1
|
Kobayashi S, Kaji A, Kaji H. A novel function for eukaryotic elongation factor 3: Inhibition of stop codon readthrough in yeast. Arch Biochem Biophys 2023; 740:109580. [PMID: 36948349 DOI: 10.1016/j.abb.2023.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Eukaryotic elongation factor 3 (eEF3) is one of the essential yeast ribosome-associated ATP-binding cassette type F (ABCF) ATPases. Previously, we found that eEF3 stimulates release of mRNA from puromycin-treated polysomes. In this study, we used a cell-free cricket paralysis virus (CrPV) internal ribosome entry site (IRES)-mediated firefly luciferase bicistronic mRNA translation system with yeast S30 extract. When eEF3 was partially removed from the crude extract, the product from the downstream ORF was increased by the readthrough of a UAA stop codon in the upstream ORF. eEF3 enhanced the release of luciferase from the polysome by eukaryotic release factor (eRF)1 and eRF3. These results suggest that eEF3 is a factor that assists eRFs in performing normal protein synthesis termination in yeast.
Collapse
Affiliation(s)
- Soushi Kobayashi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| | - Akira Kaji
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| |
Collapse
|
2
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Chen X, Pan L, Mao Z. Differential protein expression of a streptomycin-resistantStreptomyces albulusmutant in high yield production of ε-poly-l-lysine: a proteomics study. RSC Adv 2019; 9:24092-24104. [PMID: 35527895 PMCID: PMC9069503 DOI: 10.1039/c9ra03156a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/12/2019] [Indexed: 12/23/2022] Open
Abstract
ε-Poly-l-lysine (ε-PL), produced by Streptomyces albulus, is an excellent antimicrobial agent which has been extensively used in the field of food and medicine. In our previous study, we have improved ε-PL production by S. albulus M-Z18 through iterative introduction of streptomycin resistance. To decipher the overproduction mechanism of high-yielding mutant S. albulus SS-62, we conducted a comparative proteomics analysis between S. albulus SS-62 and its parent strain S. albulus M-Z18. Approximately 11.5% of the predicted S. albulus proteome was detected and 401 known or putative regulatory proteins showed statistically differential expression levels. Expression levels of proteins involved in ε-PL precursor metabolism and energy metabolism, and proteins in the pathways related to transcriptional regulation and translation were up-regulated. It was indicated that mutant SS-62 could not only strengthen the ε-PL precursor metabolism and energy metabolism but also tune the pathways related to transcriptional regulation and translation, suggesting a better intracellular metabolic environment for the synthesis of ε-PL in mutant SS-62. To confirm these bioinformatics analyses, qRT-PCR was employed to investigate the transcriptional levels of pls, frr and hrdD and their transcription levels were found to have increased more than 4-fold. Further, overexpression of pls and frr resulted in an increase in ε-PL titer and the yield of ε-PL per unit cell. This report not only represents the first comprehensive study on comparative proteomics in S. albulus, but it would also guide strain engineering to further improve ε-PL production. ε-Poly-l-lysine (ε-PL), produced by Streptomyces albulus, is an excellent antimicrobial agent which has been extensively used in the field of food and medicine.![]()
Collapse
Affiliation(s)
- Yongjuan Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Xusheng Chen
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Long Pan
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhonggui Mao
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
4
|
Qin B, Yamamoto H, Ueda T, Varshney U, Nierhaus KH. The Termination Phase in Protein Synthesis is not Obligatorily Followed by the RRF/EF-G-Dependent Recycling Phase. J Mol Biol 2016; 428:3577-87. [PMID: 27261258 DOI: 10.1016/j.jmb.2016.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 11/30/2022]
Abstract
It is general wisdom that termination of bacterial protein synthesis is obligatorily followed by recycling governed by the factors ribosomal recycling factor (RRF), EF-G, and IF3, where the ribosome dissociates into its subunits. In contrast, a recently described 70S-scanning mode of initiation holds that after termination, scanning of 70S can be triggered by fMet-tRNA to the initiation site of a downstream cistron. Here, we analyze the apparent conflict. We constructed a bicistronic mRNA coding for luciferases and showed with a highly resolved in vitro system that the expression of the second cistron did not at all depend on the presence of active RRF. An in vivo analysis cannot be performed in a straightforward way, since RRF is essential for viability and therefore, the RRF gene cannot be knocked out. However, we found an experimental window, where the RRF amount could be reduced to below 2.5%, and in this situation, the expression of the second cistron of a bicistronic luciferase mRNA was only moderately reduced. Both in vitro and in vivo results suggested that RRF-dependent recycling is not an obligatory step after termination, in agreement with the previous findings concerning 70S-scanning initiation. In this view, recycling after termination is a special case of the general RRF function, which happens whenever fMet-tRNA is not available for triggering 70S scanning.
