1
|
Cichońska D, Mazuś M, Kusiak A. Recent Aspects of Periodontitis and Alzheimer's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2612. [PMID: 38473858 DOI: 10.3390/ijms25052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is an inflammatory condition affecting the supporting structures of the teeth. Periodontal conditions may increase the susceptibility of individuals to various systemic illnesses, including Alzheimer's disease. Alzheimer's disease is a neurodegenerative condition characterized by a gradual onset and progressive deterioration, making it the primary cause of dementia, although the exact cause of the disease remains elusive. Both Alzheimer's disease and periodontitis share risk factors and clinical studies comparing the associations and occurrence of periodontitis among individuals with Alzheimer's disease have suggested a potential correlation between these conditions. Brains of individuals with Alzheimer's disease have substantiated the existence of microorganisms related to periodontitis, especially Porphyromonas gingivalis, which produces neurotoxic gingipains and may present the capability to breach the blood-brain barrier. Treponema denticola may induce tau hyperphosphorylation and lead to neuronal apoptosis. Lipopolysaccharides-components of bacterial cell membranes and mediators of inflammation-also have an impact on brain function. Further research could unveil therapeutic approaches targeting periodontal pathogens to potentially alleviate AD progression.
Collapse
Affiliation(s)
- Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Magda Mazuś
- Student Research Group of the Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| |
Collapse
|
2
|
Tang-Siegel GG. Human Serum Mediated Bacteriophage Life Cycle Switch in Aggregatibacter actinomycetemcomitans Is Linked to Pyruvate Dehydrogenase Complex. Life (Basel) 2023; 13:436. [PMID: 36836793 PMCID: PMC9959103 DOI: 10.3390/life13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antimicrobial resistance is rising as a major global public health threat and antibiotic resistance genes are widely spread among species, including human oral pathogens, e.g., Aggregatibacter actinomycetemcomitans. This Gram-negative, capnophilic, facultative anaerobe is well recognized as a causative agent leading to periodontal diseases, as well as seriously systemic infections including endocarditis. A. actinomycetemcomitans has also evolved mechanisms against complement-mediated phagocytosis and resiliently survives in serum-rich in vivo environments, i.e., inflamed periodontal pockets and blood circulations. This bacterium, however, demonstrated increasing sensitivity to human serum, when being infected by a pseudolysogenic bacteriophage S1249, which switched to the lytic state as a response to human serum. Concomitantly, the pyruvate dehydrogenase complex (PDHc), which is composed of multiple copies of three enzymes (E1, E2, and E3) and oxidatively decarboxylates pyruvate to acetyl-CoA available for tricarboxylic acid (TCA) cycle, was found up-regulated 10-fold in the bacterial lysogen after human serum exposure. The data clearly indicated that certain human serum components induced phage virion replication and egress, resulting in bacterial lysis. Phage manipulation of bacterial ATP production through regulation of PDHc, a gatekeeper linking glycolysis to TCA cycle through aerobic respiration, suggests that a more efficient energy production and delivery system is required for phage progeny replication and release in this in vivo environment. Insights into bacteriophage regulation of bacterial fitness in a mimic in vivo condition will provide alternative strategies to control bacterial infection, in addition to antibiotics.
Collapse
Affiliation(s)
- Gaoyan Grace Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont and State Agricultural College, Burlington, VT 05405, USA
| |
Collapse
|
3
|
Hakmi M, Bouricha EM, El Harti J, Amzazi S, Belyamani L, Khanfri JE, Ibrahimi A. Computational modeling and druggability assessment of Aggregatibacter actinomycetemcomitans leukotoxin. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106952. [PMID: 35724475 DOI: 10.1016/j.cmpb.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The leukotoxin (LtxA) of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a protein exotoxin belonging to the repeat-in-toxin family (RTX). Numerous studies have demonstrated that LtxA may play a critical role in the pathogenicity of A. actinomycetemcomitans since hyper-leukotoxic strains have been associated with severe disease. Accordingly, considerable effort has been made to elucidate the mechanisms by which LtxA interacts with host cells and induce their death. However, these attempts have been hampered by the unavailability of a tertiary structure of the toxin, which limits the understanding of its molecular properties and mechanisms. In this paper, we used homology and template free modeling algorithms to build the complete tertiary model of LtxA at atomic level in its calcium-bound Holo-state. The resulting model was refined by energy minimization, validated by Molprobity and ProSA tools, and subsequently subjected to a cumulative 600ns of all-atom classical molecular dynamics simulation to evaluate its structural aspects. The druggability of the proposed model was assessed using Fpocket and FTMap tools, resulting in the identification of four putative cavities and fifteen binding hotspots that could be targeted by rational drug design tools to find new ligands to inhibit LtxA activity.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Jaouad El Harti
- Therapeutic Chemistry Laboratory, Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Said Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Jamal Eddine Khanfri
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
4
|
Abstract
This biography of Dr. Joel Rosenbloom is published on the occasion of the 50th anniversary of the journal. Dr. Rosenbloom presents the scientific milestones and achievements throughout his career emphasizing events that have spurred him to launch into a career in biomedical research and education. The biography spans several decades of the life and achievements of a distinguished physician scientist whose dedication to science demonstrates the development of new insights into a variety of connective tissues through technological advances and insightful approaches.
