1
|
Liao Q, Lüking M, Krüger DM, Deindl S, Elf J, Kasson PM, Lynn Kamerlin SC. Long Time-Scale Atomistic Simulations of the Structure and Dynamics of Transcription Factor-DNA Recognition. J Phys Chem B 2019; 123:3576-3590. [PMID: 30952192 DOI: 10.1021/acs.jpcb.8b12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent years have witnessed an explosion of interest in computational studies of DNA binding proteins, including both coarse-grained and atomistic simulations of transcription factor-DNA recognition, to understand how these transcription factors recognize their binding sites on the DNA with such exquisite specificity. The present study performs microsecond time scale all-atom simulations of the dimeric form of the lactose repressor (LacI), both in the absence of any DNA and in the presence of both specific and nonspecific complexes, considering three different DNA sequences. We examine, specifically, the conformational differences between specific and nonspecific protein-DNA interactions, as well as the behavior of the helix-turn-helix motif of LacI when interacting with the DNA. Our simulations suggest that stable LacI binding occurs primarily to bent A-form DNA, with a loss of LacI conformational entropy and optimization of correlated conformational equilibria across the protein. In addition, binding to the specific operator sequence involves a slightly larger number of stabilizing DNA-protein hydrogen bonds (in comparison to nonspecific complexes), which may account for the experimentally observed specificity for this operator. In doing so, our simulations provide a detailed atomistic description of potential structural drivers for LacI selectivity.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Malin Lüking
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| | - Dennis M Krüger
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden.,Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, Bioinformatics Unit , German Center for Neurodegenerative Diseases, Göttingen , von Siebold Strasse 3A , 37075 Göttingen , Germany
| | - Sebastian Deindl
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Johan Elf
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 23 Uppsala , Sweden
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Chemistry-BMC , Uppsala University , BMC Box 576, S-751 24 Uppsala , Sweden
| |
Collapse
|
2
|
Kipper K, Eremina N, Marklund E, Tubasum S, Mao G, Lehmann LC, Elf J, Deindl S. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI. PLoS One 2018; 13:e0198416. [PMID: 29856839 PMCID: PMC5983854 DOI: 10.1371/journal.pone.0198416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/19/2018] [Indexed: 11/26/2022] Open
Abstract
The lactose operon repressor protein LacI has long served as a paradigm of the bacterial transcription factors. However, the mechanisms whereby LacI rapidly locates its cognate binding site on the bacterial chromosome are still elusive. Single-molecule fluorescence imaging approaches are well suited for the study of these mechanisms but rely on a functionally compatible fluorescence labeling of LacI. Particularly attractive for protein fluorescence labeling are synthetic fluorophores due to their small size and favorable photophysical characteristics. Synthetic fluorophores are often conjugated to natively occurring cysteine residues using maleimide chemistry. For a site-specific and functionally compatible labeling with maleimide fluorophores, the target protein often needs to be redesigned to remove unwanted native cysteines and to introduce cysteines at locations better suited for fluorophore attachment. Biochemical screens can then be employed to probe for the functional activity of the redesigned protein both before and after dye labeling. Here, we report a mutagenesis-based redesign of LacI to enable a functionally compatible labeling with maleimide fluorophores. To provide an easily accessible labeling site in LacI, we introduced a single cysteine residue at position 28 in the DNA-binding headpiece of LacI and replaced two native cysteines with alanines where derivatization with bulky substituents is known to compromise the protein’s activity. We find that the redesigned LacI retains a robust activity in vitro and in vivo, provided that the third native cysteine at position 281 is retained in LacI. In a total internal reflection microscopy assay, we observed individual Cy3-labeled LacI molecules bound to immobilized DNA harboring the cognate O1 operator sequence, indicating that the dye-labeled LacI is functionally active. We have thus been able to generate a functional fluorescently labeled LacI that can be used to unravel mechanistic details of LacI target search at the single molecule level.
