1
|
Wang H, Roof M, Burgher K, Pham C, Samuels ER, He Y, Jian H, Wang T. Measuring Erosion of Biodegradable Polymers in Brimonidine Drug Delivery Implants by Quantitative Proton NMR Spectroscopy (q-HNMR). J Pharm Sci 2024:S0022-3549(24)00403-9. [PMID: 39218154 DOI: 10.1016/j.xphs.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erosion of biodegradable polymeric excipients, such as polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA), is generally characterized by microbalance for the remaining mass of PLA and/or PLGA and Gel Permeation Chromatography (GPC) for molecular weight (MW) decrease. For polymer erosion studies of intravitreal sustained release brimonidine implants, however, both microbalance and GPC present several challenges. Mass loss measurement by microbalance does not have specificity for excipient polymers and drug substances. Accuracy of the remaining mass by weighing could also be low due to sample mass loss through retrieval-drying steps, especially at later drug release (DR) time points. When measuring the decrease of polymer MW by GPC, trace amounts of polymeric degradants (oligomers and/or monomers) trapped inside the implants during DR tests may not be measurable due to sensitivity limitations of the GPC detector and column MW range. Previous efforts to measure remained PLGA weight of dexamethasone micro-implants using qNMR with external calibration have been performed, however, these measurements do not account for chemical structure changes (i.e. LA to GA ratio changes from time zero) of PLGA implants during drug release tests. Here, a qNMR method with an internal standard was developed to monitor the following changes in micro-implants during drug release tests: 1. The remaining overall PLA/PLGA mass. 2. The remaining lactic acid (LA), glycolic acid (GA) unit and PLGA's lauryl ester end group percentages. 3. The trace content of PLA/PLGA oligomers as degradants retained in the implants. Unlike microbalance analysis, qNMR has both specificity for drug substance, excipient polymer, and accuracy due to minimal implant loss during sample preparation. Compared to the overall PLA/PLGA remaining mass generally monitored in erosion studies, the percentage of remaining LA, GA, and the ester end group provide more information about the microstructure change (such as hydrophobicity) of PLA/PLGA. Additionally, the qNMR method can complement GPC methods by measuring the change of remaining PLA and PLGA oligomer concentrations in brimonidine implants, with tenfold less sample and no MW cutoff. The qNMR method can be used as a sensitive tool for both polymer excipient characterization and kinetics studies of brimonidine implant erosion.
Collapse
Affiliation(s)
- Hongpeng Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Mike Roof
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Kyle Burgher
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Chiem Pham
- Drug Product Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Eric R Samuels
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yan He
- Analytical Research and Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Huahua Jian
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Tao Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
2
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Deacon OM, Karsisiotis AI, Moreno-Chicano T, Hough MA, Macdonald C, Blumenschein TMA, Wilson MT, Moore GR, Worrall JAR. Heightened Dynamics of the Oxidized Y48H Variant of Human Cytochrome c Increases Its Peroxidatic Activity. Biochemistry 2017; 56:6111-6124. [PMID: 29083920 DOI: 10.1021/acs.biochem.7b00890] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins performing multiple biochemical functions are called "moonlighting proteins" or extreme multifunctional (EMF) proteins. Mitochondrial cytochrome c is an EMF protein that binds multiple partner proteins to act as a signaling molecule, transfers electrons in the respiratory chain, and acts as a peroxidase in apoptosis. Mutations in the cytochrome c gene lead to the disease thrombocytopenia, which is accompanied by enhanced apoptotic activity. The Y48H variant arises from one such mutation and is found in the 40-57 Ω-loop, the lowest-unfolding free energy substructure of the cytochrome c fold. A 1.36 Å resolution X-ray structure of the Y48H variant reveals minimal structural changes compared to the wild-type structure, with the axial Met80 ligand coordinated to the heme iron. Despite this, the intrinsic peroxidase activity is enhanced, implying that a pentacoordinate heme state is more prevalent in the Y48H variant, corroborated through determination of a Met80 "off rate" of >125 s-1 compared to a rate of ∼6 s-1 for the wild-type protein. Heteronuclear nuclear magnetic resonance measurements with the oxidized Y48H variant reveal heightened dynamics in the 40-57 Ω-loop and the Met80-containing 71-85 Ω-loop relative to the wild-type protein, illustrating communication between these substructures. Placed into context with the G41S cytochrome c variant, also implicated in thrombocytopenia, a dynamic picture associated with this disease relative to cytochrome c is emerging whereby increasing dynamics in substructures of the cytochrome c fold serve to facilitate an increased population of the peroxidatic pentacoordinate heme state in the following order: wild type < G41S < Y48H.
