1
|
Nakano A, Kishikawa JI, Nakanishi A, Mitsuoka K, Yokoyama K. Structural basis of unisite catalysis of bacterial F 0F 1-ATPase. PNAS NEXUS 2022; 1:pgac116. [PMID: 36741449 PMCID: PMC9896953 DOI: 10.1093/pnasnexus/pgac116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 06/17/2023]
Abstract
Adenosine triphosphate (ATP) synthases (F0F1-ATPases) are crucial for all aerobic organisms. F1, a water-soluble domain, can catalyze both the synthesis and hydrolysis of ATP with the rotation of the central γε rotor inside a cylinder made of α 3 β 3 in three different conformations (referred to as β E, β TP, and β DP). In this study, we determined multiple cryo-electron microscopy structures of bacterial F0F1 exposed to different reaction conditions. The structures of nucleotide-depleted F0F1 indicate that the ε subunit directly forces β TP to adopt a closed form independent of the nucleotide binding to β TP. The structure of F0F1 under conditions that permit only a single catalytic β subunit per enzyme to bind ATP is referred to as unisite catalysis and reveals that ATP hydrolysis unexpectedly occurs on β TP instead of β DP, where ATP hydrolysis proceeds in the steady-state catalysis of F0F1. This indicates that the unisite catalysis of bacterial F0F1 significantly differs from the kinetics of steady-state turnover with continuous rotation of the shaft.
Collapse
Affiliation(s)
- Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|
2
|
Li Y, Ma X, Weber J. Interaction between γC87 and γR242 residues participates in energy coupling between catalysis and proton translocation in Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:679-687. [PMID: 31251901 DOI: 10.1016/j.bbabio.2019.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 11/25/2022]
Abstract
Functioning as a nanomotor, ATP synthase plays a vital role in the cellular energy metabolism. Interactions at the rotor and stator interface are critical to the energy transmission in ATP synthase. From mutational studies, we found that the γC87K mutation impairs energy coupling between proton translocation and nucleotide synthesis/hydrolysis. An additional glutamine mutation at γR242 (γR242Q) can restore efficient energy coupling to the γC87K mutant. Arrhenius plots and molecular dynamics simulations suggest that an extra hydrogen bond could form between the side chains of γC87K and βTPE381 in the γC87K mutant, thus impeding the free rotation of the rotor complex. In the enzyme with γC87K/γR242Q double mutations, the polar moiety of γR242Q side chain can form a hydrogen bond with γC87K, so that the amine group in the side chain of γC87K will not hydrogen-bond with βE381. As a conclusion, the intra-subunit interaction between positions γC87 and γR242 modulates the energy transmission in ATP synthase. This study should provide more information of residue interactions at the rotor and stator interface in order to further elucidate the energetic mechanism of ATP synthase.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA; Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Xinyou Ma
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Joachim Weber
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; The Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
4
|
Toney MD. Common enzymological experiments allow free energy profile determination. Biochemistry 2013; 52:5952-65. [PMID: 23906433 DOI: 10.1021/bi400696j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The determination of a complete set of rate constants [free energy profiles (FEPs)] for a complex kinetic mechanism is challenging. Enzymologists have devised a variety of informative steady-state kinetic experiments (e.g., Michaelis-Menten kinetics, viscosity dependence of kinetic parameters, kinetic isotope effects, etc.) that each provide distinct information regarding a particular kinetic system. A simple method for combining steady-state experiments in a single analysis is presented here, which allows microscopic rate constants and intrinsic kinetic isotope effects to be determined. It is first shown that Michaelis-Menten kinetic parameters (kcat and Km values), kinetic isotope efffets, solvent viscosity effects, and intermediate partitioning measurements are sufficient to define the rate constants for a reversible uni-uni mechanism with an intermediate, EZ, between the ES and EP complexes. Global optimization provides the framework for combining the independent experimental measurements, and the search for rate constants is performed using algorithms implemented in the biochemical software COPASI. This method is applied to the determination of FEPs for both alanine racemase and triosephosphate isomerase. The FEPs obtained from global optimization agree with those in the literature, with important exceptions. The method opens the door to routine and large-scale determination of FEPs for enzymes.
Collapse
Affiliation(s)
- Michael D Toney
- Department of Chemistry, University of California, Davis, California 95616, United States.
| |
Collapse
|
5
|
Abstract
In this article, I reflect on research on two ATPases. The first is F(1)F(0)-ATPase, also known as ATP synthase. It is the terminal enzyme in oxidative phosphorylation and famous as a nanomotor. Early work on mitochondrial enzyme involved purification in large amount, followed by deduction of subunit composition and stoichiometry and determination of molecular sizes of holoenzyme and individual subunits. Later work on Escherichia coli enzyme utilized mutagenesis and optical probes to reveal the molecular mechanism of ATP hydrolysis and detailed facets of catalysis. The second ATPase is P-glycoprotein, which confers multidrug resistance, notably to anticancer drugs, in mammalian cells. Purification of the protein in large quantity allowed detailed characterization of catalysis, formulation of an alternating sites mechanism, and recently, advances in structural characterization.
