1
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
2
|
El Harrar T, Gohlke H. Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions. J Chem Inf Model 2023; 63:281-298. [PMID: 36520535 DOI: 10.1021/acs.jcim.2c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein's stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein's stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein-residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol-1, depending on the residue pair, residue-residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion-residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions.
Collapse
Affiliation(s)
- Till El Harrar
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Iqbal A, Huiping G, Xiangru W, Hengheng Z, Xiling Z, Meizhen S. Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC PLANT BIOLOGY 2022; 22:122. [PMID: 35296248 PMCID: PMC8925137 DOI: 10.1186/s12870-022-03454-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/27/2022] [Indexed: 05/09/2023]
Abstract
Asparagine synthetase (ASN) is one of the key enzymes of nitrogen (N) metabolism in plants. The product of ASN is asparagine, which is one of the key compounds involved in N transport and storage in plants. Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants. However, little is known about the systematic analysis and expression profiling of ASN proteins in cotton development and N metabolism. Here, various bioinformatics analysis was performed to identify ASN gene family in cotton. In the cotton genome, forty-three proteins were found that determined ASN genes, comprising of 20 genes in Gossypium hirsutum (Gh), 13 genes in Gossypium arboreum, and 10 genes in Gossypium raimondii. The ASN encoded genes unequally distributed on various chromosomes with conserved glutamine amidotransferases and ASN domains. Expression analysis indicated that the majority of GhASNs were upregulated in vegetative and reproductive organs, fiber development, and N metabolism. Overall, the results provide proof of the possible role of the ASN genes in improving cotton growth, fiber development, and especially N metabolism in cotton. The identified hub genes will help to functionally elucidate the ASN genes in cotton development and N metabolism.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, State Key Laboratory of Cotton Biology, Anyang, Henan, 455000, People's Republic of China.
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
4
|
Kumagai Y, Hirasawa T, Wachi M. Requirement of the LtsA Protein for Formation of the Mycolic Acid-Containing Layer on the Cell Surface of Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9020409. [PMID: 33669405 PMCID: PMC7920481 DOI: 10.3390/microorganisms9020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The ltsA gene of Corynebacterium glutamicum encodes a purF-type glutamine-dependent amidotransferase, and mutations in this gene result in increased susceptibility to lysozyme. Recently, it was shown that the LtsA protein catalyzes the amidation of diaminopimelate residues in the lipid intermediates of peptidoglycan biosynthesis. In this study, intracellular localization of wild-type and mutant LtsA proteins fused with green fluorescent protein (GFP) was investigated. The GFP-fused wild-type LtsA protein showed a peripheral localization pattern characteristic of membrane-associated proteins. The GFP-fusions with a mutation in the N-terminal domain of LtsA, which is necessary for the glutamine amido transfer reaction, exhibited a similar localization to the wild type, whereas those with a mutation or a truncation in the C-terminal domain, which is not conserved among the purF-type glutamine-dependent amidotransferases, did not. These results suggest that the C-terminal domain is required for peripheral localization. Differential staining of cell wall structures with fluorescent dyes revealed that formation of the mycolic acid-containing layer at the cell division planes was affected in the ltsA mutant cells. This was also confirmed by observation that bulge formation was induced at the cell division planes in the ltsA mutant cells upon lysozyme treatment. These results suggest that the LtsA protein function is required for the formation of a mycolic acid-containing layer at the cell division planes and that this impairment results in increased susceptibility to lysozyme.
Collapse
Affiliation(s)
- Yutaro Kumagai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
| | - Masaaki Wachi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Correspondence:
| |
Collapse
|
5
|
Wang TY, Zhao J, Savas AC, Zhang S, Feng P. Viral pseudoenzymes in infection and immunity. FEBS J 2020; 287:4300-4309. [PMID: 32889786 PMCID: PMC7605207 DOI: 10.1111/febs.15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are proteins that are evolutionarily related to active enzymes, but lack relevant catalytic activity. As obligate intracellular pathogens, viruses complete their life cycle fully dependent on the cellular supplies of macromolecule and energy. Traditionally, studies of viral proteins sharing high homology with host counterparts reveal insightful mechanisms by which host signaling pathways are delicately regulated. Recent investigations into the action of cellular pseudoenzymes elucidate diverse molecular means how enzymes are differentially controlled under various physiological conditions, hinting to the potential that pathogens may exploit these regulatory modalities. To date, there have been three types of viral pseudoenzymes reported and our understanding concerning their mechanism of regulation is rudimentary at best. However, it is clear that viral pseudoenzymes are emerging with surprising functions in infection and immunity, and we are only at the beginning to understand this new group of enzyme regulators. In this review, we will summarize current knowledge in viral pseudoenzymes and provide a perspective for future research.
Collapse
Affiliation(s)
- Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Ruegenberg S, Horn M, Pichlo C, Allmeroth K, Baumann U, Denzel MS. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun 2020; 11:687. [PMID: 32019926 PMCID: PMC7000685 DOI: 10.1038/s41467-020-14524-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/14/2020] [Indexed: 01/03/2023] Open
Abstract
Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5′-diphospho-N-acetyl-d-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies. Mutations in the hexosamine pathway key enzyme glutamine fructose-6-phosphate amidotransferase (GFAT-1) improve protein quality control and extend C. elegans lifespan. Here the authors present the crystal structures of full-length human GFAT-1 alone and with bound ligands and perform activity assays, which show that gain-of-function in the longevity-associated G451E variant is caused by a loss of feedback regulation.
Collapse
Affiliation(s)
- Sabine Ruegenberg
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Christian Pichlo
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Ulrich Baumann
- University of Cologne, Institute of Biochemistry, 50674, Cologne, Germany.
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany. .,CECAD-Cluster of Excellence, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
7
|
Zhao J, Ciulla DA, Xie J, Wagner AG, Castillo DA, Zwarycz AS, Lin Z, Beadle S, Giner JL, Li Z, Li H, Banavali N, Callahan BP, Wang C. General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing. J Am Chem Soc 2019; 141:18380-18384. [PMID: 31682419 PMCID: PMC7106946 DOI: 10.1021/jacs.9b08914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation. Native activity toward cholesterol was established for D46H in vitro using a continuous FRET-based autoprocessing assay and in cellulo with stable expression in human 293T cells. The catalytic efficiency of cholesterylation with D46H is similar to that with wild type (WT), with kmax/KM = 2.1 × 103 and 3.7 × 103 M-1 s-1, respectively, and an identical pKa = 5.8 is obtained for both residues by NMR. To our knowledge this is the first example where a general base substitution of an Asp for His preserves both the structure and activity as a general base. Surprisingly, D46H exhibits increased catalytic efficiency toward non-native substrates, especially coprostanol (>200-fold) and epicoprostanol (>300-fold). Expanded substrate tolerance is likely due to stabilization by H46 of the negatively charged tetrahedral intermediate using electrostatic interactions, which are less constrained by geometry than H-bond stabilization by D46. In addition to providing fundamental insights into Hh autoprocessing, our findings have important implications for protein engineering and enzyme design.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Daniel A. Ciulla
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Andrew G. Wagner
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Drew A. Castillo
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Allison S. Zwarycz
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zhongqian Lin
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Seth Beadle
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - José-Luis Giner
- Department of Chemistry, State University of New York-ESF, Syracuse, New York 13210, United States
| | - Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12222, United States
| | - Nilesh Banavali
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York 12222, United States
| | - Brian P. Callahan
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
8
|
Qu C, Hao B, Xu X, Wang Y, Yang C, Xu Z, Liu G. Functional Research on Three Presumed Asparagine Synthetase Family Members in Poplar. Genes (Basel) 2019; 10:E326. [PMID: 31035411 PMCID: PMC6562506 DOI: 10.3390/genes10050326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Asparagine synthetase (AS), a key enzyme in plant nitrogen metabolism, plays an important role in plant nitrogen assimilation and distribution. Asparagine (Asn), the product of asparagine synthetase, is one of the main compounds responsible for organic nitrogen transport and storage in plants. In this study, we performed complementation experiments using an Asn-deficient Escherichia coli strain to demonstrate that three putative asparagine synthetase family members in poplar (Populussimonii× P.nigra) function in Asn synthesis. Quantitative real-time PCR revealed that the three members had high expression levels in different tissues of poplar and were regulated by exogenous nitrogen. PnAS1 and PnAS2 were also affected by diurnal rhythm. Long-term dark treatment resulted in a significant increase in PnAS1 and PnAS3 expression levels. Under long-term light conditions, however, PnAS2 expression decreased significantly in the intermediate region of leaves. Exogenous application of ammonium nitrogen, glutamine, and a glutamine synthetase inhibitor revealed that PnAS3 was more sensitive to exogenous glutamine, while PnAS1 and PnAS2 were more susceptible to exogenous ammonium nitrogen. Our results suggest that the various members of the PnAS gene family have distinct roles in different tissues and are regulated in different ways.