Collapse
Affiliation(s)
- Bo Qin
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Hiroshi Yamamoto
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany.
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba Prefecture 277-8562, Japan
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Knud H Nierhaus
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany; Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
5
|
Gupta A, Mir SS, Jackson KE, Lim EE, Shah P, Sinha A, Siddiqi MI, Ralph SA, Habib S. Recycling factors for ribosome disassembly in the apicoplast and mitochondrion ofPlasmodium falciparum. Mol Microbiol 2013; 88:891-905. [DOI: 10.1111/mmi.12230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Snober S. Mir
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Katherine E. Jackson
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Erin E. Lim
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Priyanka Shah
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Ashima Sinha
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Saman Habib
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
6
|
Kurata S, Shen B, Liu JO, Takeuchi N, Kaji A, Kaji H. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res 2012; 41:264-76. [PMID: 23087377 PMCID: PMC3592416 DOI: 10.1093/nar/gks958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3’s known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.
Collapse
Affiliation(s)
- Shinya Kurata
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
7
|
Wang L, Ouyang M, Li Q, Zou M, Guo J, Ma J, Lu C, Zhang L. The Arabidopsis chloroplast ribosome recycling factor is essential for embryogenesis and chloroplast biogenesis. PLANT MOLECULAR BIOLOGY 2010; 74:47-59. [PMID: 20521084 DOI: 10.1007/s11103-010-9653-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/19/2010] [Indexed: 05/27/2023]
Abstract
To gain insight into the functions of the nuclear-encoded factors involved in chloroplast development, we characterized the high chlorophyll fluorescence and pale green mutant 108-1 (designated as hfp108-1) of Arabidopsis thaliana. Map-based cloning revealed that the mutant contains a tandem repeat of part of the sequence (including 116 nucleotides from 631 to 746 bp downstream of the ATG) of At3g63190, which encodes a chloroplast ribosome recycling factor homologue and was named AtcpRRF. The chloroplasts of hfp108-1 plants contain few internal thylakoid membranes and are severely defective in the accumulation of chloroplast-encoded proteins. In vivo labeling experiments showed a drastic decrease in the synthesis of the chloroplast-encoded proteins, which may be attributed primarily to reduced translation of the corresponding mRNA molecules. The level of the HFP108 transcript was greatly reduced in hfp108-1, so hfp108-1 showed a weak phenotype, and null alleles of HFP108 (hfp108-2) were embryonic lethal. Observations with cleared seeds in the same silique showed that homozygous hfp108-2 seeds were blocked at the heart stage and did not develop further. Thus, these results suggest that AtcpRRF is essential for embryogenesis and chloroplast biogenesis.