Collapse
Affiliation(s)
- Alan E Senior
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
6
|
Blum DJ, Ko YH, Pedersen PL. Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP. Biochemistry 2012; 51:1532-46. [DOI: 10.1021/bi201595v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Blum
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Young H. Ko
- Cancer Cure Med, LLC, 300 Redland Court, Suite 212, Owings Mills, Maryland
21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
7
|
Jia C, Liu XF, Qian MP, Jiang DQ, Zhang YP. Kinetic behavior of the general modifier mechanism of Botts and Morales with non-equilibrium binding. J Theor Biol 2011; 296:13-20. [PMID: 22100501 DOI: 10.1016/j.jtbi.2011.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 11/15/2022]
Abstract
In this paper, we perform a complete analysis of the kinetic behavior of the general modifier mechanism of Botts and Morales in both equilibrium steady states and non-equilibrium steady states (NESS). Enlightened by the non-equilibrium theory of Markov chains, we introduce the net flux into discussion and acquire an expression of the rate of product formation in NESS, which has clear biophysical significance. Up till now, it is a general belief that being an activator or an inhibitor is an intrinsic property of the modifier. However, we reveal that this traditional point of view is based on the equilibrium assumption. A modifier may no longer be an overall activator or inhibitor when the reaction system is not in equilibrium. Based on the regulation of enzyme activity by the modifier concentration, we classify the kinetic behavior of the modifier into three categories, which are named hyperbolic behavior, bell-shaped behavior, and switching behavior, respectively. We show that the switching phenomenon, in which a modifier may convert between an activator and an inhibitor when the modifier concentration varies, occurs only in NESS. Effects of drugs on the Pgp ATPase activity, where drugs may convert from activators to inhibitors with the increase of the drug concentration, are taken as a typical example to demonstrate the occurrence of the switching phenomenon.
Collapse
Affiliation(s)
- Chen Jia
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
8
|
Mnatsakanyan N, Krishnakumar AM, Suzuki T, Weber J. The role of the betaDELSEED-loop of ATP synthase. J Biol Chem 2009; 284:11336-45. [PMID: 19246448 DOI: 10.1074/jbc.m900374200] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase uses a unique rotational mechanism to convert chemical energy into mechanical energy and back into chemical energy. The helix-turn-helix motif, termed "DELSEED-loop," in the C-terminal domain of the beta subunit was suggested to be involved in coupling between catalysis and rotation. Here, the role of the DELSEED-loop was investigated by functional analysis of mutants of Bacillus PS3 ATP synthase that had 3-7 amino acids within the loop deleted. All mutants were able to catalyze ATP hydrolysis, some at rates several times higher than the wild-type enzyme. In most cases ATP hydrolysis in membrane vesicles generated a transmembrane proton gradient, indicating that hydrolysis occurred via the normal rotational mechanism. Except for two mutants that showed low activity and low abundance in the membrane preparations, the deletion mutants were able to catalyze ATP synthesis. In general, the mutants seemed less well coupled than the wild-type enzyme, to a varying degree. Arrhenius analysis demonstrated that in the mutants fewer bonds had to be rearranged during the rate-limiting catalytic step; the extent of this effect was dependent on the size of the deletion. The results support the idea of a significant involvement of the DELSEED-loop in mechanochemical coupling in ATP synthase. In addition, for two deletion mutants it was possible to prepare an alpha(3)beta(3)gamma subcomplex and measure nucleotide binding to the catalytic sites. Interestingly, both mutants showed a severely reduced affinity for MgATP at the high affinity site.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | |
Collapse
|
9
|
Scanlon JAB, Al-Shawi MK, Nakamoto RK. A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis. J Biol Chem 2008; 283:26228-40. [PMID: 18628203 DOI: 10.1074/jbc.m804858200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F(0)F(1)-ATP synthase couples the functions of H(+) transport and ATP synthesis/hydrolysis through the efficient transmission of energy mediated by rotation of the centrally located gamma, epsilon, and c subunits. To understand the gamma subunit role in the catalytic mechanism, we previously determined the partial rate constants and devised a minimal kinetic model for the rotational hydrolytic mode of the F(1)-ATPase enzyme that uniquely fits the pre-steady state and steady state data ( Baylis Scanlon, J. A., Al-Shawi, M. K., Le, N. P., and Nakamoto, R. K. (2007) Biochemistry 46, 8785-8797 ). Here we directly test the model using two single cysteine mutants, betaD380C and betaE381C, which can be used to reversibly inhibit rotation upon formation of a cross-link with the conserved gammaCys-87. In the pre-steady state, the gamma-beta cross-linked enzyme at high Mg.ATP conditions retained the burst of hydrolysis but was not able to release P(i). These data show that the rate-limiting rotation step, k(gamma), occurs after hydrolysis and before P(i) release. This analysis provides additional insights into how the enzyme achieves efficient coupling and implicates the betaGlu-381 residue for proper formation of the rate-limiting transition state involving gamma subunit rotation.
Collapse
Affiliation(s)
- Joanne A Baylis Scanlon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
10
|
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. The rotary mechanism of the ATP synthase. Arch Biochem Biophys 2008; 476:43-50. [PMID: 18515057 DOI: 10.1016/j.abb.2008.05.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 05/06/2008] [Accepted: 05/13/2008] [Indexed: 11/29/2022]
Abstract
The F0F1 ATP synthase is a large complex of at least 22 subunits, more than half of which are in the membranous F0 sector. This nearly ubiquitous transporter is responsible for the majority of ATP synthesis in oxidative and photo-phosphorylation, and its overall structure and mechanism have remained conserved throughout evolution. Most examples utilize the proton motive force to drive ATP synthesis except for a few bacteria, which use a sodium motive force. A remarkable feature of the complex is the rotary movement of an assembly of subunits that plays essential roles in both transport and catalytic mechanisms. This review addresses the role of rotation in catalysis of ATP synthesis/hydrolysis and the transport of protons or sodium.