Collapse
Affiliation(s)
- Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Bingqing Hao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- Guangxi Forestry Research Institute, Nanning 530000, China.
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Chengjun Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Zhiru Xu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), School of Forestry, Northeast Forestry University, Harbin 150040, China.
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
9
|
Xu H, Curtis TY, Powers SJ, Raffan S, Gao R, Huang J, Heiner M, Gilbert DR, Halford NG. Genomic, Biochemical, and Modeling Analyses of Asparagine Synthetases from Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2237. [PMID: 29379512 PMCID: PMC5775275 DOI: 10.3389/fpls.2017.02237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/20/2017] [Indexed: 05/12/2023]
Abstract
Asparagine synthetase activity in cereals has become an important issue with the discovery that free asparagine concentration determines the potential for formation of acrylamide, a probably carcinogenic processing contaminant, in baked cereal products. Asparagine synthetase catalyses the ATP-dependent transfer of the amino group of glutamine to a molecule of aspartate to generate glutamate and asparagine. Here, asparagine synthetase-encoding polymerase chain reaction (PCR) products were amplified from wheat (Triticum aestivum) cv. Spark cDNA. The encoded proteins were assigned the names TaASN1, TaASN2, and TaASN3 on the basis of comparisons with other wheat and cereal asparagine synthetases. Although very similar to each other they differed slightly in size, with molecular masses of 65.49, 65.06, and 66.24 kDa, respectively. Chromosomal positions and scaffold references were established for TaASN1, TaASN2, and TaASN3, and a fourth, more recently identified gene, TaASN4. TaASN1, TaASN2, and TaASN4 were all found to be single copy genes, located on chromosomes 5, 3, and 4, respectively, of each genome (A, B, and D), although variety Chinese Spring lacked a TaASN2 gene in the B genome. Two copies of TaASN3 were found on chromosome 1 of each genome, and these were given the names TaASN3.1 and TaASN3.2. The TaASN1, TaASN2, and TaASN3 PCR products were heterologously expressed in Escherichia coli (TaASN4 was not investigated in this part of the study). Western blot analysis identified two monoclonal antibodies that recognized the three proteins, but did not distinguish between them, despite being raised to epitopes SKKPRMIEVAAP and GGSNKPGVMNTV in the variable C-terminal regions of the proteins. The heterologously expressed TaASN1 and TaASN2 proteins were found to be active asparagine synthetases, producing asparagine and glutamate from glutamine and aspartate. The asparagine synthetase reaction was modeled using SNOOPY® software and information from the BRENDA database to generate differential equations to describe the reaction stages, based on mass action kinetics. Experimental data from the reactions catalyzed by TaASN1 and TaASN2 were entered into the model using Copasi, enabling values to be determined for kinetic parameters. Both the reaction data and the modeling showed that the enzymes continued to produce glutamate even when the synthesis of asparagine had ceased due to a lack of aspartate.
Collapse
Affiliation(s)
- Hongwei Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Tanya Y. Curtis
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Stephen J. Powers
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Sarah Raffan
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Jianhua Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Nigel G. Halford, Jianhua Huang,
| | - Monika Heiner
- Department of Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - David R. Gilbert
- Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nigel G. Halford
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
- *Correspondence: Nigel G. Halford, Jianhua Huang,
| |
Collapse
|
10
|
Abstract
The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation. This study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role in A. fumigatus virulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.
Collapse
|
11
|
Ito M, Kim YG, Tsuji H, Takahashi T, Kiwaki M, Nomoto K, Danbara H, Okada N. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity. PLoS One 2014; 9:e83876. [PMID: 24416179 PMCID: PMC3885529 DOI: 10.1371/journal.pone.0083876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.
Collapse
Affiliation(s)
- Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Mayumi Kiwaki
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Koji Nomoto
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Hirofumi Danbara
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc Natl Acad Sci U S A 2013; 110:2605-10. [PMID: 23359706 DOI: 10.1073/pnas.1221133110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the cytochrome p450 (CYP)21A2 gene, which encodes the enzyme steroid 21-hydroxylase, cause the majority of cases in congenital adrenal hyperplasia, an autosomal recessive disorder. To date, more than 100 CYP21A2 mutations have been reported. These mutations can be associated either with severe salt-wasting or simple virilizing phenotypes or with milder nonclassical phenotypes. Not all CYP21A2 mutations have, however, been characterized biochemically, and the clinical consequences of these mutations remain unknown. Using the crystal structure of its bovine homolog as a template, we have constructed a humanized model of CYP21A2 to provide comprehensive structural explanations for the clinical manifestations caused by each of the known disease-causing missense mutations in CYP21A2. Mutations that affect membrane anchoring, disrupt heme and/or substrate binding, or impair stability of CYP21A2 cause complete loss of function and salt-wasting disease. In contrast, mutations altering the transmembrane region or conserved hydrophobic patches cause up to a 98% reduction in enzyme activity and simple virilizing disease. Mild nonclassical disease can result from interference in oxidoreductase interactions, salt-bridge and hydrogen-bonding networks, and nonconserved hydrophobic clusters. A simple in silico evaluation of previously uncharacterized gene mutations could, thus, potentially help predict the often diverse phenotypes of a monogenic disorder.
Collapse
|
13
|
Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:13538-43. [PMID: 22869698 DOI: 10.1073/pnas.1206346109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations.
Collapse
|
14
|
Brown AM, Hoopes SL, White RH, Sarisky CA. Purine biosynthesis in archaea: variations on a theme. Biol Direct 2011; 6:63. [PMID: 22168471 PMCID: PMC3261824 DOI: 10.1186/1745-6150-6-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG) for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected) or Enzyme Commission (E. C.) numbers (57 proteins, 7.7%). There were also 57 proteins (7.7%) assigned overly generic names and 78 proteins (10.6%) without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is consistent with a pathway that has been shaped by horizontal gene transfer, duplication, and gene loss. Our results indicate that manual curation can improve upon automated annotation for a small number of automatically-annotated proteins and can reveal a need to identify further pathway components even in well-studied pathways. Reviewers This article was reviewed by Dr. Céline Brochier-Armanet, Dr Kira S Makarova (nominated by Dr. Eugene Koonin), and Dr. Michael Galperin.
