SIC formation, leading to the hypothesis that it is the rate of IF3 dissociation from the 70 S ribosome during IC70S formation that is critical to its fidelity function.
Collapse
Affiliation(s)
- Christina Grigoriadou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Marzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Dongli Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author:
| |
Collapse
|
13
|
Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M, Schluenzen F, Hanawa-Suetsugu K, Shirouzu M, Fucini P, Yokoyama S. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 2007; 15:289-97. [PMID: 17355865 DOI: 10.1016/j.str.2006.12.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/22/2006] [Accepted: 12/27/2006] [Indexed: 11/21/2022]
Abstract
In the initiation phase of bacterial translation, the 30S ribosomal subunit captures mRNA in preparation for binding with initiator tRNA. The purine-rich Shine-Dalgarno (SD) sequence, in the 5' untranslated region of the mRNA, anchors the 30S subunit near the start codon, via base pairing with an anti-SD (aSD) sequence at the 3' terminus of 16S rRNA. Here, we present the 3.3 A crystal structure of the Thermus thermophilus 30S subunit bound with an mRNA mimic. The duplex formed by the SD and aSD sequences is snugly docked in a "chamber" between the head and platform domains, demonstrating how the 30S subunit captures and stabilizes the otherwise labile SD helix. This location of the SD helix is suitable for the placement of the start codon AUG in the immediate vicinity of the mRNA channel, in agreement with reported crosslinks between the second position of the start codon and G1530 of 16S rRNA.
Collapse
Affiliation(s)
- Tatsuya Kaminishi
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Allen GS, Frank J. Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Mol Microbiol 2006; 63:941-50. [PMID: 17238926 DOI: 10.1111/j.1365-2958.2006.05574.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All living organisms utilize ribosomes to translate messenger RNA into proteins. Initiation of translation, the process of bringing together mRNA, initiator transfer RNA, and the ribosome, is therefore of critical importance to all living things. Two protein factors, IF1 (a/eIF1A) and IF2 (a/eIF5B), are conserved among all three kingdoms of life and have been called universal initiation factors (Roll-Mecak et al., 2001). Recent X-ray, NMR and cryo-EM structures of the universal factors, alone and in complex with eubacterial ribosomes, point to the structural homology among the initiation factors and initiation complexes. Taken together with genomic and functional evidence, the structural studies allow us to predict some features of eukaryotic and archaeal initiation complexes. Although initiation of translation in eukaryotes and archaea requires more initiation factors than in eubacteria we propose the existence of a common denominator initiation complex with structural and functional homology across all kingdoms of life.
Collapse
Affiliation(s)
- Gregory S Allen
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, NY 12201, USA
| | | |
Collapse
|
15
|
Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J Mol Biol 2006; 362:787-99. [PMID: 16935296 DOI: 10.1016/j.jmb.2006.07.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
16
|
Guerrero L, Smart OS, Weston CJ, Burns DC, Woolley GA, Allemann RK. Photochemical Regulation of DNA-Binding Specificity of MyoD. Angew Chem Int Ed Engl 2005; 44:7778-82. [PMID: 16278913 DOI: 10.1002/anie.200502666] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Guerrero L, Smart OS, Weston CJ, Burns DC, Woolley GA, Allemann RK. Photochemical Regulation of DNA-Binding Specificity of MyoD. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200502666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Guerrero L, Smart OS, Woolley GA, Allemann RK. Photocontrol of DNA Binding Specificity of a Miniature Engrailed Homeodomain. J Am Chem Soc 2005; 127:15624-9. [PMID: 16262429 DOI: 10.1021/ja0550428] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control of DNA binding of HDH-3, a 18-residue polypeptide based on the recognition helix of the Q50K engrailed homeodomain, has been achieved. HDH-3 was linked to an azobenzene cross-linker through two cysteine residues in an i, i + 11 spacing. For the thermodynamically stable trans configuration of the cross-linker, the dark-adapted peptide (dad-HDH-3) adopted a mainly alpha-helical structure as judged by circular dichroism (CD) spectroscopy. After irradiation with light of 360 nm, the helical content of the peptide (irrad-HDH-3) was reduced significantly and the CD spectrum of the irradiated peptide resembled that of the largely unstructured, unalkylated peptide. Despite lacking helices-1 and -2 and the N-terminal arm of Q50K engrailed, dad-HDH-3 bound to its natural DNA target sequence TAATCC (QRE) with high affinity (K(D) = 7.5 +/- 1.3 nM). The binding affinity for the mutant DNA sequence, TAATTA (ERE), was reduced significantly (K(D) = 140 +/- 11 nM). Unlike irrad-HDH-3, which like the unalkylated parent peptide displayed only marginal DNA binding specificity, dad-HDH-3 specified base pairs 5 and 6 of QRE with an accuracy rivaling that of the intact wild-type Q50K engrailed homeodomain, making dad-HDH-3 the most specific designed DNA binding miniature homeodomain reported to date. Moreover, DNA binding affinity and specificity of HDH-3 could be controlled externally by irradiation with light.