Collapse
Affiliation(s)
- Robert K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, P.O. Box 800736, Charlottesville, VA 22908-0736, USA.
| | | | | |
Collapse
|
11
|
Penefsky HS, Cross RL. Structure and mechanism of FoF1-type ATP synthases and ATPases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:173-214. [PMID: 1828930 DOI: 10.1002/9780470123102.ch4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H S Penefsky
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse
| | | |
Collapse
|
12
|
de Gómez-Puyou MT, Domínguez-Ramírez L, Pérez-Hernández G, Gómez-Puyou A. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. Arch Biochem Biophys 2005; 439:129-37. [PMID: 15950171 DOI: 10.1016/j.abb.2005.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/03/2005] [Accepted: 05/05/2005] [Indexed: 11/26/2022]
Abstract
The effect of guanidinium hydrochloride (GdnHCl) on multisite and unisite ATPase activity by F0F1 of submitochondrial particles from bovine hearts was studied. In particles without control by the inhibitor protein, 50 mM GdnHCl inhibited multisite hydrolysis by about 85%; full inhibition required around 500 mM. In the range of 500-650 mM, GdnHCl enhanced the rate of unisite catalysis by promoting product release; it also increased the rate of hydrolysis of ATP bound to the catalytic site without GdnHCl. GdnHCl diminished the affinity of the enzyme for aurovertin. The effects of GdnHCl were irreversible. The results suggest that disruption of intersubunit contacts in F0F1 abolishes multisite hydrolysis and stimulates of unisite hydrolysis. Particles under control by the inhibitor protein were insensitive to concentrations of GdnHCl that induce the aforementioned alterations of F0F1 free of inhibitor protein, indicating that the protein stabilizes the global structure of particulate F1.
Collapse
Affiliation(s)
- Marietta Tuena de Gómez-Puyou
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70243, 04510 México, D. F., Mexico.
| | | | | | | |
Collapse
|
13
|
Al-Shawi MK, Polar MK, Omote H, Figler RA. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. J Biol Chem 2003; 278:52629-40. [PMID: 14551217 DOI: 10.1074/jbc.m308175200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATPase activity associated with P-glycoprotein (Pgp) is characterized by three drug-dependent phases: basal (no drug), drug-activated, and drug-inhibited. To understand the communication between drug-binding sites and ATP hydrolytic sites, we performed steady-state thermodynamic analyses of ATP hydrolysis in the presence and absence of transport substrates. We used purified human Pgp (ABCB1, MDR1) expressed in Saccharomyces cerevisiae (Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Arch. Biochem. Biophys. 376, 34-46) as well as Chinese hamster Pgp (PGP1). Between 23 and 35 degrees C, we obtained linear Arrhenius relationships for the turnover rate of hydrolysis of saturating MgATP in the presence of saturating drug concentrations (kcat), from which we calculated the intrinsic enthalpic, entropic, and free energy terms for the rate-limiting transition states. Linearity of the Arrhenius plots indicated that the same rate-limiting step was being measured over the temperature range employed. Using linear free energy analysis, two distinct transition states were found: one associated with uncoupled basal activity and the other with coupled drug transport activity. We concluded that basal ATPase activity associated with Pgp is not a consequence of transport of an endogenous lipid or other endogenous substrates. Rather, it is an intrinsic mechanistic property of the enzyme. We also found that rapidly transported substrates bound tighter to the transition state and required fewer conformational alterations by the enzyme to achieve the coupling transition state. The overall rate-limiting step of Pgp during transport is a carrier reorientation step. Furthermore, Pgp is optimized to transport drugs out of cells at high rates at the expense of coupling efficiency. The drug inhibition phase was associated with low affinity drug-binding sites. These results are consistent with an expanded version of the alternating catalytic site drug transport model (Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett. 377, 285-289). A new kinetic model of drug transport is presented.
Collapse
Affiliation(s)
- Marwan K Al-Shawi
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908-0736, USA.
| | | | | | | |
Collapse
|
14
|
Greene MD, Frasch WD. Interactions among gamma R268, gamma Q269, and the beta subunit catch loop of Escherichia coli F1-ATPase are important for catalytic activity. J Biol Chem 2003; 278:51594-8. [PMID: 14532272 DOI: 10.1074/jbc.m309948200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Removal of the ability to form a salt bridge or hydrogen bonds between the beta subunit catch loop (beta Y297-D305) and the gamma subunit of Escherichia coli F1Fo-ATP synthase significantly altered the ability of the enzyme to hydrolyze ATP and the bacteria to grow via oxidative phosphorylation. Residues beta T304, beta D305, beta D302, gamma Q269, and gamma R268 were found to be very important for ATP hydrolysis catalyzed by soluble F1-ATPase, and the latter four residues were also very important for oxidative phosphorylation. The greatest effects on catalytic activity were observed by the substitution of side chains that contribute to the shortest and/or multiple H-bonds as well as the salt bridge. Residue beta D305 would not tolerate substitution with Val or Ser and had extremely low activity as beta D305E, suggesting that this residue is particularly important for synthesis and hydrolysis activity. These results provide evidence that tight winding of the gamma subunit coiled-coil is important to the rate-limiting step in ATP hydrolysis and are consistent with an escapement mechanism for ATP synthesis in which alpha beta gamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.