Collapse
Affiliation(s)
- Anne M Brown
- Department of Chemistry, Roanoke College, Salem, VA 24153, USA
| | | | | | | |
Collapse
|
15
|
Wu XH, Zou GL, Quan JM, Wu YD. A theoretical study on the catalytic mechanism of Mus musculus adenosine deaminase. J Comput Chem 2010; 31:2238-47. [DOI: 10.1002/jcc.21513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Seco EM, Miranzo D, Nieto C, Malpartida F. The pcsA gene from Streptomyces diastaticus var. 108 encodes a polyene carboxamide synthase with broad substrate specificity for polyene amides biosynthesis. Appl Microbiol Biotechnol 2009; 85:1797-807. [PMID: 19707755 DOI: 10.1007/s00253-009-2193-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/29/2022]
Abstract
Two structurally related polyene macrolides are produced by Streptomyces diastaticus var. 108: rimocidin (3a) and CE-108 (2a). Both bioactive metabolites are biosynthesized from the same pathway through type I polyketide synthases by choosing a starter unit either acetate or butyrate, resulting in 2a or 3a formation, respectively. Two additional polyene amides, CE-108B (2b) and rimocidin B (3b), are also produced "in vivo" when this strain was genetically modified by transformation with engineered SCP2*-derived vectors carrying the ermE gene. The two polyene amides, 2b and 3b, showed improved pharmacological properties, and are generated by a tailoring activity involved in the conversion of the exocyclic carboxylic group of 2a and 3a into their amide derivatives. The improvement on some biological properties of the resulting polyenes, compared with that of the parental compounds, encourages our interest for isolating the tailoring gene responsible for the polyene carboxamide biosynthesis, aimed to use it as tool for generating new bioactive compounds. In this work, we describe the isolation from S. diastaticus var. 108 the corresponding gene, pcsA, encoding a polyene carboxamide synthase, belonging to the Class II glutamine amidotransferases and responsible for "in vivo" and "in vitro" formation of CE-108B (2b) and rimocidin B (3b). The fermentation broth from S. diastaticus var. 108 engineered with the appropriate pcsA gene construction, showed the polyene amides to be the major bioactive compounds.
Collapse
Affiliation(s)
- Elena M Seco
- Centro Nacional de Biotecnología del CSIC, Campus de la UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
|
18
|
LoPachin RM, Barber DS, Gavin T. Molecular mechanisms of the conjugated alpha,beta-unsaturated carbonyl derivatives: relevance to neurotoxicity and neurodegenerative diseases. Toxicol Sci 2007; 104:235-49. [PMID: 18083715 DOI: 10.1093/toxsci/kfm301] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Conjugated alpha,beta-unsaturated carbonyl derivatives such acrylamide, acrolein, and 4-hydroxy-2-nonenal (HNE) are members of a large class of chemicals known as the type-2 alkenes. Human exposure through diet, occupation, and pollution is pervasive and has been linked to toxicity in most major organs. Evidence suggests that these soft electrophiles produce toxicity by a common mechanism involving the formation of Michael-type adducts with nucleophilic sulfhydryl groups. In this commentary, the adduct chemistry of the alpha,beta-unsaturated carbonyls and possible protein targets will be reviewed. We also consider how differences in electrophilic reactivity among the type-2 alkenes impact corresponding toxicokinetics and toxicological expression. Whereas these concepts have mechanistic implications for the general toxicity of type-2 alkenes, this commentary will focus on the ability of these chemicals to produce presynaptic damage via protein adduct formation. Given the ubiquitous environmental presence of the conjugated alkenes, discussions of molecular mechanisms and possible neurotoxicological risks could be important. Understanding the neurotoxicodynamic of the type-2 alkenes might also provide mechanistic insight into neurodegenerative conditions where neuronal oxidative stress and presynaptic dysfunction are presumed initiating events. This is particularly germane to a recent proposal that lipid peroxidation and the subsequent liberation of acrolein and HNE in oxidatively stressed neurons mediate synaptotoxicity in brains of Alzheimer's disease patients. This endogenous neuropathogenic process could be accelerated by environmental type-2 alkene exposure because common nerve terminal proteins are targeted by alpha,beta-unsaturated carbonyl derivatives. Thus, the protein adduct chemistry of the conjugated type-2 alkenes offers a mechanistic explanation for the environmental toxicity induced by these chemicals and might provide insight into the pathogenesis of certain human neurodegenerative diseases.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA.
| | | | | |
Collapse
|
19
|
Zalkin H. The amidotransferases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 66:203-309. [PMID: 8430515 DOI: 10.1002/9780470123126.ch5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- H Zalkin
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
20
|
Mitani Y, Meng X, Kamagata Y, Tamura T. Characterization of LtsA from Rhodococcus erythropolis, an enzyme with glutamine amidotransferase activity. J Bacteriol 2005; 187:2582-91. [PMID: 15805504 PMCID: PMC1070375 DOI: 10.1128/jb.187.8.2582-2591.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nocardioform actinomycete Rhodococcus erythropolis has a characteristic cell wall structure. The cell wall is composed of arabinogalactan and mycolic acid and is highly resistant to the cell wall-lytic activity of lysozyme (muramidase). In order to improve the isolation of recombinant proteins from R. erythropolis host cells (N. Nakashima and T. Tamura, Biotechnol. Bioeng. 86:136-148, 2004), we isolated two mutants, L-65 and L-88, which are susceptible to lysozyme treatment. The lysozyme sensitivity of the mutants was complemented by expression of Corynebacterium glutamicum ltsA, which codes for an enzyme with glutamine amidotransferase activity that results from coupling of two reactions (a glutaminase activity and a synthetase activity). The lysozyme sensitivity of the mutants was also complemented by ltsA homologues from Bacillus subtilis and Mycobacterium tuberculosis, but the homologues from Streptomyces coelicolor and Escherichia coli did not complement the sensitivity. This result suggests that only certain LtsA homologues can confer lysozyme resistance. Wild-type recombinant LtsA from R. erythropolis showed glutaminase activity, but the LtsA enzymes from the L-88 and L-65 mutants displayed drastically reduced activity. Interestingly, an ltsA disruptant mutant, which expressed the mutated LtsA, changed from lysozyme sensitive to lysozyme resistant when NH(4)Cl was added into the culture media. The glutaminase activity of the LtsA mutants inactivated by site-directed mutagenesis was also restored by addition of NH(4)Cl, indicating that NH(3) can be used as an amide donor molecule. Taken together, these results suggest that LtsA is critically involved in mediating lysozyme resistance in R. erythropolis cells.
Collapse
Affiliation(s)
- Yasuo Mitani
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | |
Collapse
|
21
|
Wrenger C, Eschbach ML, Müller IB, Warnecke D, Walter RD. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J Biol Chem 2004; 280:5242-8. [PMID: 15590634 DOI: 10.1074/jbc.m412475200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin B6 is an essential cofactor for more than 100 enzymatic reactions. Mammalian cells are unable to synthesize vitamin B6 de novo, whereas bacteria, plants, fungi, and as shown here Plasmodium falciparum possess a functional vitamin B6 synthesis pathway. P. falciparum expresses the proteins Pdx1 and Pdx2, corresponding to the yeast enzymes Snz1-p and Sno1-p, which are essential for the vitamin B6 biosynthesis. An involvement of PfPdx1 and PfPdx2 in the de novo synthesis of vitamin B6 was shown by complementation of pyridoxine auxotroph yeast cells. Both plasmodial proteins act together in the glutaminase activity with a specific activity of 209 nmol min(-1) mg(-1) and a K(m) value for glutamine of 1.3 mm. Incubation of the parasites with methylene blue revealed by Northern blot analysis an elevated transcriptional level of pdx1 and pdx2, suggesting a participation of these proteins in the defenses against singlet oxygen. To be an active cofactor, vitamin B6 has to be phosphorylated by the pyridoxine kinase (PdxK). The recombinant plasmodial PdxK revealed K(m) values for the B6 vitamers pyridoxine and pyridoxal and for ATP of 212, 70, and 82 microM, respectively. All three enzymes expose a stage-specific transcription pattern within the trophozoite stage that guarantees the concurrent expression of Pdx1, Pdx2, and PdxK for the indispensable provision of vitamin B6. The occurrence of the vitamin B6 de novo synthesis pathway displays a potential new drug target, which can be exploited for the development of new chemotherapeutics against the human malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Carsten Wrenger
- Department of Biochemistry, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, D-20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Dong YX, Sueda S, Nikawa JI, Kondo H. Characterization of the products of the genes SNO1 and SNZ1 involved in pyridoxine synthesis in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 271:745-52. [PMID: 14764090 DOI: 10.1111/j.1432-1033.2003.03973.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genes SNO1 and SNZ1 are Saccharomyces cerevisiae homologues of PDX2 and PDX1 which participate in pyridoxine synthesis in the fungus Cercospora nicotianae. In order to clarify their function, the two genes SNO1 and SNZ1 were expressed in Escherichia coli either individually or simultaneously and with or without a His-tag. When expressed simultaneously, the two protein products formed a complex and showed glutaminase activity. When purified to homogeneity, the complex exhibited a specific activity of 480 nmol.mg(-1).min(-1) as glutaminase, with a Km of 3.4 mm for glutamine. These values are comparable to those for other glutamine amidotransferases. In addition, the glutaminase activity was impaired by 6-diazo-5-oxo-L-norleucine in a time- and dose-dependent manner and the enzyme was protected from deactivation by glutamine. These data suggest strongly that the complex of Sno1p and Snz1p is a glutamine amidotransferase with the former serving as the glutaminase, although the activity was barely detectable with Sno1p alone. The function of Snz1p and the amido acceptor for ammonia remain to be identified.