Collapse
Affiliation(s)
- Lucia Guerrero
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, U.K
| | | | | | | |
Collapse
|
19
|
Arnold S, Siemann-Herzberg M, Schmid J, Reuss M. Model-based inference of gene expression dynamics from sequence information. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:89-179. [PMID: 16270657 DOI: 10.1007/b136414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dynamic model of prokaryotic gene expression is developed that makes considerable use of gene sequence information. The main contribution arises from the fact that the combined gene expression model allows us to access the impact of altering a nucleotide sequence on the dynamics of gene expression rates mechanistically. The high level of detail of the mathematical model is considered as an important step towards bringing together the tremendous amount of biological in-depth knowledge that has been accumulated at the molecular level, using a systems level analysis (in the sense of a bottom-up, inductive approach). This enables to the model to provide highly detailed insights into the various steps of the protein expression process and it allows us to access possible targets for model-based design. Taken as a whole, the mathematical gene expression model presented in this study provides a comprehensive framework for a thorough analysis of sequence-related effects on the stages of mRNA synthesis, mRNA degradation and ribosomal translation, as well as their nonlinear interconnectedness. Therefore, it may be useful in the rational design of recombinant bacterial protein synthesis systems, the modulation of enzyme activities in pathway design, in vitro protein biosynthesis, and RNA-based vaccination.
Collapse
Affiliation(s)
- Sabine Arnold
- Biotechnology R&D, DSM Nutritional Products Ltd., Bldg. 203/113A, 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli. Cell 2005; 121:703-12. [PMID: 15935757 DOI: 10.1016/j.cell.2005.03.023] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/14/2005] [Accepted: 03/22/2005] [Indexed: 11/22/2022]
Abstract
The 70S ribosome and its complement of factors required for initiation of translation in E. coli were purified separately and reassembled in vitro with GDPNP, producing a stable initiation complex (IC) stalled after 70S assembly. We have obtained a cryo-EM reconstruction of the IC showing IF2*GDPNP at the intersubunit cleft of the 70S ribosome. IF2*GDPNP contacts the 30S and 50S subunits as well as fMet-tRNA(fMet). IF2 here adopts a conformation radically different from that seen in the recent crystal structure of IF2. The C-terminal domain of IF2 binds to the single-stranded portion of fMet-tRNA(fMet), thereby forcing the tRNA into a novel orientation at the P site. The GTP binding domain of IF2 binds to the GTPase-associated center of the 50S subunit in a manner similar to EF-G and EF-Tu. Additionally, we present evidence for the localization of IF1, IF3, one C-terminal domain of L7/L12, and the N-terminal domain of IF2 in the initiation complex.
Collapse
Affiliation(s)
- Gregory S Allen
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
21
|
Spencer AC, Spremulli LL. The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:69-81. [PMID: 15935986 DOI: 10.1016/j.bbapap.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.