Collapse
Affiliation(s)
- Liyuan Wang
- Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li L, Guo J, Wen Y, Chen Z, Song Y, Li J. Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol 2010; 37:673-9. [PMID: 20352288 DOI: 10.1007/s10295-010-0710-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Ribosome recycling factor (RRF), encoded by frr gene, is involved in the release of ribosomes from the translational post-termination complex for a new round of initiation. In this study, the frr gene with either its own promoter or with ermE p was cloned into a multi-copy vector, pKC1139, and a single-site integrative vector, pSET152, respectively. The resulting plasmids were transformed into Streptomyces avermitilis wild-type strain ATCC31267, avermectin high-producing mutant strain 76-02-e, and the engineered strain GB-165 that produces only avermectin B. The results showed that overexpression of frr increased avermectin yield (by 3- to 3.7-fold in the wild-type strain) and revealed an frr gene "copy number effect"; i.e., multiple copies of frr had a greater promoting effect on avermectin production than a single copy in each of the three transformed S. avermitilis strains. Comparison of the growth and expression of the ave genes in an frr-overexpressing strain and wild-type ATCC31267 indicated that frr overexpression promoted cell growth as well as the expression of ave genes (including pathway-specific positive regulatory gene aveR for avermectin biosynthesis and ave structural genes), leading in turn to avermectin overproduction. These findings provide an effective approach for the improvement of antibiotic production in Streptomyces.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratories for Agro-Biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Kiel MC, Kaji H, Kaji A. Ribosome recycling: An essential process of protein synthesis. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 35:40-44. [PMID: 21591054 DOI: 10.1002/bmb.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A preponderance of textbooks outlines cellular protein synthesis (translation) in three basic steps: initiation, elongation, and termination. However, researchers in the field of translation accept that a vital fourth step exists; this fourth step is called ribosome recycling. Ribosome recycling occurs after the nascent polypeptide has been released during the termination step. Despite the release of the polypeptide, ribosomes remain bound to the mRNA and tRNA. It is only during the fourth step of translation that ribosomes are ultimately released from the mRNA, split into subunits, and are free to bind new mRNA, thus the term "ribosome recycling." This step is essential to the viability of cells. In bacteria, it is catalyzed by two proteins, elongation factor G and ribosome recycling factor, a near perfect structural mimic of tRNA. Eukaryotic organelles such as mitochondria and chloroplasts possess ribosome recycling factor and elongation factor G homologues, but the nature of ribosome recycling in eukaryotic cytoplasm is still under investigation. In this review, the discovery of ribosome recycling and the basic mechanisms involved are discussed so that textbook writers and teachers can include this vital step, which is just as important as the three conventional steps, in sections dealing with protein synthesis.
Collapse
Affiliation(s)
- Michael C Kiel
- Science Department, Marywood University, Scranton, Pennsylvania 18509.
| | | | | |
Collapse
|
10
|
Hosaka T, Xu J, Ochi K. Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol Microbiol 2006; 61:883-97. [PMID: 16859496 DOI: 10.1111/j.1365-2958.2006.05285.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
K88E mutation within rpsL, which encodes the S12 ribosomal protein, enhanced the protein synthetic activity of Streptomyces coelicolor during the late growth phase, resulting in overproduction of the deep blue-pigmented polyketide antibiotic actinorhodin. In vitro cross-mixing experiments using the ribosomal and S-150 fractions derived from wild-type and K88E mutant strains suggested that one or more translation factors are enriched in the mutant's S-150 fraction, while Western analysis using antibodies against various translation factors revealed ribosome recycling factor (RRF) to be one of the enriched mediators. RRF purified from overexpressing cells stimulated mRNA-directed green fluorescent protein (GFP) synthesis in an in vitro protein synthesis system. GFP synthesis rates were complemented by RRF addition into wild-type cell's S-150 fraction, eliminating the difference between wild-type and mutant S-150 fractions. The frr gene encoding RRF was found to be transcribed from two distinct start points (frrp1 and frrp2), and increased expression from frrp1 could account for the elevated level of RRF in the K88E mutant during the late growth phase. Moreover, introduction of a plasmid harbouring a high copy number of frr gene into wild-type S. coelicolor induced remarkable overproduction of antibiotic, demonstrating that the increased levels of RRF caused by the K88E mutation is responsible for an aberrant stationary-phase event: overproduction of antibiotic.
Collapse
Affiliation(s)
- Takeshi Hosaka
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
11
|
Raman B, Nandakumar MP, Muthuvijayan V, Marten MR. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol Bioeng 2005; 92:384-92. [PMID: 16180237 DOI: 10.1002/bit.20570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions.