Collapse
Affiliation(s)
- Kalle Kipper
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nadja Eremina
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Emil Marklund
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sumera Tubasum
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Christina Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
3
|
Xu JS, Hewitt MN, Gulati JS, Cruz MA, Zhan H, Liu S, Matthews KS. Lactose repressor hinge domain independently binds DNA. Protein Sci 2018; 27:839-847. [PMID: 29318690 PMCID: PMC5866929 DOI: 10.1002/pro.3372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/29/2022]
Abstract
The short 8-10 amino acid "hinge" sequence in lactose repressor (LacI), present in other LacI/GalR family members, links DNA and inducer-binding domains. Structural studies of full-length or truncated LacI-operator DNA complexes demonstrate insertion of the dimeric helical "hinge" structure at the center of the operator sequence. This association bends the DNA ∼40° and aligns flanking semi-symmetric DNA sites for optimal contact by the N-terminal helix-turn-helix (HtH) sequences within each dimer. In contrast, the hinge region remains unfolded when bound to nonspecific DNA sequences. To determine ability of the hinge helix alone to mediate DNA binding, we examined (i) binding of LacI variants with deletion of residues 1-50 to remove the HtH DNA binding domain or residues 1-58 to remove both HtH and hinge domains and (ii) binding of a synthetic peptide corresponding to the hinge sequence with a Val52Cys substitution that allows reversible dimer formation via a disulfide linkage. Binding affinity for DNA is orders of magnitude lower in the absence of the helix-turn-helix domain with its highly positive charge. LacI missing residues 1-50 binds to DNA with ∼4-fold greater affinity for operator than for nonspecific sequences with minimal impact of inducer presence; in contrast, LacI missing residues 1-58 exhibits no detectable affinity for DNA. In oxidized form, the dimeric hinge peptide alone binds to O1 and nonspecific DNA with similarly small difference in affinity; reduction to monomer diminished binding to both O1 and nonspecific targets. These results comport with recent reports regarding LacI hinge interaction with DNA sequences.
Collapse
Affiliation(s)
- Joseph S Xu
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | - Madeleine N Hewitt
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | - Jaskeerat S Gulati
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | - Matthew A Cruz
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | - Hongli Zhan
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | - Shirley Liu
- Department of BioSciences, MS-140, Rice University, Houston, Texas, 77251
| | | |
Collapse
|
4
|
Matthews KS, Nichols JC. Lactose repressor protein: functional properties and structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:127-64. [PMID: 9308365 DOI: 10.1016/s0079-6603(08)60035-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The lactose repressor protein (LacI), the prototype for genetic regulatory proteins, controls expression of lactose metabolic genes by binding to its cognate operator sequences in E. coli DNA. Inducer binding elicits a conformational change that diminishes affinity for operator sequences with no effect on nonspecific binding. The release of operator is followed by synthesis of mRNA encoding the enzymes for lactose utilization. Genetic, chemical and physical studies provided detailed insight into the function of this protein prior to the recent completion of X-ray crystallographic structures. The structural information can now be correlated with the phenotypic data for numerous mutants. These structures also provide the opportunity for physical and chemical studies on mutants designed to examine various aspects of lac repressor structure and function. In addition to providing insight into protein structure-function correlations, LacI has been utilized in a wide variety of applications both in prokaryotic gene expression and in eukaryotic gene regulation and studies of mutagenesis.
Collapse
Affiliation(s)
- K S Matthews
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
5
|
Khoury AM, Nick HS, Lu P. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator. J Mol Biol 1991; 219:623-34. [PMID: 1905359 DOI: 10.1016/0022-2836(91)90659-t] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.
Collapse
Affiliation(s)
- A M Khoury
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
6
|
Spodheim-Maurizot M, Culard F, Charlier M. Photochemical modifications of lac repressor--II. Tryptophan photochemistry as a probe in studying the allosteric behaviour of the protein. Photochem Photobiol 1987; 46:15-21. [PMID: 3303073 DOI: 10.1111/j.1751-1097.1987.tb04730.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Irradiation of lac repressor under aerobic conditions in the near UV region (295-400 nm) decreases the Trp fluorescence of the protein. A total loss of fluorescence corresponds to the destruction of all tryptophanyl residues. Irradiation with light of wavelength between 250 and 400 nm quenches fluorescence completely when only half of the Trp residues ae destroyed. An internal photodynamic effect, in which N-formylkynurenine, a principal photoproduct of Trp, sensitizes further the destruction of the other Trp residues, accounts for our results. Experiments performed in the presence of sodium azide suggest that singlet oxygen is not involved in the destruction of Trp, but may be responsible for histidine degradation. Irradiating the repressor complexed with non-operator E. coli DNA has the same effect on Trp residues as irradiating repressor alone. On the contrary, when repressor is complexed to lac operator, both tryptophanyl residues seem to be destroyed simultaneously. This indicates that binding of specific operator DNA at the DNA site induces changes in the environment of the tryptophanyl residues (mainly tor Trp 220) which cannot further transfer in excitation energy to the photoproduct of the other Trp. A prolonged irradiation destroys the complex, leading to the same result observed for non-specific complex or for repressor alone. These results are discussed in terms of the proximity of Trp from the inducer binding site and the allosteric behaviour of the repressor.