Collapse
Affiliation(s)
- Matthew D Greene
- Center for the Study of Early Events in Photosynthesis, School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | |
Collapse
|
15
|
Gardner JL, Cain BD. The a subunit ala-217 --> arg substitution affects catalytic activity of F(1)F(0) ATP synthase. Arch Biochem Biophys 2000; 380:201-7. [PMID: 10900150 DOI: 10.1006/abbi.2000.1916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large number of mutations affecting the F(0) sector of Escherichia coli F(1)F(0) ATP synthase have been constructed and characterized. A subset of the missense mutations resulted in fully assembled enzyme complexes blocked in proton translocation and displaying marked decreases in ATP hydrolysis activity. The catalytic activities of one such mutant enzyme, a(ala-217-->arg), have been determined using both multisite and unisite catalysis conditions. As expected, the V(max) of the a(ala-217-->arg) enzyme was reduced under conditions of saturating substrate concentration. However, the F(0) sector amino acid substitution did not affect nucleotide occupancy of the noncatalytic sites. Moreover, the microscopic rate constants measured using unisite methods yielded no significant differences between the intact wild type F(1)F(0) ATP synthase and the a(ala-217-->arg) mutant enzyme. In general, the values for unisite activities in both preparations were very similar to numbers reported in the literature for E. coli F(1)-ATPase. The results suggest that the a(ala-217-->arg) substitution resulted in a defect in catalytic cooperativity and most likely altered the enzyme by inhibiting the rotational mechanism of F(1)F(0) ATP synthase.
Collapse
Affiliation(s)
- J L Gardner
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
16
|
Weber J, Senior AE. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:300-9. [PMID: 10838046 DOI: 10.1016/s0005-2728(00)00082-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ATP synthase, X-ray structures, demonstration of ATP-driven gamma-subunit rotation, and tryptophan fluorescence techniques to determine catalytic site occupancy and nucleotide binding affinities have resulted in pronounced progress in understanding ATP hydrolysis, for which a mechanism is presented here. In contrast, ATP synthesis remains enigmatic. The molecular mechanism by which ADP is bound in presence of a high ATP/ADP concentration ratio is a fundamental unknown; similarly P(i) binding is not understood. Techniques to measure catalytic site occupancy and ligand binding affinity changes during net ATP synthesis are much needed. Relation of these parameters to gamma-rotation is a further goal. A speculative model for ATP synthesis is offered.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
17
|
Berden JA, Hartog AF. Analysis of the nucleotide binding sites of mitochondrial ATP synthase provides evidence for a two-site catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:234-51. [PMID: 10838040 DOI: 10.1016/s0005-2728(00)00076-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J A Berden
- E.C. Slater Institute, BioCentrum, Plantage Muidergracht 12, 1018 TV, Amsterdam, The Netherlands.
| | | |
Collapse
|
18
|
Tuena de Gómez-Puyou M, Pérez-Hernández G, Gómez-Puyou A. Synthesis and hydrolysis of ATP and the phosphate-ATP exchange reaction in soluble mitochondrial F1 in the presence of dimethylsulfoxide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:691-6. [PMID: 10561614 DOI: 10.1046/j.1432-1327.1999.00915.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi <--> F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an increase in water activity. The effect of solvent is fully reversible. In comparison to other enzymes, F1 seems unique in that solvent controls the equilibrium that exists within an enzyme population. This results from the effect of solvent on the partition of Pi between the catalytic site and the medium, and the large energetic barrier that prevents release of ATP from the catalytic site. In the presence of dimethylsulfoxide and Pi, ATP is continuously hydrolyzed and synthesized with formation and uptake of Pi from the medium. This process is essentially an exchange reaction analogous to the phosphate-ATP exchange reaction that is catalyzed by the ATP synthase in coupled energy transducing membranes.
Collapse
|
19
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
20
|
Nadanaciva S, Weber J, Senior AE. Binding of the transition state analog MgADP-fluoroaluminate to F1-ATPase. J Biol Chem 1999; 274:7052-8. [PMID: 10066761 DOI: 10.1074/jbc.274.11.7052] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli F1-ATPase from mutant betaY331W was potently inhibited by fluoroaluminate plus MgADP but not by MgADP alone. beta-Trp-331 fluorescence was used to measure MgADP binding to catalytic sites. Fluoroaluminate induced a very large increase in MgADP binding affinity at catalytic site one, a smaller increase at site two, and no effect at site three. Mutation of either of the critical catalytic site residues beta-Lys-155 or beta-Glu-181 to Gln abolished the effects of fluoroaluminate on MgADP binding. The results indicate that the MgADP-fluoroaluminate complex is a transition state analog and independently demonstrate that residues beta-Lys-155 and (particularly) beta-Glu-181 are important for generation and stabilization of the catalytic transition state. Dicyclohexylcarbodiimide-inhibited enzyme, with 1% residual steady-state ATPase, showed normal transition state formation as judged by fluoroaluminate-induced MgADP binding affinity changes, consistent with a proposed mechanism by which dicyclohexylcarbodiimide prevents a conformational interaction between catalytic sites but does not affect the catalytic step per se. The fluorescence technique should prove valuable for future transition state studies of F1-ATPase.