Collapse
Affiliation(s)
- Angela C Spencer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
22
|
Turner EC, Cureton CH, Weston CJ, Smart OS, Allemann RK. Controlling the DNA Binding Specificity of bHLH Proteins through Intramolecular Interactions. ACTA ACUST UNITED AC 2004; 11:69-77. [PMID: 15112996 DOI: 10.1016/j.chembiol.2003.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/28/2003] [Accepted: 10/28/2003] [Indexed: 11/20/2022]
Abstract
Reversible control of the conformation of proteins was employed to probe the relationship between flexibility and specificity of the basic helix-loop-helix protein MyoD. A fusion protein (apaMyoD) was designed where the basic DNA binding helix of MyoD was stablized by an amino-terminal extension with a sequence derived from the bee venom peptide apamin. The disulfide-stabilized helix from apamin served as a nucleus for a helix that extended for a further ten residues, thereby holding apaMyoD's DNA recognition helix in a predominantly alpha-helical conformation. The thermal stability of the DNA complexes of apaMyoD was increased by 13 degrees C relative to MyoD-bHLH. Measurements of the fluorescence anisotropy change on DNA binding indicated that apaMyoD bound to E-box-containing DNA sequences with enhanced affinity relative to MyoD-bHLH. Consequently, the DNA binding specificity of apaMyoD was increased 10-fold.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Maag D, Lorsch JR. Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J Mol Biol 2003; 330:917-24. [PMID: 12860115 DOI: 10.1016/s0022-2836(03)00665-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have used expressed protein ligation to site-specifically label eukaryotic translation initiation factors (eIFs) 1 and 1A at their C termini with tetramethyl rhodamine. These fluorescent proteins were used in steady-state anisotropy-based binding experiments to measure the dissociation constants of the factors and the yeast small (40S) ribosomal subunit for the first time. These studies demonstrate that both eIF1 and eIF1A are capable of binding to the 40S subunit in the absence of any other initiation factors or mRNA, arguing against previous suggestions that eIF3 is required for recruitment of eIF1 to the small ribosomal subunit. Strikingly, the data also demonstrate that there is approximately ninefold thermodynamic coupling in the binding of the two factors to the 40S subunit. This indicates that eIF1 and eIF1A communicate with one another when bound to the 40S subunit. Communication between these two factors is likely to be important for coordinating their functions during the initiation process. The data presented here provide a foundation on which to build a quantitative understanding of the network of interactions between these essential factors and the rest of the initiation machinery.
Collapse
Affiliation(s)
- David Maag
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
24
|
|
25
|
Hua Y, Raleigh DP. On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. J Mol Biol 1998; 278:871-8. [PMID: 9614948 DOI: 10.1006/jmbi.1998.1736] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Initiation factor IF3 is a protein involved in the initiation stage of protein synthesis. It consists of two global domains linked by a 20 residue long, solvent-exposed linker. Recently, the structure of the N and C-terminal domains of the Bacillus stearothermophilus protein have been solved by X-ray crystallography and the structure of the intact Escherichia coli protein has been studied by NMR. These two studies have led to apparently contradictory models for the domain organization of IF3. The NMR study of the E. coli protein indicates that the linker region is flexible, while the studies of the isolated N and C-terminal domains of the B. stearothermophilus protein suggest that the linker forms a rigid helical rod. In order to resolve this discrepancy, a set of peptides corresponding to the linker regions of the B. stearothermophilus and the E. coli protein were synthesized. Circular dichroism and NMR spectroscopy were used to study the helical content as a function of pH, temperature, peptide concentration and ionic strength. Both peptides are monomeric. The estimated helical content of the linker fragment from B. stearothermophilus is 68% at high pH and 1 degree C. The measured helicity decreases to 53% at pH 7.0 and 1 degree C. In contrast, the peptide corresponding to the E. coli IF3 linker region is largely unstructured with a maximum helical content of 15% at high pH and only 8% at pH 7.0, 1 degree C. These results suggest that the different structures observed for the two intact proteins may be due to the different intrinsic stability of the two linker peptides. The helical content of the two linker peptides is, however, much closer when the peptides are compared at the respective temperatures of optimum growth for E. coli and B. stearothermophilus (3% versus 17%). The pH and ionic strength dependence of the helical content of the B. stearothermophilus peptide demonstrates that side-chain/side-chain interactions play an important role in stabilizing the helical structure. In addition, studies with mutant peptides show that the first Asp residue in the linker sequence helps to stabilize the helix via an N- capping interaction.