Collapse
|
7
|
Manly SP, Bennett GN, Matthews KS. Enzymatic digestion of operator DNA in the presence of the lac repressor tryptic core. J Mol Biol 1984; 179:335-50. [PMID: 6392563 DOI: 10.1016/0022-2836(84)90069-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The trypsin-resistant core protein of the lac repressor was utilized in protecting operator DNA from two types of enzymatic digestion. Core repressor protects and enhances operator DNA digestion by DNase I in the same fashion as intact repressor, though to a lesser degree on the lower strand. DNase I patterns found for the ternary complexes (protein-sugar-operator) were consistent with the expected affinity alterations of the protein species in response to binding these ligands. The 3' boundaries obtained by exonuclease III digestion for the intact repressor-operator complex varied slightly from those reported by Shalloway et al. (1980). Asymmetric binding to operator by the core repressor fragment was suggested by differences in the 3' boundary for the core compared to intact repressor on the promoter-distal side of the complex. A composite picture of repressor structure and function emerges from the protection studies reported here and in the accompanying paper. In light of these and other results, models for repressor binding are examined.
Collapse
|
8
|
Manly SP, Matthews KS. lac operator DNA modification in the presence of proteolytic fragments of the repressor protein. J Mol Biol 1984; 179:315-33. [PMID: 6392562 DOI: 10.1016/0022-2836(84)90068-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Singly end-labeled DNA fragments containing the lactose operator were methylated in the presence of the lactose repressor and homogeneous preparations of its proteolytic fragments. Binding of core protein produced by mild trypsin digestion yielded a methylation perturbation pattern that differed significantly from that elicited by binding to intact repressor, although similarities in the patterns for these related proteins were noted in the central, asymmetric region of the operator. An NH2-terminal peptide (residues 1 to 56) from lac repressor bound operator fragments in a nitrocellulose filter assay, but failed to perturb DNA methylation significantly relative to the pattern in the absence of peptide. Binding of hybrid tetramers of core and intact repressor monomers produced related but unique methylation patterns for the purines on the operator fragment. The general pattern of perturbation observed suggests preferred binding of a single NH2 terminus to the promoter-distal region of the operator and asymmetric interaction of the core region with the operator sequence. Differences in purine methylation patterns produced by the presence of effector complexes of repressor and core protein suggest the possible nature of changes in protein topology that result in the affinity changes accompanying induction.
Collapse
|
9
|
Durand M, Schnarr M, Maurizot JC. Binding of lac repressor headpiece to poly[d(A-T)]. A thermal denaturation study. Biochem Biophys Res Commun 1983; 110:169-75. [PMID: 6340664 DOI: 10.1016/0006-291x(83)91275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The binding of the lac repressor headpiece to poly[d(A-T)] has been investigated using thermal denaturation experiments. The binding of the headpiece leads to a stabilization of the double-stranded structure. Competition experiments using circular dichroism measurements confirm that the headpiece binds stronger on the double-stranded poly[d(A-T)] than on a single-stranded nucleic acid like poly(A). Theoretical analyses of the melting curves allow the determination of the binding constant and of the site size on the poly[d(A-T)]. This latter value is found to be 4 base pairs, in good agreement with that determined by other experimental approaches, and is much smaller than the values previously found for the lac repressor.
Collapse
|
10
|
Nick H, Arndt K, Boschelli F, Jarema MA, Lillis M, Sommer H, Lu P, Sadler J. Repressor--operator interaction in the lac operon. II. Observations at the tyrosines and tryptophans. J Mol Biol 1982; 161:417-38. [PMID: 6759662 DOI: 10.1016/0022-2836(82)90247-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Hélène C, Lancelot G. Interactions between functional groups in protein-nucleic acid associations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1982; 39:1-68. [PMID: 6175011 DOI: 10.1016/0079-6107(83)90013-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|