Collapse
Affiliation(s)
- Yi-Xin Dong
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Iizuka, Japan
| | | | | | | |
Collapse
|
23
|
Møller MG, Taylor C, Rasmussen SK, Holm PB. Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.). BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:123-32. [PMID: 12890559 DOI: 10.1016/s0167-4781(03)00137-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two different cDNA clones encoding asperagine synthetase (AS: EC 6.3.5.4.) were cloned from barley (Hordeum vulgare L. cv. Alexis). The corresponding genes were designated HvAS1 (GenBank no AF307145) and HvAS2 (GenBank no AY193714). Chromosomal mapping using wheat-barley addition lines revealed that the HvAS1 gene is located on the long arm of barley chromosome 5, while the HvAS2 gene maps to the short arm of chromosome 3. Both genes are expressed in barley leaves according to RT-PCR analysis but only the HvAS1 gene expression can be detected in roots. Northern blots show no expression of HvAS1 in plants grown under a normal 16 h light/8 h dark cycle but after 10 h of continuous darkness, transcript appears and mRNA accumulates over a 48-h period of dark treatment. In roots, low-level expression of HvAS1 could be detected and the expression level appears to be unaffected by light. A polyclonal antibody was raised against the HvAS1 protein and used in Western blot analysis. The AS protein accumulated during a 48-h period of dark treatment, following the increase in HvAS1 transcript.
Collapse
Affiliation(s)
- Marianne G Møller
- Research Centre Flakkebjerg, Department of Plant Biology, Danish Institute of Agricultural Sciences, Slagelse, DK-4200, Denmark
| | | | | | | |
Collapse
|
24
|
Schnizer HG, Boehlein SK, Stewart JD, Richards NGJ, Schuster SM. gamma-Glutamyl thioester intermediate in glutaminase reaction catalyzed by Escherichia coli asparagine synthetase B. Methods Enzymol 2003; 354:260-71. [PMID: 12418233 DOI: 10.1016/s0076-6879(02)54022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Holly G Schnizer
- Department of Biochemistry, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
25
|
Herrera-Rodríguez MB, Carrasco-Ballesteros S, Maldonado JM, Pineda M, Aguilar M, Pérez-Vicente R. Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower (Helianthus annuus). THE NEW PHYTOLOGIST 2002; 155:33-45. [PMID: 33873300 DOI: 10.1046/j.1469-8137.2002.00437.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
• Asparagine metabolism in sunflower (Helianthus annuus) was investigated by cDNA cloning, sequence characterization and expression analysis of three genes encoding different isoforms of asparagine synthetase (AS, EC 6.3.5.4). • The AS-coding sequences were searched for in leaves, roots and cotyledons by using a methodology based on the simultaneous amplification of different cDNAs. Three distinct AS-coding genes, HAS1, HAS1.1 and HAS2, were identified. • HAS1 and HAS1.1 are twin genes with closely related sequences that share some regulatory features. By contrast, HAS2 is a singular sequence that encodes an incomplete AS polypeptide and shows an unusual regulation. The functionality of both the complete HAS1 and the truncated HAS2 proteins was demonstrated by complementation assays. Northern analysis revealed that HAS1, HAS1.1 and HAS2 were differentially regulated dependent on the organ, the physiological status, the developmental stage and the light conditions. • Asparagine synthetase from sunflower is encoded by a small gene family whose members have achieved a significant degree of specialization to cope with the major situations requiring asparagine synthesis.
Collapse
Affiliation(s)
- María Begoña Herrera-Rodríguez
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - Susana Carrasco-Ballesteros
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| | - José María Maldonado
- Departamento de Fisiología Vegetal y Ecología, Unidad de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda, Reina Mercedes 6, E-41012 Seville, Spain
| | - Manuel Pineda
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Miguel Aguilar
- Departamento de Bioquímica y Biología Molecular. Universidad de Córdoba, Campus Rabanales, Edif. C-6, 1a Planta, E-14071 Córdoba, Spain
| | - Rafael Pérez-Vicente
- Departamento de Biología Vegetal, División de Fisiología Vegetal, Universidad de Córdoba, Avda. San Alberto Magno s/n, E-14071 Córdoba, Spain
| |
Collapse
|
26
|
Milewski S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:173-92. [PMID: 12044898 DOI: 10.1016/s0167-4838(02)00318-7] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
L-Glutamine: D-fructose-6-phosphate amidotransferase, known under trivial name of glucosamine-6-phosphate synthase, as the only member of the amidotransferase subfamily of enzymes, does not display any ammonia-dependent activity. This enzyme, catalysing the first committed step in a pathway leading to the eventual formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), is an important point of metabolic control in biosynthesis of amino sugar-containing macromolecules. The molecular mechanism of reaction catalysed by GlcN-6-P synthase is complex and involves both amino transfer and sugar isomerisation. Substantial alterations to the enzyme structure and properties have been detected in different neoplastic tissues. GlcN-6-P synthase is inflicted in phenomenon of hexosamine-induced insulin resistance in diabetes. Finally, this enzyme has been proposed as a promising target in antifungal chemotherapy. Most of these issues, especially their molecular aspects, have been extensively studied in recent years. This article provides a comprehensive overview of the present knowledge on this multi-facets enzyme.
Collapse
Affiliation(s)
- Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland.
| |
Collapse
|
27
|
Richards NG, Schuster SM. An alternative mechanism for the nitrogen transfer reaction in asparagine synthetase. FEBS Lett 2001; 313:98-102. [PMID: 1358677 DOI: 10.1016/0014-5793(92)81421-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the absence of crystallographic data, the mechanism of nitrogen transfer from glutamine in asparagine synthetase (AS) remains under active investigation. Surprisingly, the glutamine-dependent AS from Escherichia coli (AsnB) appears to lack a conserved histidine residue, necessary for nitrogen transfer if the reaction proceeds by the accepted pathway in other glutamine amidotransferases, but retains the ability to synthesize asparagine. We propose an alternative mechanism for nitrogen transfer in AsnB which obviates the requirement for participation of histidine in this step. Our hypothesis may also be more generally applicable to other glutamine-dependent amidotransferases.