Collapse
Affiliation(s)
- Oliver M Deacon
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | | | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Michael A Hough
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Colin Macdonald
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Tharin M A Blumenschein
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michael T Wilson
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
4
|
Zoppellaro G, Harbitz E, Kaur R, Ensign AA, Bren KL, Andersson KK. Modulation of the ligand-field anisotropy in a series of ferric low-spin cytochrome c mutants derived from Pseudomonas aeruginosa cytochrome c-551 and Nitrosomonas europaea cytochrome c-552: a nuclear magnetic resonance and electron paramagnetic resonance study. J Am Chem Soc 2008; 130:15348-60. [PMID: 18947229 PMCID: PMC2664661 DOI: 10.1021/ja8033312] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes of the c type with histidine-methionine (His-Met) heme axial ligation play important roles in electron-transfer reactions and in enzymes. In this work, two series of cytochrome c mutants derived from Pseudomonas aeruginosa (Pa c-551) and from the ammonia-oxidizing bacterium Nitrosomonas europaea (Ne c-552) were engineered and overexpressed. In these proteins, point mutations were induced in a key residue (Asn64) near the Met axial ligand; these mutations have a considerable impact both on heme ligand-field strength and on the Met orientation and dynamics (fluxionality), as judged by low-temperature electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectra. Ne c-552 has a ferric low-spin (S = 1/2) EPR signal characterized by large g anisotropy with g(max) resonance at 3.34; a similar large g(max) value EPR signal is found in the mitochondrial complex III cytochrome c1. In Ne c-552, deletion of Asn64 (NeN64Delta) changes the heme ligand field from more axial to rhombic (small g anisotropy and g(max) at 3.13) and furthermore hinders the Met fluxionality present in the wild-type protein. In Pa c-551 (g(max) at 3.20), replacement of Asn64 with valine (PaN64V) induces a decrease in the axial strain (g(max) at 3.05) and changes the Met configuration. Another set of mutants prepared by insertion (ins) and/or deletion (Delta) of a valine residue adjacent to Asn64, resulting in modifications in the length of the axial Met-donating loop (NeV65Delta, NeG50N/V65Delta, PaN50G/V65ins), did not result in appreciable alterations of the originally weak (Ne c-552) or very weak (Pa c-551) axial field but had an impact on Met orientation, fluxionality, and relaxation dynamics. Comparison of the electronic fingerprints in the overexpressed proteins and their mutants reveals a linear relationship between axial strain and average paramagnetic heme methyl shifts, irrespective of Met orientation or dynamics. Thus, for these His-Met axially coordinated Fe(III), the large g(max) value EPR signal does not represent a special case as is observed for bis-His axially coordinated Fe(III) with the two His planes perpendicular to each other.