Collapse
Affiliation(s)
- S Nadanaciva
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
21
|
García JJ, Gómez-Puyou A, Maldonado E, Tuena De Gómez-Puyou M. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:622-9. [PMID: 9370375 DOI: 10.1111/j.1432-1033.1997.00622.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of ATP, ADP and pyrophosphate (PPi) on hydrolysis and release of [gamma-32P]ATP bound to the high-affinity catalytic site of soluble F1 from bovine heart mitochondria under unisite conditions [Grubmeyer, C., Cross, R. L. & Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100] was studied. In accord with the previous data, it was observed that millimolar concentrations of ATP or ADP added to F1 undergoing unisite hydrolysis of [gamma-32P]ATP accelerated its hydrolysis. PPi also produced a hydrolytic burst of a fraction of the previously bound [gamma-32P]ATP; kinetic data suggested that for production of optimal hydrolysis by PPi of the bound [gamma-32P]ATP, two binding sites with apparent Kd of 27 microM and 240 microM must be filled. The extent of the hydrolytic burst induced by MgPPi was lower than that induced by ADP and ATP. In F1 in which PPi had produced a hydrolytic burst of the bound [gamma-32P]ATP, the addition of ATP induced a second burst of hydrolysis. By filtration experiments and enzyme trapping, it was also studied whether ATP, ADP and PPi produce release of the tightly bound [gamma-32P]ATP. At millimolar concentrations, ATP and ADP brought about release of about 25% of the previously bound [gamma-32P]ATP. At micromolar concentrations, ADP accelerated the hydrolysis of the previously bound [gamma-32P]ATP but not its release. Hence, the hydrolytic and release reactions could be separated, indicating that the two reactions require the occupancy of different sites in F1. With PPi, no release of the tightly bound [gamma-32P]ATP was observed. The ADP induced hydrolysis and release of the F1-bound [gamma-32P]ATP were inhibited by sodium azide to the same extent (60%). Since release of ATP from a high-affinity catalytic site of F1 represents the terminal step of oxidative phosphorylation, the data illustrate that the binding energy of substrates to F1 is critical to the ejection of ATP into the media. The failure of PPi to induce release of [gamma-32P]ATP bound to F1 under unisite conditions is probably due to its lower binding energy.
Collapse
Affiliation(s)
- J J García
- Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | | | | | | |
Collapse
|
22
|
Muneyuki E, Odaka M, Yoshida M. A single mutation at the catalytic site of TF1-alpha3beta3gamma complex switches the kinetics of ATP hydrolysis from negative to positive cooperativity. FEBS Lett 1997; 413:55-9. [PMID: 9287116 DOI: 10.1016/s0014-5793(97)00878-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously, we reported the substitution of Tyr341 of the F1-ATPase beta subunit from a thermophilic Bacillus strain PS3 with leucine, cysteine, or alanine (M. Odaka et al. J. Biochem., 115 (1994) 789-796). These mutations resulted in a great decrease in the affinity of the isolated beta subunit for ATP-Mg and an increase in the apparent Km of the alpha3beta3gamma complex in ATP hydrolysis when examined above 0.1 mM ATP. Here, we examined the ATPase activity of the mutant complexes in a wide range of ATP concentration and found that the mutants exhibited apparent positive cooperativity in ATP hydrolysis. This is the first clear demonstration that a single mutation in the catalytic sites converts the kinetics from apparent negative cooperativity in the wild-type alpha3beta3gamma complex to apparent positive cooperativity. The conversion of apparent cooperativity could be explained in terms of a simple kinetic scheme based on the binding change model proposed by Boyer.
Collapse
Affiliation(s)
- E Muneyuki
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
23
|
Al-Shawi MK, Ketchum CJ, Nakamoto RK. Energy coupling, turnover, and stability of the F0F1 ATP synthase are dependent on the energy of interaction between gamma and beta subunits. J Biol Chem 1997; 272:2300-6. [PMID: 8999937 DOI: 10.1074/jbc.272.4.2300] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replacement of the F0F1 ATP synthase gamma subunit Met-23 with Lys (gammaM23K) perturbs coupling efficiency between transport and catalysis (Shin, K., Nakamoto, R. K., Maeda, M., and Futai, M. (1992) J. Biol. Chem. 267, 20835-20839). We demonstrate here that the gammaM23K mutation causes altered interactions between subunits. Binding of delta or epsilon subunits stabilizes the alpha3beta3gamma complex, which becomes destabilized by the mutation. Significantly, the inhibition of F1 ATP hydrolysis by the epsilon subunit is no longer relieved when the gammaM23K mutant F1 is bound to F0. Steady state Arrhenius analysis reveals that the gammaM23K enzyme has increased activation energies for the catalytic transition state. These results suggest that the mutation causes the formation of additional bonds within the enzyme that must be broken in order to achieve the transition state. Based on the x-ray crystallographic structure of Abrahams et al. (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the additional bond is likely due to gammaM23K forming an ionized hydrogen bond with one of the betaGlu-381 residues. Two second site mutations, gammaQ269R and gammaR242C, suppress the effects of gammaM23K and decrease activation energies for the gammaM23K enzyme. We conclude that gammaM23K is an added function mutation that increases the energy of interaction between gamma and beta subunits. The additional interaction perturbs transmission of conformational information such that epsilon inhibition of ATPase activity is not relieved and coupling efficiency is lowered.
Collapse
Affiliation(s)
- M K Al-Shawi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
24
|
Haughton MA, Capaldi RA. The Escherichia coli F1-ATPase mutant beta Tyr-297-->Cys: functional studies and asymmetry of the enzyme under various nucleotide conditions based on reaction of the introduced Cys with N-ethylmaleimide and 7-chloro-4-nitrobenzofurazan. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:154-60. [PMID: 8816947 DOI: 10.1016/0005-2728(96)00073-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conversion of residue beta Tyr-297 of the Escherichia coli F1-ATPase (ECF1) to a Cys in the mutant beta Y297C led to impaired oxidative phosphorylation based on growth curves. The ATPase activity of ECF1 isolated from the mutant beta Y297C was only 1% of wild-type activity, but the residual activity involves cooperative multi-site enzyme turnover based on inhibition by DCCD and azide. ATPase activity could be increased to 8%, and 13% of wild-type by reaction of the introduced Cys with N-ethyl maleimide (NEM), and 7-chloro-4-nitrobenzofurazan (NbfCl), respectively, suggesting that enzymatic function is improved by an increased hydrophobicity of residue beta Cys-297. The mutation beta Tyr-297-->Cys had no effect on nucleotide binding in studies with the fluorescent analog lin-benzo-ADP. The asymmetry of ECF1 was investigated in the mutants beta Y297C and beta Y297C:E381C/epsilon S108C by examining the relative reactivity of Cys-297 in the three copies of the beta subunit under different nucleotide binding conditions. In agreement with a previous study (Haughton, M.A. and Capaldi, R.A. (1995) J. Biol. Chem., 270, 20568-20574), the asymmetry was maintained under all nucleotide conditions. The NbfCl reaction site was found to be beta free, which is also the site most reactive to NEM, beta epsilon is the second site which reacts with NbfCl or NEM, while the third site, beta gamma, is poorly reactive to either reagent.