Collapse
Affiliation(s)
- N G Richards
- Department of Chemistry, University of Florida, Gainesville 32611
| | | |
Collapse
|
28
|
He X, Agnihotri G, Liu Hw HW. Novel enzymatic mechanisms in carbohydrate metabolism. Chem Rev 2000; 100:4615-62. [PMID: 11749360 DOI: 10.1021/cr9902998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X He
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712
| | | | | |
Collapse
|
29
|
Kasai K, Fujie M, Nakanishi Y, Murooka Y, Usami S, Yamada T. Molecular cloning and characterization of two cDNAs encoding asparagine synthetase from Astragalus sinicus nodules. J Biosci Bioeng 2000; 89:559-63. [PMID: 16232798 DOI: 10.1016/s1389-1723(00)80057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2000] [Accepted: 03/12/2000] [Indexed: 10/18/2022]
Abstract
Two cDNAs that encode asparagine synthetase were cloned from root nodules of Astragalus sinicus cv. Japan (Renge-sou). The expression of the transcripts was nodule-enhanced. The expression of both genes was reduced in nodules when (NH4)2SO4 was added to the culture medium. This is the first report of the inhibition of asparagine synthetase gene expression by ammonium in root nodules.
Collapse
Affiliation(s)
- K Kasai
- Department of Fermentation Technology, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Hewagama A, Guy HI, Vickrey JF, Evans DR. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad). J Biol Chem 1999; 274:28240-5. [PMID: 10497179 DOI: 10.1074/jbc.274.40.28240] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.
Collapse
Affiliation(s)
- A Hewagama
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Three asparagine synthetase genes, asnB, asnH, and asnO (yisO), were predicted from the sequence of the Bacillus subtilis genome. We show here that the three genes are expressed differentially during cell growth. In a rich sporulation medium, expression of asnB was detected only during exponential growth, that of asnH was drastically elevated at the transition between exponential growth and stationary phase, and that of asnO was seen only later in sporulation. In a minimal medium, both asnB and asnH were expressed constitutively during exponential growth and in stationary phase, while the expression of asnO was not detected in either phase. However, when the minimal medium was supplemented with asparagine, only the expression of asnH was partially repressed. Transcription analyses revealed that asnB was possibly cotranscribed with a downstream gene, ytnA, while the asnH gene was transcribed as the fourth gene of an operon comprising yxbB, yxbA, yxnB, asnH, and yxaM. The asnO gene is a monocistronic operon, the expression of which was dependent on one of the sporulation sigma factors, sigma-E. Each of the three genes, carried on a low-copy-number plasmid, complemented the asparagine deficiency of an Escherichia coli strain lacking asparagine synthetases, indicating that all encode an asparagine synthetase. In B. subtilis, deletion of asnO or asnH, singly or in combination, had essentially no effect on growth rates in media with or without asparagine. In contrast, deletion of asnB led to a slow-growth phenotype, even in the presence of asparagine. A strain lacking all three genes still grew without asparagine, albeit very slowly, implying that B. subtilis might have yet another asparagine synthetase, not recognized by sequence analysis. The strains lacking asnO failed to sporulate, indicating an involvement of this gene in sporulation.
Collapse
Affiliation(s)
- K Yoshida
- Department of Biotechnology, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | |
Collapse
|
32
|
Milewski S, Kuszczak D, Jedrzejczak R, Smith RJ, Brown AJ, Gooday GW. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase. J Biol Chem 1999; 274:4000-8. [PMID: 9933591 DOI: 10.1074/jbc.274.7.4000] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans glucosamine-6-phosphate (GlcN-6-P) synthase was purified to apparent homogeneity with 52% yield from recombinant yeast YRSC-65 cells efficiently overexpressing the GFA1 gene. The pure enzyme exhibited Km(Gln) = 1.56 mM and Km(Fru-6-P) = 1.41 mM and catalyzed GlcN-6-P formation with kcat = 1150 min-1. The isoelectric point of 4.6 +/- 0.05 was estimated from isoelectric chromatofocusing. Gel filtration, native polyacrylamide gel electrophoresis, subunit cross-linking, and SDS-polyacrylamide gel electrophoresis showed that the native enzyme was a homotetramer of 79.5-kDa subunits, with an apparent molecular mass of 330-340 kDa. Results of chemical modification of the enzyme by group-specific reagents established an essential role of a cysteinyl residue at the glutamine-binding site and histidyl, lysyl, arginyl, and tyrosyl moieties at the Fru-6-P-binding site. GlcN-6-P synthase in crude extract was effectively inhibited by UDP-GlcNAc (IC50 = 0.67 mM). Purification of the enzyme markedly decreased the sensitivity to the inhibitor, but this could be restored by addition of another effector, glucose 6-phosphate. Binding of UDP-GlcNAc to the pure enzyme in the presence of Glc-6-P showed strong negative cooperativity, with nH = 0.54, whereas in the absence of this sugar phosphate no cooperative effect was observed. Pure enzyme was a substrate for cAMP-dependent protein kinase, the action of which led to the substantial increase of GlcN-6-P synthase activity, correlated with an extent of protein phosphorylation. The maximal level of activity was observed for the enzyme molecules containing 1. 21 +/- 0.08 mol of phosphate/mol of GlcN-6-P synthase. Monitoring of GlcN-6-P synthase activity and its sensitivity to UDP-GlcNAc during yeast --> mycelia transformation of C. albicans cells, under in situ conditions, revealed a marked increase of the former and a substantial fall of the latter.
Collapse
Affiliation(s)
- S Milewski
- Department of Pharmaceutical Technology and Biochemistry, Technical University of Gdańsk, 11/12 Narutowicza Street, 80-952 Gdańsk, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Delavault P, Estabrook E, Albrecht H, Wrobel R, Yoder JI. Host-root exudates increase gene expression of asparagine synthetase in the roots of a hemiparasitic plant Triphysaria versicolor (Scrophulariaceae). Gene 1998; 222:155-62. [PMID: 9831643 DOI: 10.1016/s0378-1119(98)00502-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Triphysaria is a facultative root parasite in the Scrophulariaceae family. Similar to other related parasites, the development of the parasitic life cycle is initiated by molecular signals released from appropriate host roots. Using a differential display, we isolated cDNAs preferentially abundant in T. versicolor roots exposed to Trifolium repens (white clover) root exudates in vitro. Sequence analysis indicated that one of the differentially expressed cDNAs had significant homology to the nitrogen-assimilating enzyme, asparagine synthetase (AS). T. versicolor AS cDNA clones were isolated and placed into three distinct classes on the basis of nucleotide sequence variations. All three classes encoded identical AS proteins. AS was expressed in both roots and shoots of in-vitro-cultured T. versicolor. Steady-state levels of AS mRNA increased in T. versicolor roots several-fold when seedlings were exposed to exudate obtained from hydroponically grown Arabidopsis thaliana roots. Therefore, AS transcript levels increased in response to exudates from two different hosts (Trifolium and Arabidopsis). The T. versicolor AS message levels increased to a similar magnitude when seedlings were incubated in the dark. Interestingly, AS levels were unaffected by treatment with the Striga haustoria inducer 2,6-dimethoxybenzoquinone. The potential role of AS in root parasitism is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Aspartate-Ammonia Ligase/genetics
- Base Sequence
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Parasite Interactions
- Magnoliopsida/enzymology
- Magnoliopsida/genetics
- Magnoliopsida/parasitology
- Molecular Sequence Data
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/parasitology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Signal Transduction
Collapse
Affiliation(s)
- P Delavault
- Department of Vegetable Crops, University of California-Davis, Davis, CA 95616-9659, USA
| | | | | | | | | |
Collapse
|
34
|
Hewagama A, Guy HI, Chaparian M, Evans DR. The function of Glu338 in the catalytic triad of the carbamoyl phosphate synthetase amidotransferase domain. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:489-99. [PMID: 9858783 DOI: 10.1016/s0167-4838(98)00212-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synthesis of carbamoyl phosphate by the mammalian multifunctional protein, CAD, involves the concerted action of the 40 kDa amidotransferase domain (GLN), that hydrolyzes glutamine and the 120 kDa synthetase (CPS) domain that uses the ammonia, thus produced, ATP and bicarbonate to make carbamoyl phosphate. The separately cloned GLN domain has very low activity due to a reduction in kcat and an increase in Km but forms a hybrid complex with the isolated Escherichia coli CPS subunit. The hybrid has full glutamine-dependent catalytic activity and a functional interdomain linkage. The mammalian-E. coli hybrid was used to investigate the functional consequence of replacing His336 and Glu338, two residues postulated to participate in catalysis as part of a catalytic triad. The mutant mammalian GLN domains formed stable complexes with the E. coli CPS subunit, but the catalytic activity was severely impaired. While the His336Asn mutant does not form measurable amounts of the gamma-glutamyl thioester, the steady state concentration of the intermediate with the Glu338Gly mutant was comparable to the wild type hybrid because both the rate of formation and breakdown of the thioester are reduced. This result is consistent with the postulated role of Glu338 in maintaining His336 in the optimal orientation for catalysis and suggests a mechanism for the GLN CPS functional linkage.