Collapse
Affiliation(s)
- Giorgio Zoppellaro
- Department of Molecular Biosciences, University of Oslo, Post Office Box 1041 Blindern, Oslo NO-0316, Norway
| | | | | | | | | | | |
Collapse
|
5
|
Williams G, Moore GR, Williams RJP. Biological Electron Transfer: The Structure, Dynamics and Reactivity of Cytochromec. COMMENT INORG CHEM 2006. [DOI: 10.1080/02603598508072253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Zhong L, Wen X, Rabinowitz TM, Russell BS, Karan EF, Bren KL. Heme axial methionine fluxionality in Hydrogenobacter thermophilus cytochrome c552. Proc Natl Acad Sci U S A 2004; 101:8637-42. [PMID: 15161973 PMCID: PMC423247 DOI: 10.1073/pnas.0402033101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heme group in paramagnetic (S = 1/2) ferricytochromes c typically displays a markedly asymmetric distribution of unpaired electron spin density among the heme pyrrole beta substituents. This asymmetry is determined by the orientations of the heme axial ligands, histidine and methionine. One exception to this is ferricytochrome c(552) from Hydrogenobacter thermophilus, which has similar amounts of unpaired electron spin density at the beta substituents on all four heme pyrroles. Here, determination of the orientation of the magnetic axes and analysis of NMR line shapes for H. thermophilus ferricytochrome c(552) is performed. These data reveal that the unusual electronic structure for this protein is a result of fluxionality of the heme axial methionine. It is proposed that the ligand undergoes inversion at the pyramidal sulfur, and the rapid interconversion between two diastereomeric forms results in the unusual heme electronic structure. Thus a fluxional process for a metal-bound amino acid side chain has now been identified.
Collapse
Affiliation(s)
- Linghao Zhong
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA
| | | | | | | | | | | |
Collapse
|
7
|
Sivakolundu SG, Mabrouk PA. Insights into the alkaline transformation of ferricytochrome c from (1)H NMR studies in 30% acetonitrile-water. Protein Sci 2001; 10:2291-300. [PMID: 11604535 PMCID: PMC2374059 DOI: 10.1110/ps.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Recently, we found that ferricytochrome c (ferricyt c) undergoes significant structural changes in mixed aqueous-nonaqueous media, resulting in the formation of a mixture of alkaline-like species. The equilibrium composition of this mixture of species is dependent on the dielectric constant of the mixed solvent medium. One-dimensional (1D) and two-dimensional (2D) (1)H nuclear magnetic resonance (NMR) methods have now been used to study these alkaline-like forms in 30% acetonitrile-water solution. A native-like (M80-ligated) III* form, two lysine-ligated forms (IVa* and IVb*), and a hydroxide-ligated form (V*) were observed. Heme proton resonance assignments for these forms were accomplished using 1D (1)H NMR and 2D nuclear Overhauser effect spectroscopy methods at 20 degrees C and 35 degrees C. The chemical exchange between the alkaline forms in 30% acetonitrile solution facilitated heme proton resonance assignments. Based on examination of the heme proton chemical shifts and several highly conserved amino acid residues, the electronic structure, secondary structure, and hydrogen bond network in the vicinity of the heme in the III* form were found to be intact. Similarly, the heme electronic structure of the IVa* form was found to be comparable to that of the IVa form. Differences in the order of the heme methyl resonances in the IVb* form, however, suggest that the heme active site in this form is somewhat different from that observed in aqueous alkaline solution. In addition, resonance assignments for the 8- and 3-methyl heme protons were made for the hydroxide-ligated V* form for the first time. The observation of chemical exchange peaks between all species except IVb* and IVa* or V* was used to propose an exchange pathway between the different forms of ferricyt c in 30% acetonitrile solution. This pathway may be biologically significant because ferricyt c, which resides in the intermembrane space of mitochondria, is exposed to medium of relatively low dielectric constant when it interacts with the mitochondrial membrane.