Collapse
Affiliation(s)
- M A Haughton
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
25
|
Tuena de Gómez-Puyou M, Sandoval F, Gómez-Puyou A. Synthesis of medium pyrophosphate by soluble mitochondrial F1 through dimethyl sulfoxide-water transitions. J Biol Chem 1995; 270:16820-5. [PMID: 7622496 DOI: 10.1074/jbc.270.28.16820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Soluble F1 from heart mitochondria incubated in mixtures that have Mg2+, inorganic phosphate, and dimethyl sulfoxide (40% (v/v)) catalyzes the spontaneous synthesis of ATP and pyrophosphate (Tuena de Gómez-Puyou, M., García, J. J., and Gómez-Puyou, A. (1993) Biochemistry 32, 2213-2218). By filtration techniques, it was determined that synthesized ATP and pyrophosphate are enzyme bound, albeit the affinity for pyrophosphate was lower than that of ATP. After ATP and pyrophosphate were formed in dimethyl sulfoxide mixtures, dilution with aqueous buffer to a dimethyl sulfoxide concentration of 6.0% brought about the partition of pyrophosphate into the media. This was evidenced by filtration experiments as well as by the accessibility of synthesized pyrophosphate to soluble inorganic pyrophosphatase. Release of pyrophosphate induced by dilution occurred in less than 15 s. Under conditions that produce release of pyrophosphate, no release of ATP was observed; instead, ATP underwent hydrolysis. Studies on the effect of arsenate on the synthesis and hydrolysis of ATP and PPi in F1 showed that hydrolysis of synthesized PPi at its site of synthesis was slower than that of ATP. Thus, the question of whether differences in the rates of hydrolysis accounted for the dilution-induced release of PPi but not of ATP was addressed. Synthesis and hydrolysis of ATP and pyrophosphate were examined in preparations of soluble F1 in complex with its inhibitor protein; the complex had an ATPase activity about 100 times lower than that of free F1. In mixtures that contained dimethyl sulfoxide, the complex synthesized ATP and pyrophosphate at nearly the same rates; upon dilution, hydrolysis of both compounds occurred also at similar rates, yet only pyrophosphate was released. The same phenomenon was observed in F1 that had been depleted of adenine nucleotides. Hence, dilution-induced release of PPi was independent of the overall catalytic properties of the enzyme or its content of adenine nucleotides. Since synthesis of ATP occurs at the expense of the ADP that remains after depletion of adenine nucleotides, it is likely that the failure of ATP to be released is due to the high affinity that F1 exhibits for the synthesized ATP. Nevertheless, the results illustrate that a complete catalytic cycle that starts with medium Pi and ends with medium pyrophosphate may be reproduced in soluble mitochondrial F1.
Collapse
Affiliation(s)
- M Tuena de Gómez-Puyou
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F., México
| | | | | |
Collapse
|
26
|
|
27
|
Souid AK, Penefsky HS. Mechanism of ATP synthesis by mitochondrial ATP synthase from beef heart. J Bioenerg Biomembr 1994; 26:627-30. [PMID: 7721724 DOI: 10.1007/bf00831537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies of the rate constants for the elementary steps of ATP hydrolysis by the soluble and membrane-bound forms of beef heart mitochondrial F1 supported the proposal that ATP is formed in high-affinity catalytic sites of the enzyme with little or no change in free energy and that the major requirement for energy in oxidative phosphorylation is for the release of product ATP. The affinity of the membrane-bound enzyme for ATP during NADH oxidation was calculated from the ratio of the rate constants for the forward binding step (k+1) and the reverse dissociation step (k-1). k-1 was accelerated several orders of magnitude by NADH oxidation. In the presence of NADH and ADP an additional enhancement of k-1 was observed. These energy-dependent dissociations of ATP were sensitive to the uncoupler FCCP. k+1 was affected little by NADH oxidation. The dissociation constant (KdATP) increased many orders of magnitude during the transition from nonenergized to energized states.
Collapse
Affiliation(s)
- A K Souid
- Department of Biochemistry and Molecular Biology, State University of New York, Health Science Center at Syracuse 13210
| | | |
Collapse
|
28
|
Turina P, Capaldi R. ATP hydrolysis-driven structural changes in the gamma-subunit of Escherichia coli ATPase monitored by fluorescence from probes bound at introduced cysteine residues. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36855-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Senior A, Wilke-Mounts S, al-Shawi M. Lysine 155 in beta-subunit is a catalytic residue of Escherichia coli F1 ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53137-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Boyer PD. The binding change mechanism for ATP synthase--some probabilities and possibilities. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1140:215-50. [PMID: 8417777 DOI: 10.1016/0005-2728(93)90063-l] [Citation(s) in RCA: 716] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P D Boyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1570
| |
Collapse
|
31
|
Duncan TM, Cross RL. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomembr 1992; 24:453-61. [PMID: 1429539 DOI: 10.1007/bf00762362] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An updated topological model is constructed for the catalytic nucleotide-binding site of the F1-ATPase. The model is based on analogies to the known structures of the MgATP site on adenylate kinase and the guanine nucleotide sites on elongation factor Tu (Ef-Tu) and the ras p21 protein. Recent studies of these known nucleotide-binding domains have revealed several common functional features and similar alignment of nucleotide in their binding folds, and these are used as a framework for evaluating results of affinity labeling and mutagenesis studies of the beta subunit of F1. Several potentially important residues on beta are noted that have not yet been studied by mutagenesis or affinity labeling.