Collapse
Affiliation(s)
- Babu Raman
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County (UMBC), ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
12
|
Hirokawa G, Inokuchi H, Kaji H, Igarashi K, Kaji A. In vivo effect of inactivation of ribosome recycling factor - fate of ribosomes after unscheduled translation downstream of open reading frame. Mol Microbiol 2005; 54:1011-21. [PMID: 15522083 DOI: 10.1111/j.1365-2958.2004.04324.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Without RRF, the ribosome is not released from mRNA at the termination codon and reinitiates translation downstream. This is called unscheduled translation. Here, we show that at the non-permissive temperature of a temperature-sensitive RRF strain, RRF is lost quickly, and some ribosomes reach the 3' end of mRNA. However, instead of accumulating at the 3' end of mRNA, ribosomes are released as monosomes. Some ribosomes are transferred to transfer-messenger RNA from the 3' end of mRNA. The monosomes thus produced are able to translate synthetic homopolymer but not natural mRNA with leader and canonical initiation signal. The pellet containing ribosomes appears to be responsible for rapid but reversible inhibition of most but not all of protein synthesis in vivo closely followed by decrease of cellular RNA and DNA synthesis.
Collapse
Affiliation(s)
- Go Hirokawa
- Department of Clinical Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|
13
|
Atarashi K, Kaji A. Inhibitory effect of heterologous ribosome recycling factor on growth of Escherichia coli. J Bacteriol 2000; 182:6154-60. [PMID: 11029437 PMCID: PMC94751 DOI: 10.1128/jb.182.21.6154-6160.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome recycling factor (RRF) of Thermotoga maritima was expressed in Escherichia coli from the cloned T. maritima RRF gene and purified. Expression of T. maritima RRF inhibited growth of the E. coli host in a dose-dependent manner, an effect counteracted by the overexpression of E. coli RRF. T. maritima RRF also inhibited the E. coli RRF reaction in vitro. Genes encoding RRFs from Streptococcus pneumoniae and Helicobacter pylori have been cloned, and they also impair growth of E. coli, although the inhibitory effect of these RRFs was less pronounced than that of T. maritima RRF. The amino acid sequence at positions 57 to 62, 74 to 78, 118 to 122, 154 to 160, and 172 to 176 in T. maritima RRF differed totally from that of E. coli RRF. This suggests that these regions are important for the inhibitory effect of heterologous RRF. We further suggest that bending and stretching of the RRF molecule at the hinge between two domains may be critical for RRF activity and therefore responsible for T. maritima RRF inhibition of the E. coli RRF reaction.
Collapse
Affiliation(s)
- K Atarashi
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
14
|
Inokuchi Y, Hirashima A, Sekine Y, Janosi L, Kaji A. Role of ribosome recycling factor (RRF) in translational coupling. EMBO J 2000; 19:3788-98. [PMID: 10899132 PMCID: PMC313962 DOI: 10.1093/emboj/19.14.3788] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteriophages/genetics
- Bacteriophages/metabolism
- Base Sequence
- Capsid/biosynthesis
- Capsid/genetics
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/virology
- Gene Expression Regulation, Viral
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Proteins/genetics
- Proteins/metabolism
- RNA Viruses/genetics
- RNA Viruses/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Ribosomal Proteins
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Analysis, Protein
- Sequence Deletion
- Substrate Specificity
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Y Inokuchi
- Department of Bioscience, Teikyo University, Utsunomiya 320-8551, Yakult Pharmaceutical Inc. Co. Tokyo, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
Rolland N, Janosi L, Block MA, Shuda M, Teyssier E, Miège C, Chéniclet C, Carde JP, Kaji A, Joyard J. Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc Natl Acad Sci U S A 1999; 96:5464-9. [PMID: 10318906 PMCID: PMC21882 DOI: 10.1073/pnas.96.10.5464] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated a protein, mature RRFHCP, from chloroplasts of spinach (Spinacia oleracea L.) that shows 46% sequence identity and 66% sequence homology with ribosome recycling factor (RRF) of Escherichia coli. RRF recycles ribosomes through disassembly of the posttermination complex. From the cDNA analysis and from the amino-terminal sequencing of the isolated protein, the mature RRFHCP was deduced to have a Mr of 21,838 with 193 aa. It lacks the 78-aa chloroplast targeting sequence encoded by the RRFHCP cDNA sequence. The RRFHCP synthesized in vitro was imported into isolated chloroplasts with simultaneous conversion to the mature RRFHCP. Transcription of the gene coding for RRFHCP was not dependent on light, yet it was limited mostly to photosynthetic tissues in which only one transcript size was detected. Mature RRFHCP exerted a bactericidal effect on E. coli carrying temperature-sensitive RRF at the permissive temperature whereas wild-type E. coli was not affected.