Collapse
Affiliation(s)
- S G Sivakolundu
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
8
|
Laberge M, Köhler M, Vanderkooi JM, Friedrich J. Sampling field heterogeneity at the heme of c-type cytochromes by spectral hole burning spectroscopy and electrostatic calculations. Biophys J 1999; 77:3293-304. [PMID: 10585951 PMCID: PMC1300600 DOI: 10.1016/s0006-3495(99)77160-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We report on a comparative investigation of the heme pocket fields of two Zn-substituted c-type cytochromes-namely yeast and horse heart cytochromes c-using a combination of hole burning Stark spectroscopy and electrostatic calculations. The spectral hole burning experiments are consistent with different pocket fields experienced at the hemes of the respective cytochromes. In the case of horse heart Zn-cytochrome c, two distinguishable electronic origins with different electrostatic properties are observed. The yeast species, on the other hand, displays a single electronic origin. Electrostatic calculations and graphics modeling using the linearized finite-difference Poisson-Boltzmann equation performed at selected time intervals on nanosecond-molecular dynamics trajectories show that the hemes of the respective cytochromes sample different potentials as they explore conformational space. The electrostatic potentials generated by the protein matrix at the heme show different patterns in both cytochromes, and we suggest that the cytochromes differ by the number of "electrostatic substates" that they can sample, thus accounting for the different spectral populations observed in the two cytochromes.
Collapse
Affiliation(s)
- M Laberge
- Institute of Biophysics, Semmelweis University of Medicine, H-1088 Budapest, Hungary
| | | | | | | |
Collapse
|
9
|
Taler G, Becker OM, Navon G, Qin W, Margoliash E, Schejter A. The source of heterogeneity in the heme vicinity of ferricytochrome c. Biophys Chem 1999; 79:193-7. [PMID: 10443012 DOI: 10.1016/s0301-4622(99)00040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heterogeneity in the heme vicinity of ferricytochrome c was reported to be detectable by a split of the NMR signal of the heme methyl 3 group [P.D. Burns and G.N. La Mar, J. Am. Chem. Soc. 101 (1979) 5844]. Using cytochrome c mutants and computer simulations of the native and mutated cytochromes, the source of this heterogeneity is found to originate from the His-33 residue motions. The H33F mutation abolished the NMR split and computer simulations of the H33F mutant revealed a narrower distribution of fluctuations of the radius of gyration, suggesting a more rigid structure due to the mutation. The stabilization of the mutant was further demonstrated by a reduction in the H33F mutant of 4 Kcal/mol in the calculated interaction energy between residue 33 and the rest of the cytochrome, in keeping with known experimental results.
Collapse
Affiliation(s)
- G Taler
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
10
|
Taler G, Schejter A, Navon G. 1H and 11B NMR evidence for specific binding of borate ion to cytochrome c. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06059-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Köhler M, Friedrich J, Laberge M, Vanderkooi J. Influence of the pH on the pocket field of cytochrome c type proteins. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00291-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yanase H, Cahill S, Martin de Llano JJ, Manning LR, Schneider K, Chait BT, Vandegriff KD, Winslow RM, Manning JM. Properties of a recombinant human hemoglobin with aspartic acid 99(beta), an important intersubunit contact site, substituted by lysine. Protein Sci 1994; 3:1213-23. [PMID: 7987216 PMCID: PMC2142911 DOI: 10.1002/pro.5560030807] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments.
Collapse
Affiliation(s)
- H Yanase
- Rockefeller University, New York, New York 10021
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Logovinsky V, Kaposi AD, Vanderkooi JM. Native and denatured Zn cytochrome c studied by fluorescence line narrowing spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1161:149-60. [PMID: 8381668 DOI: 10.1016/0167-4838(93)90208-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluorescence Line Narrowing (FLN) spectroscopy was employed to compare the environment around the porphyrin in folded and unfolded Zn-substituted cytochrome c (Zn cyt c). Parameters of the resolved spectra, including the inhomogeneous energy-distribution function, vibrational energy levels, and phonon coupling, were compared for guanidine-denatured Zn cyt c and native Zn cyt c. The spectra of denatured Zn cyt c showed increased broad background and decreased peak resolution when compared to the native protein, indicating that denaturation results in increased phonon coupling. The energy-distribution function for the unfolded protein was fitted to a single Gaussian centered at 17,230 cm-1 with a width of approx. 360 cm-1, which proved to be blue shifted and much wider than that for native Zn cyt c (approx. 65 cm-1). Vibrational frequencies of the ground-state for Zn cyt c were identified and shown to change upon denaturation. Temperature-dependence of the FLN spectra of native Zn cyt c was analyzed and found to have step-like broadening between 40 K and 50 K. Such discontinuous spectral broadening behavior suggests that a discrete conformational change occurs in the protein at these temperatures.