Collapse
Affiliation(s)
- T M Duncan
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
32
|
Abstract
The catalytic site of Escherichia coli F1-ATPase is reviewed in terms of structure and function. Structural prediction, biochemical analyses, and mutagenesis experiments suggest that the catalytic site is formed primarily by residues 137-335 of beta-subunit. Subdomains of the site involved in phosphate-bond cleavage/synthesis and adenine-ring binding are discussed. Ambiguities inherent in steady-state catalytic measurements due to catalytic site cooperativity are discussed, and the advantages of pre-steady-state ("unisite") techniques are emphasized. The emergence of a single high-affinity catalytic site occurs as a result of F1-oligomer assembly. Measurements of unisite catalysis rate and equilibrium constants, and their modulation by varied pH, dimethylsulfoxide, and mutations, are described and conclusions regarding the nature of the high-affinity catalytic site and mechanism of catalysis are presented.
Collapse
Affiliation(s)
- A E Senior
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| |
Collapse
|
33
|
|
34
|
Issartel JP, Dupuis A, Garin J, Lunardi J, Michel L, Vignais PV. The ATP synthase (F0-F1) complex in oxidative phosphorylation. EXPERIENTIA 1992; 48:351-62. [PMID: 1533842 DOI: 10.1007/bf01923429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and P(i). The bacterial and mitochondrial H(+)-ATP synthases both consist of a membranous sector, F0, which forms a H(+)-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H(+)-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.
Collapse
Affiliation(s)
- J P Issartel
- Laboratoire de Biochimie (URA 1130 du CNRS), Département de Biologie Moléculaire et Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
35
|
Cross RL. Chapter 13 The reaction mechanism of F0F1ATP synthases. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
Hawkinson DC, Eames TC, Pollack RM. Energetics of 3-oxo-delta 5-steroid isomerase: source of the catalytic power of the enzyme. Biochemistry 1991; 30:10849-58. [PMID: 1932007 DOI: 10.1021/bi00109a007] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Knowledge of the partitioning of the putative dienol intermediate (2) by steroid isomerase (KSI) (Hawkinson et al. 1991), in conjunction with various steady-state kinetic parameters, allows elucidation of the detailed free energy profile for the KSI-catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3). This free energy profile shows four kinetically significant energy barriers (substrate binding, the two chemical steps, and dissociation of product) that must be traversed upon conversion of 1 to 3. Thus, no single step of the catalytic cycle is cleanly rate-limiting. The source of the catalytic power of KSI is discussed via comparison of the free energy profile for the KSI-catalyzed isomerization with those for the acetate-catalyzed isomerization and the aqueous reaction at pH 7. Similarities between the energetics of the KSI-catalyzed and triosephosphate isomerase catalyzed reactions are also noted.
Collapse
Affiliation(s)
- D C Hawkinson
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County 21228-5398
| | | | | |
Collapse
|
37
|
Bizouarn T, de Kouchkovsky Y, Haraux F. Dependence of kinetic parameters of chloroplast ATP synthase on external pH, internal pH, and delta pH. Biochemistry 1991; 30:6847-53. [PMID: 1648963 DOI: 10.1021/bi00242a007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ATP synthesis by the membrane-bound chloroplast ATPase in the oxidized state of its gamma disulfide bridge was studied as a function of the ADP concentration, delta pH, and external pH values, under conditions where delta pH was clamped and delocalized. At a given pH, the rate of phosphorylation at saturating ADP concentration (Vmax) and the Michaelis constant Km (ADP) depend strictly on delta pH, irrespective of the way the delta pH is generated: there evidently is no specific interaction between the redox carriers and the ATPase. It was also shown that both Km (ADP) and Vmax depend on delta pH, not on the external or internal pH. This suggests that internal proton binding and external proton release are concerted, so that net proton translocation is an elementary step of the phosphorylation process. These results appear to be consistent with a modified "proton substrate" model, provided the delta G0 of the condensation reaction within the catalytic site is low. At least one additional assumption, such as a shift in the pK of bound phosphate or the existence of an additional group transferring protons from or to reactants, is nevertheless required to account for the strict delta pH dependence of the rate of ATP synthesis. A purely "conformational" model, chemically less explicit, only requires constraints on the pK's of the groups involved in proton translocation.