Collapse
Affiliation(s)
- Y Hua
- Department of Chemistry, State University of New York at Stony Brook 11794-3400, USA
| | | |
Collapse
|
26
|
Guillon JM, Heiss S, Soutourina J, Mechulam Y, Laalami S, Grunberg-Manago M, Blanquet S. Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J Biol Chem 1996; 271:22321-5. [PMID: 8798391 DOI: 10.1074/jbc.271.37.22321] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
According to their role in translation, tRNAs specifically interact either with elongation factor Tu (EFTu) or with initiation factor 2 (IF2). We here describe the effects of overproducing EFTu and IF2 on the elongator versus initiator activities of various mutant tRNAMet species in vivo. The data obtained indicate that the selection of a tRNA through one or the other pathway of translation depends on the relative amounts of the translational factors. A moderate overexpression of EFTu is enough to lead to a misappropriation of initiator tRNA in the elongation process, whereas overproduced IF2 allows the initiation of translation to occur with unformylated tRNA species. In addition, we report that a strain devoid of formylase activity can be cured by the overproduction of tRNAMetf. The present study brings additional evidence for the importance of formylation in defining tRNAMetf initiator identity, as well as a possible explanation for the residual growth of bacterial strains lacking a functional formylase gene such as observed in Guillon, J. M., Mechulam, Y., Schmitter, J.-M., Blanquet, S., and Fayat, G. (1992) J. Bacteriol. 174, 4294-4301.
Collapse
Affiliation(s)
- J M Guillon
- Laboratoire de Biochimie, URA CNRS 1970, Ecole Polytechnique, F91128 Palaiseau cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
28
|
Schmitt E, Guillon JM, Meinnel T, Mechulam Y, Dardel F, Blanquet S. Molecular recognition governing the initiation of translation in Escherichia coli. A review. Biochimie 1996; 78:543-54. [PMID: 8955898 DOI: 10.1016/s0300-9084(96)80001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selection of the proper start codon for the synthesis of a polypeptide by the Escherichia coli translation initiation apparatus involves several macromolecular components. These macromolecules interact in a specific and concerted manner to yield the translation initiation complex. This review focuses on recent data concerning the properties of the initiator tRNA and of enzymes and factors involved in the translation initiation process. The three initiation factors, as well as methionyl-tRNA synthetase and methionyl-tRNA(f)Met formyltransferase are described. In addition, the tRNA recognition properties of EF-Tu and peptidyl-tRNA hydrolase are considered. Finally, peptide deformylase and methionine aminopeptidase, which catalyze the amino terminal maturation of nascent polypeptides, can also be associated to the translation initiation process.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, URA-CNRS no 1970, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques.
Collapse
Affiliation(s)
- E M Phizicky
- Department of Biochemistry, University of Rochester Medical School, New York 14642
| | | |
Collapse
|
30
|
Heyduk T, Lee JC, Ebright YW, Blatter EE, Zhou Y, Ebright RH. CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 1993; 364:548-9. [PMID: 8393148 DOI: 10.1038/364548a0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein-protein interactions between transcription activator proteins and RNA polymerase or basal transcription factors have been suggested to be important for transcription activation. Interactions between catabolite gene activator protein (CAP) and RNA polymerase have been proposed based on face-of-helix-dependent transcription activation by CAP and based on face-of-helix-dependent cooperative binding of CAP and RNA polymerase to promoter DNA. Mutants of CAP specifically defective in transcription activation have been isolated (mutants defective in transcription activation, but not defective in DNA binding and DNA bending). All such mutants contain amino-acid substitutions within a surface loop consisting of amino acids 152 to 166 of CAP. Here we use the thermodynamically rigorous technique of fluorescence polarization to show that CAP interacts with RNA polymerase in solution in the absence of promoter DNA (KD,app = 2.8 x 10(-7) M), whereas [Ala158]CAP, a mutant of CAP specifically defective in transcription activation, does not.
Collapse
Affiliation(s)
- T Heyduk
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | | | | | | | | | |
Collapse
|
31
|
Gualerzi C, Severini M, Spurio R, La Teana A, Pon C. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55305-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Wakao H, Romby P, Ebel JP, Grunberg-Manago M, Ehresmann C, Ehresmann B. Topography of the Escherichia coli ribosomal 30S subunit-initiation factor 2 complex. Biochimie 1991; 73:991-1000. [PMID: 1720674 DOI: 10.1016/0300-9084(91)90140-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The specific effect of the binding of initiation factor IF2 on E coli 16S rRNA within the [IF2/30S/GTP] complex has been probed by crosslinking experiment with trans-diamminedichloro platinum (II) and by phosphate alkylation with ethylnitrosourea. Several 16S rRNA fragments crosslinked to IF2 have been identified and are mostly located in the head and the lateral protrusion of the 30S subunit. The study of the effect of IF2 binding to the 30S subunit reveals that the factor does not tightly bind to the 16S rRNA and induces both isolated reductions and enhancements of phosphate reactivity in the 16S rRNA. Several of them are located near the binding site of IF2 and weak effects are observed in distant parts of the subunit. These results are discussed in the light of current knowledge of the topographical localization of IF2 with the 30S subunit and of its relation with function.