Collapse
Affiliation(s)
- N Rolland
- Laboratoire de Physiologie Cellulaire Végétale, Unité de Recherche Associée 576, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yun DF, Laz TM, Clements JM, Sherman F. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol Microbiol 1996; 19:1225-39. [PMID: 8730865 DOI: 10.1111/j.1365-2958.1996.tb02468.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The secondary structure and sequences influencing the expression and selection of the AUG initiator codon in the yeast Saccharomyces cerevisiae were investigated with two fused genes, which were composed of either the CYC7 or CYC1 leader regions, respectively, linked to the lacZ coding region. In addition, the strains contained the upf1-delta disruption, which stabilized mRNAs that had premature termination codons, resulting in wild-type levels. The following major conclusions were reached by measuring beta-galactosidase activities in yeast strains having integrated single copies of the fused genes with various alterations in the 89 and 38 nucleotide-long untranslated CYC7 and CYC1 leader regions, respectively. The leader region adjacent to the AUG initiator codon was dispensable, but the nucleotide preceding the AUG initiator at position -3 modified the efficiency of translation by less than twofold, exhibiting an order of preference A > G > C > U. Upstream out-of-frame AUG triplets diminished initiation at the normal site, from essentially complete inhibition to approximately 50% inhibition, depending on the position of the upstream AUG triplet and on the context (-3 position nucleotides) of the two AUG triplets. In this regard, complete inhibition occurred when the upstream and downstream AUG triplets were closer together, and when the upstream and downstream AUG triplets had, respectively, optimal and suboptimal contexts. Thus, leaky scanning occurs in yeast, similar to its occurrence in higher eukaryotes. In contrast, termination codons between two AUG triplets causes reinitiation at the downstream AUG in higher eukaryotes, but not generally in yeast. Our results and the results of others with GCN4 mRNA and its derivatives indicate that reinitiation is not a general phenomenon in yeast, and that special sequences are required.
Collapse
Affiliation(s)
- D F Yun
- Department of Biochemistry, University of Rochester, School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
17
|
Janosi L, Ricker R, Kaji A. Dual functions of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie 1996; 78:959-69. [PMID: 9150873 DOI: 10.1016/s0300-9084(97)86718-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We summarize in this communication the data supporting the two functions of ribosome recycling factor (RRF, originally called ribosome releasing factor). The first described role involves the disassembly of the termination complex which consists of mRNA, tRNA and the ribosome bound to the mRNA at the termination codon. This process is catalyzed by two factors, elongation factor G (EF-G) and RRF. RRF stimulated protein synthesis as much as eight-fold in the in vitro lysozyme synthesis system, when ribosomes were limiting. In the absence of RRF, ribosomes remain mRNA-bound at the termination codon and translate downstream codons. In the in vitro system, the site of reinitiation is the triplet codon 3' to the termination codon. RRF is an essential protein for bacterial life. Temperature sensitive (ts) RRF mutants were isolated and in vivo translational reinitiation due to inactivation of ts RRF was demonstrated using the beta-galactosidase reporter gene placed downstream from the termination codon. A second function of RRF involves preventing errors in translation. In polyphenylalanine synthesis programmed by polyuridylic acid, misincorporation of isoleucine, leucine or a mixture of amino acids was stimulated upto 17-fold when RRF was omitted from the in vitro system. RRF did not influence the large error (10-fold increase) induced by streptomycin. This means that RRF participates not only in the disassembly of the termination complex but also in peptide elongation. Extending this concept and its conventional role for releasing ribosomes from mRNA, involvement of RRF in the reinitiation in the 3A' system (a construct using S aureus protein A, a collaborative work with Dr Isaksson), in programmed frame shifting, in trans-translation with 10Sa RNA (collaborative work with Dr Muto), and in the reinitiation downstream from the ORF A of the IS 3 (insertion sequence of a transposon, collaborative work with Dr Sekine) are discussed on the basis of preliminary data to be published elsewhere. Finally, we review the known RRF sequences from various organisms including eukaryotes and discuss the possible mechanism for disassembly of the eukaryotic termination complex.