Collapse
Affiliation(s)
- T Bizouarn
- Biosystèmes Membranaires (UPR 39), CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|
38
|
Muneyuki E, Yoshida M, Bullough DA, Allison WS. Heterogeneous hydrolysis of substoichiometric ATP by the F1-ATPase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:304-11. [PMID: 1828699 DOI: 10.1016/s0005-2728(05)80251-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hydrolysis of 0.3 microM [alpha,gamma-32P]ATP by 1 microM F1-ATPase isolated from the plasma membranes of Escherichia coli has been examined in the presence and absence of inorganic phosphate. The rate of binding of substoichiometric substrate to the ATPase is attenuated by 2 mM phosphate and further attenuated by 50 mM phosphate. Under all conditions examined, only 10-20% of the [alpha,gamma-32P]ATP that bound to the enzyme was hydrolyzed sufficiently slowly to be examined in cold chase experiments with physiological concentrations of non-radioactive ATP. These features differ from those observed with the mitochondrial F1-ATPase. The amount of bound substrate in equilibrium with bound products observed in the slow phase which was subject to promoted hydrolysis by excess ATP was not affected by the presence of phosphate. Comparison of the fluxes of enzyme-bound species detected experimentally in the presence of 2 mM phosphate with those predicted by computer simulation of published rate constants determined for uni-site catalysis (Al-Shawi, M.D., Parsonage, D. and Senior, A.E. (1989) J. Biol. Chem. 264, 15376-15383) showed that hydrolysis of substoichiometric ATP observed experimentally was clearly biphasic. Less than 20% of the substoichiometric ATP added to the enzyme was hydrolyzed according to the published rate constants which were calculated from the slow phase of product release in the presence of 1 mM phosphate. The majority of the substoichiometric ATP added to the enzyme was hydrolyzed with product release that was too rapid to be detected by the methods employed in this study, indicating again that the F1-ATPase from E. coli and bovine heart mitochondria hydrolyze substoichiometric ATP differently.
Collapse
Affiliation(s)
- E Muneyuki
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohoma, Japan
| | | | | | | |
Collapse
|
39
|
Fromme P, Gräber P. ATP-hydrolysis in chloroplasts: Uni-site catalysis and evidence for heterogeneity of catalytic sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90050-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Abstract
Uni-site ATP synthesis was measured with thylakoids. The membrane-bound ATP-synthase, CF0F1, was brought into the active, reduced state by illumination in the presence of thioredoxin, dithiothreitol and phosphate. This enzyme contains two tightly bound ATP per CF0F1. ATP was released from the enzyme when ADP was added in substoichiometric amounts during illumination. Experiments with [14C]ADP indicated that after binding the same nucleotide was phosphorylated and released as [14C]ATP, i.e. only one site is involved in ATP-synthesis ('uni-site ATP-synthesis'). The two tightly bound ATP are not involved in the catalytic turnover. The rate constant for ADP binding was (4 +/- 2) x 10(6) M-1s-1. Compared to deenergized conditions the rate constant for ADP binding and that for ATP-release were drastically increased, i.e. membrane energization increased the rate constants for the ATP-synthesis direction.
Collapse
Affiliation(s)
- A Labahn
- Max Volmer Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, FRG
| | | | | |
Collapse
|
41
|
Fromme P, Gräber P. Uni-site catalysis in thylakoids. The influence of membrane energization on ATP hydrolysis and ATP-Pi exchange. FEBS Lett 1990; 269:247-51. [PMID: 2143736 DOI: 10.1016/0014-5793(90)81165-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ATP-hydrolysis was measured with thylakoid membranes during continuous illumination. The concentrations of free and enzyme-bound ATP, ADP and Pi were measured using either cold ATP, [gamma-32P]ATP or [14C]ATP. The concentration of free ATP was constant, free ADP and enzyme-bound ATP were below the detection limit. Nevertheless, [gamma-32P]ATP was bound, hydrolyzed and 32Pi was released. The ADP was not released from the enzyme but cold Pi was bound from the medium, cold ATP was resynthesized and released. A quantitative analysis gave the following rate constants: ATP-binding kATP = 2 . 10(5) M-1 s-1, ADP-release: kADP less than 10(-2)s-1, Pi-release: kPi = 0.1 s-1. These rate constants are considerably smaller than under deenergized conditions. The rate constant for the release of ATP can be estimated to be at least 0.2 s-1 under energized conditions. Obviously, energization of the membrane, i.e. protonation of the enzyme leads mainly to a decrease of the rate of ATP-binding, to an increase of the rate of ATP release and to a decrease of the rate of ADP-release.
Collapse
Affiliation(s)
- P Fromme
- Max Volmer Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, FRG
| | | |
Collapse
|
42
|
al-Shawi MK, Parsonage D, Senior AE. Adenosine triphosphatase and nucleotide binding activity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39403-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
43
|
Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Studies on the mechanism of oxidative phosphorylation. Positive cooperativity in ATP synthesis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40198-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Mueller DM. Site directed mutagenesis of the beta-subunit of the yeast mitochondrial ATPase. Biochem Biophys Res Commun 1989; 164:381-6. [PMID: 2529856 DOI: 10.1016/0006-291x(89)91730-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Site directed mutagenesis has been performed on the gene coding for the beta-subunit of the yeast mitochondrial F1-ATPase. Two different regions were studied. First, the corresponding yeast amino acid, Tyr-344, which was affinity labeled in the bovine enzyme was changed to Phe-344 and Ala-344. The Phe-344 enzyme was completely active and less sensitive to the affinity reagent, 4-chloro-7-nitrobenzofurazan. In contrast, the in vivo level of the Ala-344 enzyme was greatly diminished and apparently inactive. The second region studied is in the glycine rich region homologous in nucleotide binding proteins. Five different replacements were made and all mutations but one completely eliminated the biological activity and reduced the in vivo level of the mutant peptides. These results support the importance of these amino acids in the function of the ATPase.
Collapse
Affiliation(s)
- D M Mueller
- University of Health Sciences, Chicago Medical School, Department of Biological Chemistry & Structure, IL 60064
| |
Collapse
|
46
|
|
47
|
Kinetic characterization of the unisite catalytic pathway of seven β-subunit mutant F1-ATPases from Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84838-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Directed mutagenesis of the strongly conserved aspartate 242 in the beta-subunit of Escherichia coli proton-ATPase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77683-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|