Collapse
Affiliation(s)
- V Logovinsky
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
14
|
Whitford D, Concar DW, Williams RJ. The promotion of self-association of horse-heart cytochrome c by hexametaphosphate anions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:561-8. [PMID: 1651237 DOI: 10.1111/j.1432-1033.1991.tb16155.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the presence of the highly charged hexametaphosphate anion, horse heart cytochrome c aggregates to form stable protein complexes. The formation of protein aggregates has been detected by high-resolution 1H-NMR spectroscopy from an increase in the linewidth of resolved ferricytochrome c resonances with hexametaphosphate concentration. Alternatively, analytical ultracentrifugation reveals protein association from the increase in apparent sedimentation coefficients of cytochrome c in the presence of equimolar hexametaphosphate. Protein aggregation is dependent on the concentration of background electrolyte since in the range 10-150 mM sodium cacodylate alternative stabilisation of dimeric and trimeric complexes was observed by both NMR and analytical ultracentrifugation. A model is proposed for the mechanism of protein aggregation caused by polyphosphate binding to the surface of cytochrome c.
Collapse
Affiliation(s)
- D Whitford
- Department of Biochemistry, University of Oxford, England
| | | | | |
Collapse
|
15
|
Moench SJ, Shi TM, Satterlee JD. Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:631-41. [PMID: 1851480 DOI: 10.1111/j.1432-1033.1991.tb15953.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ferricytochromes c from three species (horse, tuna, yeast) display sensitivity to variations in solution ionic strength or pH that is manifested in significant changes in the proton NMR spectra of these proteins. Irradiation of the heme 3-CH3 resonances in the proton NMR spectra of tuna, horse and yeast iso-1 ferricytochromes c is shown to give NOE connectivities to the phenyl ring protons of Phe82 as well as to the beta-CH2 protons of this residue. This method was used to probe selectively the Phe82 spin systems of the three cytochromes c under a variety of solution conditions. This phenylalanine residue has previously been shown to be invariant in all mitochondrial cytochromes c, located near the exposed heme edge in proximity to the heme 3-CH3, and may function as a mediator in electron transfer reactions [Louie, G. V., Pielak, G. J., Smith, M. & Brayer, G. D. (1988) Biochemistry 27, 7870-7876]. Ferricytochromes c from all three species undergo a small but specific structural rearrangement in the environment around the heme 3-CH3 group upon changing the solution conditions from low to high ionic strength. This structural change involves a decrease in the distance between the Phe82 beta-CH2 group and the heme 3-CH3 substituent. In addition, studies of the effect of pH on the 1H-NMR spectrum of yeast iso-1 ferricytochrome c show that the heme 3-CH3 proton resonance exhibits a pH-dependent shift with an apparent pK in the range of 6.0-7.0. The chemical shift change of the yeast iso-1 ferricytochrome c heme 3-CH3 resonance is not accompanied by an increase in the linewidth as previously described for horse ferricytochrome c [Burns, P. D. & La Mar, G. N. (1981) J. Biol. Chem. 256, 4934-4939]. These spectral changes are interpreted as arising from an ionization of His33 near the C-terminus. In general, the larger spectral changes observed for the resonances in the vicinity of the heme 3-CH3 group in yeast iso-1 ferricytochrome c with changes in solution conditions, relative to the tuna and horse proteins, suggest that the region around Phe82 is more open and that movement of the Phe82 residue is less constrained in yeast ferricytochrome c. Finally, it is demonstrated here that both the heme 8-CH3 and the 7 alpha-CH resonances of yeast ferricytochrome c titrate with p2H and exhibit apparent pK values of approximately 7.0. The titrating group responsible for these spectral changes is proposed to be His39.