Collapse
Affiliation(s)
- L Janosi
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
18
|
Ganoza MC, Cunningham C, Green RM. A new factor from Escherichia coli affects translocation of mRNA. J Biol Chem 1995; 270:26377-81. [PMID: 7592851 DOI: 10.1074/jbc.270.44.26377] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reconstitution of protein synthesis from purified translation factors on ribosomes from Escherichia coli has revealed the requirement for a protein, W, that affects chain elongation and is essential to reconstitute the process (Ganoza, M. C., Cunningham, C., and Green, R. M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1648-1652). We report that W has no effect on initiation complex formation by 30 or 70 S ribosomes or on the association of ribosomal subunits, peptide bond synthesis, or binding Ala-tRNA, which is the second amino acid of the coat protein of the MS2 RNA virion. W has a pronounced effect on tripeptide synthesis, and is obligatory for the synthesis of the coat protein or of the hexapeptide encoded by f2am3 RNA. Extracts from a temperature-sensitive mutant of the translocase, EF-G, were purified free of the W protein and were used to score for translocation defects. W is required for binding Ser-tRNA, the third N-terminal amino acid of the MS2 or f2 RNA coat protein to ribosomes bearing fMet-Ala-tRNA, as well as for the ejection of deacyl-tRNA from ribosomes, which occurred concomitant with the binding of the Ser-tRNA. We propose that W functions by ejecting tRNAs from ribosomes in a step that precedes the movement of mRNA during translocation.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
19
|
Shimizu I, Kaji A. Identification of the promoter region of the ribosome-releasing factor cistron (frr). J Bacteriol 1991; 173:5181-7. [PMID: 1860827 PMCID: PMC208211 DOI: 10.1128/jb.173.16.5181-5187.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies of the structure and expression of the ribosome-releasing factor (RRF) cistron (frr) have suggested that an efficient promoter region is located in the RRF cistron. We report here on the nucleotide sequence and in vivo function of the RRF promoter. The transcriptional start site was determined by primer extension to be 58 bp upstream of the translational initiation codon of frr. The location of the RRF promoter region was confirmed by means of (i) deletion analysis of the 5' proximal sequences of frr fused to the chloramphenicol acetyltransferase reporter gene, (ii) analysis of RRF produced in vivo from the deletion derivatives of frr cloned into pUC19, and (iii) gel retardation analysis with Escherichia coli RNA polymerase. The -35 and -10 regions were TTacCc and TATAcT, respectively. The strength of the RRF promoter was similar to that of the lac promoter, as determined by in vivo expression of chloramphenicol acetyltransferase activity. However, the RRF promoter was not affected by the intracellular cyclic AMP level despite the presence of a cyclic AMP receptor protein binding site downstream of the RRF promoter.
Collapse
Affiliation(s)
- I Shimizu
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
20
|
Abstract
Premature termination of translation in eubacteria, like Escherichia coli, often leads to reinitiation at nearby start codons. Restarts also occur in response to termination at the end of natural coding regions, where they serve to enforce translational coupling between adjacent cistrons. Here, we present a model in which the terminated but not released ribosome reaches neighboring initiation codons by lateral diffusion along the mRNA. The model is based on the finding that introduction of an additional start codon between the termination and the reinitiation site consistently obstructs ribosomes to reach the authentic restart site. Instead, the ribosome now begins protein synthesis at this newly introduced AUG codon. This ribosomal scanning-like movement is bidirectional, has a radius of action of more than 40 nucleotides in the model system used, and activates the first encountered restart site. The ribosomal reach in the upstream direction is less than in the downstream one, probably due to dislodging by elongating ribosomes. The proposed model has parallels with the scanning mechanism postulated for eukaryotic translational initiation and reinitiation.