Collapse
Affiliation(s)
- A Hewagama
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
35
|
Lam HM, Hsieh MH, Coruzzi G. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:345-353. [PMID: 9881155 DOI: 10.1046/j.1365-313x.1998.00302.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plants, the amino acid asparagine serves as an important nitrogen transport compound whose levels are dramatically regulated by light in many plant species, including Arabidopsis thaliana. To elucidate the mechanisms regulating the flux of assimilated nitrogen into asparagine, we examined the regulation of the gene family for asparagine synthetase in Arabidopsis. In addition to the previously identified ASN1 gene, we identified a novel class of asparagine synthetase genes in Arabidopsis (ASN2 and ASN3) by functional complementation of a yeast asparagine auxotroph. The proteins encoded by the ASN2/3 cDNAs contain a Pur-F type glutamine-binding triad suggesting that they, like ASN1, encode glutamine-dependent asparagine synthetase isoenzymes. However, the ASN2/3 isoenzymes form a novel dendritic group with monocot AS genes which is distinct from all other dicot AS genes including Arabidopsis ASN1. In addition to these distinctions in sequence, the ASN1 and ASN2 genes are reciprocally regulated by light and metabolites. Time-course experiments reveal that light induces levels of ASN2 mRNA while it represses levels of ASN1 mRNA in a kinetically reciprocal fashion. Moreover, the levels of ASN2 and ASN1 mRNA are also reciprocally regulated by carbon and nitrogen metabolites. The distinct regulation of ASN1 and ASN2 genes combined with their distinct encoded isoenzymes suggest that they may play different roles in nitrogen metabolism, as discussed in this paper.
Collapse
Affiliation(s)
- H M Lam
- Chinese University of Hong Kong, Department of Biology, Shantin, N.T
| | | | | |
Collapse
|
36
|
Boehlein SK, Stewart JD, Walworth ES, Thirumoorthy R, Richards NG, Schuster SM. Kinetic mechanism of Escherichia coli asparagine synthetase B. Biochemistry 1998; 37:13230-8. [PMID: 9748330 DOI: 10.1021/bi981058h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Escherichia coli asparagine synthetase B (AS-B) catalyzes the synthesis of asparagine from aspartate, glutamine, and ATP. A combination of kinetic, isotopic-labeling, and stoichiometry studies have been performed to define the nature of nitrogen transfer mediated by AS-B. The results of initial rate studies were consistent with initial binding and hydrolysis of glutamine to glutamate plus enzyme-bound ammonia. The initial velocity results were equally consistent with initial binding of ATP and aspartate prior to glutamine binding. However, product inhibition studies were only consistent with the latter pathway. Moreover, isotope-trapping studies confirmed that the enzyme-ATP-aspartate complex was kinetically competent. Studies using 18O-labeled aspartate were consistent with formation of a beta-aspartyl-AMP intermediate, and stoichiometry studies revealed that 1 equiv of this intermediate formed on the enzyme in the absence of a nitrogen source. Taken together, our results are most consistent with initial formation of beta -aspartyl-AMP intermediate prior to glutamine binding. This sequence leaves open many possibilities for the chemical mechanism of nitrogen transfer.
Collapse
Affiliation(s)
- S K Boehlein
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
37
|
Goto S, Akagawa T, Kojima S, Hayakawa T, Yamaya T. Organization and structure of NADH-dependent glutamate synthase gene from rice plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:298-308. [PMID: 9748637 DOI: 10.1016/s0167-4838(98)00142-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genomic clones for NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) were obtained from a genomic library of rice (Oryza sativa L. cv. Sasanishki). A genomic clone (lambdaOS42, 14 kb) covered an entire structural gene and a 3.7 kb 5'-upstream region from the first methionine. Another clone (lambdaOS23, 14 kb) contained a 2.8 kb 3'-downstream region from the stop codon. A 7047 bp long clone (lambdaOSR51) consisting of full length cDNA for NADH-GOGAT was isolated from a cDNA library prepared using mRNA from roots of rice seedlings treated with 1 mM NH4Cl for 12 h. The presumed transcribed region (11.7 kb) consisted of 23 exons separated by 22 introns. Rice NADH-GOGAT is synthesized as a 2166 amino acid protein with a molecular mass of 236.7 kDa that includes a 99 amino acid presequence. DNA gel blot analysis suggested that NADH-GOGAT occurred as a single gene in rice. Primer extension experiments map the transcription start of NADH-GOGAT to identical positions. The 3. 7 kb 5'-upstream region was able to transiently express a reporter gene in cultured rice cells. Putative motifs related to the regulation of NADH-GOGAT gene expression were looked for within the 5'-upstream region by database.
Collapse
Affiliation(s)
- S Goto
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
38
|
Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:145-98. [PMID: 9559053 DOI: 10.1002/9780470123188.ch5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.
Collapse
Affiliation(s)
- N G Richards
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
39
|
Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:87-144. [PMID: 9559052 DOI: 10.1002/9780470123188.ch4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amide nitrogen from glutamine is a major source of nitrogen atoms incorporated biosynthetically into other amino acids, purine and pyrimidine bases, amino-sugars, and coenzymes. A family comprised of at least sixteen amidotransferases are known to catalyze amide nitrogen transfer from glutamine to their acceptor substrates. Recent fine structural advances, largely as a result of X-ray crystallography, now provide structure-based mechanisms that help to explain fundamental aspects of the catalytic and regulatory interactions of several of these aminotransferases. This chapter provides an overview of this recent progress made on the characterization of amidotransferase structure and mechanism.
Collapse
|
40
|
Yamagata H, Nakajima A, Bowler C, Iwasaki T. Molecular cloning and characterization of a cDNA encoding asparagine synthetase from soybean (Glycine max L.) cell cultures. Biosci Biotechnol Biochem 1998; 62:148-50. [PMID: 9501527 DOI: 10.1271/bbb.62.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A cDNA encoding glutamine-dependent asparagine synthetase was isolated from dark-adapted Glycine max cell culture. The deduced amino acid sequence showed 76-89% identity with other plant sequences. The gene for asparagine synthetase is expressed predominantly in shoots as compared to roots of etiolated plants and the level of expression decreases following light treatment, suggesting that the gene expression is down-regulated by light.