Collapse
Affiliation(s)
- S J Moench
- Department of Chemistry, University of New Mexico, Albuquerque
| | | | | |
Collapse
|
16
|
Yu LP, Smith GM. Assignments of 15N and 1H NMR resonances and a neutral pH ionization in Rhodospirillum rubrum cytochrome c2. Biochemistry 1990; 29:2914-9. [PMID: 2159778 DOI: 10.1021/bi00464a004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phi NH proton and 15N resonances of the ligand histidine of Rhodospirillum rubrum fericytochrome c2 are found at 14.7 and 184 ppm, respectively, contradicting the proposal that this proton is absent in the R. rubrum ferricytochrome. Substitution of the deuterium atom for this proton causes small upfield shifts of the phi nitrogen in both oxidation states, indicating that the phi NH-peptide carboxyl hydrogen bond is not substantially weakened by the substitution. The proton and 15N resonances of the indolic NH group of the invariant tryptophan-62 and numerous proton resonances of the heme and extraheme ligands in the spectrum of the ferricytochrome are also assigned. An ionization in the ferrocytochrome occurring at neutral pH is assigned to the single nonligand histidine. This attribution is supported by the direct measurement of the ionization by NOE difference spectroscopy and by comparative structural arguments involving closely related cytochromes and chemically modified cytochromes.
Collapse
Affiliation(s)
- L P Yu
- Department of Food Science and Technology, University of California, Davis 95616
| | | |
Collapse
|
17
|
Yu LP, Smith GM. Characterization of pH-dependent conformational heterogeneity in Rhodospirillum rubrum cytochrome c2 using 15N and 1H NMR. Biochemistry 1990; 29:2920-5. [PMID: 2159779 DOI: 10.1021/bi00464a005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L P Yu
- Department of Food Science and Technology, University of California, Davis 95616
| | | |
Collapse
|
18
|
Behere DV, Ales DC, Goff HM. Proton and nitrogen-15 NMR studies of ferricytochrome c cyanide complexes: remarkable conservation of the heme environment among organisms of diverse origin. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 871:285-92. [PMID: 3011100 DOI: 10.1016/0167-4838(86)90210-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The native ferric and cyanide-bound ferric forms of nine vertebrate and two yeast cytochromes c have been investigated by high-resolution proton nuclear magnetic resonance spectroscopy. Spectral comparisons have been made among the cytochromes with emphasis on the signal positions for heme and amino acid ligand protons. Consistent with earlier more limited studies of native ferric cytochromes c, the paramagnetically shifted proton NMR signals show little variation among species with up to 50% substitution of amino acids. Proton NMR spectra for the cyanide complexes also show little variation among species. The nitrogen-15 signal for the coordinated cyanide ion is known to be highly variable among other hemoproteins, but the signal covers a range of only 855 to 865 ppm (nitrate ion reference) for vertebrate cytochromes c and 884 to 886 ppm for yeast cytochromes c. The cyanide ligand probe thus reports an amazing conservation of the heme and proximal ligand environment among the cytochromes. Comparative proton and nitrogen-15 chemical shift values are consistent with a slightly stronger proximal histidine imidazole hydrogen bond to an amino acid carbonyl function than is the case for hemoglobin and myoglobin.
Collapse
|
19
|
Sletten E, Jackson J, Burns PD, La Mar GN. Effects of cross relaxation on the analysis of T1 data in paramagnetic proteins. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0022-2364(83)90174-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Myer YP, Srivastava RB, Kumar S, Raghavendra K. State of heme in heme c systems: Cytochrome c and heme c models. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf01025166] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Efficient detection of paramagnetically shifted NMR resonances by optimizing the WEFT pulse sequence. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0022-2364(83)90109-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|