Collapse
Affiliation(s)
- H Wakao
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
33
|
Romby P, Wakao H, Westhof E, Grunberg-Manago M, Ehresmann B, Ehresmann C, Ebel JP. The conformation of the initiator tRNA and of the 16S rRNA from Escherichia coli during the formation of the 30S initiation complex. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:84-92. [PMID: 2207173 DOI: 10.1016/0167-4781(90)90146-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The conformation of the E. coli initiator tRNA and of the 16S rRNA at different steps leading to the 30S.IF2.fMet-ARN(fMet).AUG.GTP complex has been investigated using several structure-specific probes. As compared to elongator tRNA, the initiator tRNA exhibits specific structural features in the anticodon arm, the T and D loops and the acceptor arm. Initiation factor 2 (IF2) interacts with the T-loop and the minor groove of the T stem of the RNA, and induces an increased flexibility in the anticodon arm. In the 30S initiation complex, additional protection is observed in the acceptor stem and in the anticodon arm of the tRNA. Within the 30S subunit, IF2 does not significantly shield defined portions of 16S rRNA, but induces both reduction and enhancement of reactivity scattered in the entire molecule. Most are constrained in a region corresponding to the cleft, the lateral protrusion and the part of the head facing the protrusion. All the reactivity changes induced by the binding of IF2 are still observed in the presence of the initiator tRNA and AUG message. The additional changes induced by the tRNA are mostly centered around the cleft-head-lateral protrusion region, near positions affected by IF2 binding.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Peptide Initiation Factors/metabolism
- Prokaryotic Initiation Factor-2
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- P Romby
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Choquet CG, Kushner DJ. Use of natural mRNAs in the cell-free protein-synthesizing systems of the moderate halophile Vibrio costicola. J Bacteriol 1990; 172:3462-8. [PMID: 1971624 PMCID: PMC209158 DOI: 10.1128/jb.172.6.3462-3468.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro protein synthesis was studied in extracts of the moderate halophile Vibrio costicola by using as mRNAs the endogenous mRNA of V. costicola and the RNA of the R17 bacteriophage of Escherichia coli. Protein synthesis (amino acid incorporation) was dependent on the messenger, ribosomes, soluble cytoplasmic factors, energy source, and tRNA(FMet) (in the R17 RNA system) and was inhibited by certain antibiotics. These properties indicated de novo protein synthesis. In the V. costicola system directed by R17 RNA, a protein of the same electrophoretic mobility as the major coat protein of the R17 phage was synthesized. Antibiotic action and the response to added tRNA(FMet) showed that protein synthesis in the R17 RNA system, but not in the endogenous messenger system, absolutely depended on initiation. Optimal activity of both systems was observed in 250 to 300 mM NH4+ (as glutamate). Higher salt concentrations, especially those with Cl- as anion, were generally inhibitory. The R17 RNA-directed system was more sensitive to Cl- ions than the endogenous system was. Glycine betaine stimulated both systems and partly overcame the toxic effects of Cl- ions. Both systems required Mg2+, but in lower concentrations than the polyuridylic acid-directed system previously studied. Initiation factors were removed from ribosomes by washing with 3.0 to 3.5 M NH4Cl, concentrations about three times as high as that needed to remove initiation factors from E. coli ribosomes. Washing with 4.0 M NH4Cl damaged V. costicola ribosomes, although the initiation factors still functioned. Cl- ions inhibited the attachment of initiation factors to tRNA(FMet) but had little effect on binding of initiation factors to R17 RNA.
Collapse
Affiliation(s)
- C G Choquet
- Department of Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
35
|
Pon CL, Paci M, Pawlik RT, Gualerzi CO. Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39437-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|