Collapse
Affiliation(s)
- H Yamagata
- Laboratory of Biochemistry, Faculty of Agriculture, Kobe University, Japan
| | | | | | | |
Collapse
|
41
|
Investigation of Mechanism of Nitrogen Transfer in Glucosamine 6-Phosphate Synthase with the Use of Transition State Analogs. Bioorg Chem 1997. [DOI: 10.1006/bioo.1997.1077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Suzuki A, Rothstein S. Structure and regulation of ferredoxin-dependent glutamase synthase from Arabidopsis thaliana. Cloning of cDNA expression in different tissues of wild-type and gltS mutant strains, and light induction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:708-18. [PMID: 9057836 DOI: 10.1111/j.1432-1033.1997.00708.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ferredoxin (Fd)-dependent glutamate synthase is present in green leaves, etiolated leaves, shoots and roots of Arabidopsis thaliana (ecotype Columbia). In photosynthetic green leaves and shoots, Fd-dependent glutamate synthase accounts for more than 96% of the total glutamate synthase activity in vitro with the remaining activity derived from an enzyme that uses NADH as the electron donor. In etiolated leaves and roots, Fd-dependent glutamate synthase is 3-4-fold less active than in green leaves, but represents 70-85% of the total glutamate synthase activity in these tissues. Fd-dependent glutamate synthase is detected as a single peptide of 165 kDa on a western blot of green leaf and shoot tissues, and this Fd-dependent glutamate synthase polypeptide is 3-4-fold less abundant in etiolated leaves and roots. In these non-photosynthetic tissues, there is a higher activity of NADH-dependent glutamate synthase. The A. thaliana gltS mutant (strain CS254) contains only 1.7% and 17.5% of the wild-type Fd-dependent glutamate synthase activity in leaves and roots, respectively. Western blots indicate that the Fd-dependent glutamate synthase peptide of 165 kDa is absent from leaves and roots of the gltS mutant. In contrast, NADH-dependent glutamate synthase activity in leaves and roots is unaffected. During illumination of wild-type dark-grown leaves for 72 h, the levels of Fd-dependent glutamate synthase protein and its activity increased threefold to levels equivalent to those in green leaves. In contrast, NADH-dependent glutamate synthase activity decrease twofold during illumination. The complete nucleotide sequence of the complementary DNA for A. thaliana Fd-dependent glutamate synthase has been determined. Analysis of the amino acid sequence deduced from the complete cDNA sequence (5178 bp) has revealed that A. thaliana Fd-dependent glutamate synthase is synthesized as a 1648-amino-acid precursor protein (180090 Da) which consists of a 131-amino-acid transit peptide (14603 Da) and a 1517-amino-acid mature peptide (165487 Da). The A. thaliana Fd-dependent glutamate synthase has a high similarity to maize Fd-dependent glutamate synthase (83%) and to the analogous region of NADH-dependent glutamate synthase (42%) and NADPH-dependent glutamate synthases (40-43%) from different organisms. The A. thaliana Fd-dependent glutamate synthase contains the purF-type glutamine-amido-transfer domain as well as flavin and iron-sulfur-cluster-binding domains. The deduced primary structures of A. thaliana Fd-dependent glutamate synthase and of glutamate synthases from other organisms indicate that Fd-dependent glutamate synthase may have evolved from bacterial NADPH-dependent glutamate synthase. The cDNA hybridized to RNA of about 5.3 kb from different tissues of A. thaliana. A high steady-state level of Fd-dependent glutamate synthase mRNA is found in photosynthetic green leaves and shoots, and roots contain less mRNA for Fd-dependent glutamate synthase. In the gltS mutant, there are twofold and fourfold lower levels of Fd-dependent glutamate synthase mRNA in leaves and roots, respectively, relative to those in wild-type A. thaliana. Under continuous illumination of dark-grown leaves, the Fd-dependent glutamate synthase mRNA is induced twofold to a level equivalent to that in green leaves.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, Institut National de la Recherche Agronomique, Versailles, France
| | | |
Collapse
|
43
|
Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 1996; 4:801-10. [PMID: 8805567 DOI: 10.1016/s0969-2126(96)00087-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Amidotransferases use the amide nitrogen of glutamine in a number of important biosynthetic reactions. They are composed of a glutaminase domain, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, and a synthetase domain, catalyzing amination of the substrate. To gain insight into the mechanism of nitrogen transfer, we examined the structure of the glutaminase domain of glucosamine 6-phosphate synthase (GLMS). RESULTS The crystal structures of the enzyme complexed with glutamate and with a competitive inhibitor, Glu-hydroxamate, have been determined to 1.8 A resolution. The protein fold has structural homology to other members of the superfamily of N-terminal nucleophile (Ntn) hydrolases, being a sandwich of antiparallel beta sheets surrounded by two layers of alpha helices. CONCLUSIONS The structural homology between the glutaminase domain of GLMS and that of PRPP amidotransferase (the only other Ntn amidotransferase whose structure is known) indicates that they may have diverged from a common ancestor. Cys1 is the catalytic nucleophile in GLMS, and the nucleophilic character of its thiol group appears to be increased through general base activation by its own alpha-amino group. Cys1 can adopt two conformations, one active and one inactive; glutamine binding locks the residue in a predetermined conformation. We propose that when a nitrogen acceptor is present Cys1 is kept in the active conformation, explaining the phenomenon of substrate-induced activation of the enzyme, and that Arg26 is central in this coupling.
Collapse
Affiliation(s)
- M N Isupov
- Department of Chemistry and Biological Sciences, University of Exeter, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim JH, Krahn JM, Tomchick DR, Smith JL, Zalkin H. Structure and function of the glutamine phosphoribosylpyrophosphate amidotransferase glutamine site and communication with the phosphoribosylpyrophosphate site. J Biol Chem 1996; 271:15549-57. [PMID: 8663035 DOI: 10.1074/jbc.271.26.15549] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase from Escherichia coli exhibits a basal PRPP-independent glutaminase activity having a kcat/Km that is 0.3% of fully active enzyme. Binding of PRPP activates the enzyme by a structural change that lowers the Km for glutamine 100-fold and couples glutamine hydrolysis to synthesis of 5-phosphoribosylamine. By analysis of the x-ray structure of the glutamine site containing bound 6-diazo-5-oxonorleucine, a glutamine affinity analog, and by site-directed mutagenesis we have identified residues important for glutamine binding, catalysis, and coupling with PRPP. Tyr74 is a key residue in the coupling between the sites for glutamine in the NH2-terminal domain and PRPP in the COOH-terminal domain. Arg73 and Asp127 have roles in glutamine binding. The x-ray structure indicates that there are no amino acid side chains sufficiently close to Cys1 to participate as a proton acceptor in formation of the thiolate needed for nucleophilic attack on the carboxamide of glutamine, nor as a general acid for amide nitrogen transfer. Based on the x-ray model of the glutamine site and analysis of a mutant enzyme we propose that the free NH2 terminus of Cys1 functions as the proton acceptor and donor. The results indicate that the side chain of Asn101 and the backbone nitrogen of Gly102 function to stabilize a tetrahedral oxyanion resulting from attack of Cys1 on the glutamine carboxamide. Cys1, Arg73, Asn101, Gly102, and Asp127 are conserved in the NH2-terminal domain of a subfamily of amidotransferases that includes asparagine synthetase, glucosamine 6-phosphate synthase, and glutamate synthase, implying a common function in the four enzymes. Tyr74, on the other hand, is conserved only in glutamine PRPP amidotransferase sequences consistent with a specific role in interdomain coupling. The catalytic framework of key glutamine site residues supports the assignment of glutamine PRPP amidotransferase to a recently described Ntn (NH2-terminal nucleophile) hydrolase family of enzymes.