Collapse
Affiliation(s)
- M R Adhin
- Department of Biochemistry, Leiden University, The Netherlands
| | | |
Collapse
|
21
|
|
22
|
Ichikawa S, Ryoji M, Siegfried Z, Kaji A. Localization of the ribosome-releasing factor gene in the Escherichia coli chromosome. J Bacteriol 1989; 171:3689-95. [PMID: 2661533 PMCID: PMC210112 DOI: 10.1128/jb.171.7.3689-3695.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ribosome-releasing factor (RRF) gene was localized at a position between 2 and 6 min on the Escherichia coli chromosome by measuring the gene-dosage-dependent production of RRF in various E. coli F' merozygotes. This position was confirmed and refined by using a nucleotide probe corresponding to a 16-amino-acid sequence in RRF. It was found that the RRF gene was contained in pLC 6-32 of the Clark-Carbon Gene Bank. Restriction enzyme mapping of E. coli genomic DNA with the above probe led us to conclude that the RRF gene is situated in the 4-min region, somewhere downstream (clockwise) of the elongation factor Ts gene, tsf. A pLC 6-32-derived DNA fragment which carries the RRF gene was found to contain a partial sequence of tsf. The exact location of the translational initiation site of the RRF gene was determined to be 1.1 kilobases downstream from the translational termination site of tsf. The RRF gene is designated frr.
Collapse
Affiliation(s)
- S Ichikawa
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
23
|
Ricker RD, Kaji A. Separation of formyl-methionyl transfer RNA, methionyl transfer RNA, and transfer RNAfmet using mixed-mode high-performance liquid chromatography on C6-modified aminopropylsilyl-hypersil. Anal Biochem 1988; 175:327-33. [PMID: 2469355 DOI: 10.1016/0003-2697(88)90396-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preparative amounts of formyl-methionyl-tRNAfmet, methionyl-tRNAfmet, and tRNAfmet were separated from each other with baseline resolution in 30 min using mixed-mode HPLC on hexanoic anhydride-modified aminopropylsilyl-Hypersil 2. Pure tRNAfmet was aminoacylated with [35S]methionine in the presence or absence of a formyl donor and was immediately fractionated on the column. Two isoacceptors, tRNA1fmet and tRNA2fmet, as well as aminoacyl-tRNA synthetases were clearly separated from each other. The purified f[35S]-methionyl-tRNA was biologically active in that as much as 98% could be bound to ribosomes in response to AUGUAA in vitro. Formyl-methionine was released from this complex by the action of termination factor and greater than 92% of bound formyl-methionine was released by puromycin.
Collapse
Affiliation(s)
- R D Ricker
- University of Pennsylvania, School of Medicine, Department of Microbiology, Philadelphia 19104-6076
| | | |
Collapse
|
24
|
Affiliation(s)
- B S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
25
|
Abstract
Read-through translation of bacteriophage R17 amB2 coat cistron carrying an amber mutation at the seventh codon was studied in vitro using the crude cell extract (S30) derived from an Escherichia coli nonsuppressor strain. Despite the presence of termination factors as well as ribosome-releasing factor (RRF) which prevent the read-through translation [M. Ryoji, J. W. Karpen, and A. Kaji (1981) J. Biol. Chem. 256, 5798-5801], synthesis of coat-like protein still persists at a low level in this system. Characterization of this protein by peptide fingerprinting and amino acid sequencing was performed to reexamine the generally accepted notion that it is produced by amino acid misinsertion to the amber mutation codon. The results indicated, however, that the major population of this coat-like protein is produced as a result of reinitiation of translation from the eighth codon. Read-through by amino acid misinsertion in this system becomes predominant only when the Mg2+ concentration is higher than 16 mM.
Collapse
|
26
|
|
27
|
Otaka T, Kaji A. Inhibitory action of erythromycin on protein biosynthesis by isolated polyribosomes. Arch Biochem Biophys 1982; 214:846-9. [PMID: 7046636 DOI: 10.1016/0003-9861(82)90092-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|