Collapse
Affiliation(s)
- J H Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA
| | | | | | | | | |
Collapse
|
45
|
Johnson RS. Mass spectrometric measurement of changes in protein hydrogen exchange rates that result from point mutations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1996; 7:515-521. [PMID: 24203423 DOI: 10.1016/1044-0305(96)00009-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/1995] [Revised: 12/05/1995] [Accepted: 12/19/1995] [Indexed: 06/02/2023]
Abstract
Point mutations, as well as additions or deletions of entire domains, are frequently produced to study protein function; however, to infer function from mutant proteins, it is imperative that their structural integrity be verified. Although detailed structural studies can be performed by using NMR or crystallography, for practical reasons mutant proteins usually are characterized by using less rigorous techniques. Here it is shown that measurement of hydrogen exchange rates via electrospray ionization mass spectrometry is a sensitive and generally applicable method for detection of conformational or dynamic changes that result from point mutations. Hydrogen exchange experiments were performed on a bacterial phosphocarrier protein (HPr) and two variants produced by conversion of either serine-46 to aspartic acid (S46D) or serine-31 to alanine (S31A), where the differences in the ΔG of folding relative to the wild type were 1.5 and 0.5 kcal/mol, respectively. Whereas no significant differences were found for the intact mutant and wild-type proteins, changes in deuterium incorporation could be detected within specific regions produced by peptic proteolysis of the deuterium-labeled proteins. Thus, energetically small changes in conformation (or dynamics) that result from point mutations can be characterized by mass spectrometric measurements of hydrogen exchange rates. Furthermore, these changes can be localized to specific regions within the protein.
Collapse
Affiliation(s)
- R S Johnson
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
46
|
Waterhouse RN, Smyth AJ, Massonneau A, Prosser IM, Clarkson DT. Molecular cloning and characterisation of asparagine synthetase from Lotus japonicus: dynamics of asparagine synthesis in N-sufficient conditions. PLANT MOLECULAR BIOLOGY 1996; 30:883-897. [PMID: 8639748 DOI: 10.1007/bf00020801] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two cDNA clones, LJAS1 and LJAS2, encoding different asparagine synthetases (AS) have been identified and sequenced and their expression in Lotus japonicus characterised. Analysis of predicted amino acid sequences indicted a high level of identity with other plant AS sequences. No other AS genes were detected in the L. japonicus genome. LJAS1 gene expression was found to be root-enhanced and lower levels of transcript were also identified in photosynthetic tissues. In contrast, LJAS2 gene expression was root-specific. These patterns of AS gene expression are different from those seen in pea. AS gene expression was monitored throughout a 16 h light/8 h dark day, under nitrate-sufficient conditions. Neither transcript showed the dark-enhanced accumulation patterns previously reported for other plant AS genes. To evaluate AS activity, the molecular dynamics of asparagine synthesis were examined in vivo using 15N-ammonium labelling. A constant rate of asparagine synthesis in the roots was observed. Asparagine was the most predominant amino-component of the xylem sap and became labelled at a slightly slower rate than the asparagine in the roots, indicating that most root asparagine was located in a cytoplasmic 'transport' pool rather than in a vacuolar 'storage' pool. The steady-state mRNA levels and the 15N-labelling data suggest that light regulation of AS gene expression is not a factor controlling N-assimilation in L. japonicus roots during stable growth in N-sufficient conditions.
Collapse
Affiliation(s)
- R N Waterhouse
- Department of Agricultural Sciences, University of Bristol, UK
| | | | | | | | | |
Collapse
|
47
|
Kim JH, Wolle D, Haridas K, Parry RJ, Smith JL, Zalkin H. A stable carbocyclic analog of 5-phosphoribosyl-1-pyrophosphate to probe the mechanism of catalysis and regulation of glutamine phosphoribosylpyrophosphate amidotransferase. J Biol Chem 1995; 270:17394-9. [PMID: 7542237 DOI: 10.1074/jbc.270.29.17394] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase catalysis and regulation were studied using a new stable carbocyclic analog of PRPP, 1-alpha-pyrophosphoryl-2-alpha, 3-alpha-dihydroxy-4-beta-cyclopentane-methanol-5-phosphate (cPRPP). Although cPRPP competes with PRPP for binding to the catalytic C site of the Escherichia coli enzyme, two lines of evidence demonstrate that cPRPP, unlike PRPP, does not promote an active enzyme conformation. First, cPRPP was not able to "activate" Cys1 for reaction with glutamine or a glutamine affinity analog. The ring oxygen of PRPP may thus be necessary for the conformation change that activates Cys1 for catalysis. Second, binding of cPRPP to the C site blocks binding of AMP and GMP, nucleotide end product inhibitors, to this site. However, the binding of nucleotide to the allosteric site was essentially unaffected by cPRPP in the C site. Since it is expected that nucleotide inhibitors would bind with low affinity to the active enzyme conformation, the nucleotide binding data support the conclusion that cPRPP does not activate the enzyme.
Collapse
Affiliation(s)
- J H Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
48
|
Badet-Denisot MA, Leriche C, Massière F, Badet B. Nitrogen transfer in E. coli glucosamine-6P synthase. Investigations using substrate and bisubstrate analogs. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00119-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Guy HI, Evans DR. Substructure of the amidotransferase domain of mammalian carbamyl phosphate synthetase. J Biol Chem 1995; 270:2190-7. [PMID: 7836449 DOI: 10.1074/jbc.270.5.2190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The amidotransferase or glutaminase (GLNase) domain of mammalian carbamyl phosphate synthetase (CPSase), part of the 243-kDa CAD polypeptide, consists of a carboxyl half that is homologous to all trpG-type amidotransferases and an amino half unique to the carbamyl phosphate synthetases. The two halves of the mammalian GLNase domain have been cloned separately, expressed in Escherichia coli, and purified. The 21-kDa carboxyl half, the catalytic subdomain, is extraordinarily active. The kcat is 347-fold higher and the KGlnm is 40-fold lower than the complete GLNase domain. Unlike the GLNase domain, the catalytic subdomain does not form a stable hybrid complex with the E. coli CPSase synthetase subunit. Nevertheless, titration of the synthetase subunit with the catalytic subdomain partially restores glutamine-dependent CPSase activity. The 19-kDa amino half, the interaction subdomain, binds tightly to the E. coli CPSase large subunit. Thus, the GLNase domain consists of two subdomains which can autonomously fold and function. The catalytic subdomain weakly interacts with the synthetase domain and has all of the residues necessary for catalysis. The interaction subdomain is required for complex formation and also attenuates the intrinsically high activity of the catalytic subdomain and, thus, may be a key element of the interdomain functional linkage.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
50
|
Cogoni C, Valenzuela L, González-Halphen D, Olivera H, Macino G, Ballario P, González A. Saccharomyces cerevisiae has a single glutamate synthase gene coding for a plant-like high-molecular-weight polypeptide. J Bacteriol 1995; 177:792-8. [PMID: 7836314 PMCID: PMC176658 DOI: 10.1128/jb.177.3.792-798.1995] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purification of the glutamate synthase (GOGAT) enzyme from Saccharomyces cerevisiae showed that it is an oligomeric enzyme composed of three identical 199-kDa subunits. The GOGAT structural gene was isolated by screening a yeast genomic library with a yeast PCR probe. This probe was obtained by amplification with degenerate oligonucleotides designed from conserved regions of known GOGAT genes. The derived amino-terminal sequence of the GOGAT gene was confirmed by direct amino-terminal sequence analysis of the purified protein of 199 kDa. Northern (RNA) analysis allowed the identification of an mRNA of about 7 or 8 kb. An internal fragment of the GOGAT gene was used to obtain null GOGAT mutants completely devoid of GOGAT activity. The results show that S. cerevisiae has a single NADH-GOGAT enzyme, consisting of three 199-kDa monomers, that differs from the one found in prokaryotic microorganisms but is similar to those found in other eukaryotic organisms such as alfalfa.
Collapse
Affiliation(s)
- C Cogoni
- Dipartimento di Biopatologia Umana Policlinico Umberto I. Universitá di Roma La Sapienza, Italy
| | | | | | | | | | | | | |
Collapse
|