Collapse
Affiliation(s)
- Joel Rosenbloom
- Joan and Joel Research Center for Fibrotic Diseases, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Liccardo D, Marzano F, Carraturo F, Guida M, Femminella GD, Bencivenga L, Agrimi J, Addonizio A, Melino I, Valletta A, Rengo C, Ferrara N, Rengo G, Cannavo A. Potential Bidirectional Relationship Between Periodontitis and Alzheimer's Disease. Front Physiol 2020; 11:683. [PMID: 32719612 PMCID: PMC7348667 DOI: 10.3389/fphys.2020.00683] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly population, representing a global public health priority. Despite a large improvement in understanding the pathogenesis of AD, the etiology of this disorder remains still unclear, and no current treatment is able to prevent, slow, or stop its progression. Thus, there is a keen interest in the identification and modification of the risk factors and novel molecular mechanisms associated with the development and progression of AD. In this context, it is worth noting that several findings support the existence of a direct link between neuronal and non-neuronal inflammation/infection and AD progression. Importantly, recent studies are now supporting the existence of a direct relationship between periodontitis, a chronic inflammatory oral disease, and AD. The mechanisms underlying the association remain to be fully elucidated, however, it is generally accepted, although not confirmed, that oral pathogens can penetrate the bloodstream, inducing a low-grade systemic inflammation that negatively affects brain function. Indeed, a recent report demonstrated that oral pathogens and their toxic proteins infect the brain of AD patients. For instance, when AD progresses from the early to the more advanced stages, patients could no longer be able to adequately adhere to proper oral hygiene practices, thus leading to oral dysbiosis that, in turn, fuels infection, such as periodontitis. Therefore, in this review, we will provide an update on the emerging (preclinical and clinical) evidence that supports the relationship existing between periodontitis and AD. More in detail, we will discuss data attesting that periodontitis and AD share common risk factors and a similar hyper-inflammatory phenotype.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Armida Addonizio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Imma Melino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, Siena, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
7
|
Fine DH, Schreiner H, Velusamy SK. Aggregatibacter, A Low Abundance Pathobiont That Influences Biogeography, Microbial Dysbiosis, and Host Defense Capabilities in Periodontitis: The History of A Bug, And Localization of Disease. Pathogens 2020; 9:pathogens9030179. [PMID: 32131551 PMCID: PMC7157720 DOI: 10.3390/pathogens9030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, the focus of this review, was initially proposed as a microbe directly related to a phenotypically distinct form of periodontitis called localized juvenile periodontitis. At the time, it seemed as if specific microbes were implicated as the cause of distinct forms of disease. Over the years, much has changed. The sense that specific microbes relate to distinct forms of disease has been challenged, as has the sense that distinct forms of periodontitis exist. This review consists of two components. The first part is presented as a detective story where we attempt to determine what role, if any, Aggregatibacter plays as a participant in disease. The second part describes landscape ecology in the context of how the host environment shapes the framework of local microbial dysbiosis. We then conjecture as to how the local host response may limit the damage caused by pathobionts. We propose that the host may overcome the constant barrage of a dysbiotic microbiota by confining it to a local tooth site. We conclude speculating that the host response can confine local damage by restricting bacteremic translocation of members of the oral microbiota to distant organs thus constraining morbidity and mortality of the host.
Collapse
|
8
|
Aggregatibacter actinomycetemcomitans LtxA Hijacks Endocytic Trafficking Pathways in Human Lymphocytes. Pathogens 2020; 9:pathogens9020074. [PMID: 31973183 PMCID: PMC7168647 DOI: 10.3390/pathogens9020074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Leukotoxin (LtxA), from oral pathogen Aggregatibacter actinomycetemcomitans, is a secreted membrane-damaging protein. LtxA is internalized by β2 integrin LFA-1 (CD11a/CD18)-expressing leukocytes and ultimately causes cell death; however, toxin localization in the host cell is poorly understood and these studies fill this void. We investigated LtxA trafficking using multi-fluor confocal imaging, flow cytometry and Rab5a knockdown in human T lymphocyte Jurkat cells. Planar lipid bilayers were used to characterize LtxA pore-forming activity at different pHs. Our results demonstrate that the LtxA/LFA-1 complex gains access to the cytosol of Jurkat cells without evidence of plasma membrane damage, utilizing dynamin-dependent and presumably clathrin-independent mechanisms. Upon internalization, LtxA follows the LFA-1 endocytic trafficking pathways, as identified by co-localization experiments with endosomal and lysosomal markers (Rab5, Rab11A, Rab7, and Lamp1) and CD11a. Knockdown of Rab5a resulted in the loss of susceptibility of Jurkat cells to LtxA cytotoxicity, suggesting that late events of LtxA endocytic trafficking are required for toxicity. Toxin trafficking via the degradative endocytic pathway may culminate in the delivery of the protein to lysosomes or its accumulation in Rab11A-dependent recycling endosomes. The ability of LtxA to form pores at acidic pH may result in permeabilization of the endosomal and lysosomal membranes.
Collapse
|
9
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
10
|
Fine DH, Patil AG, Velusamy SK. Aggregatibacter actinomycetemcomitans ( Aa) Under the Radar: Myths and Misunderstandings of Aa and Its Role in Aggressive Periodontitis. Front Immunol 2019; 10:728. [PMID: 31040843 PMCID: PMC6476972 DOI: 10.3389/fimmu.2019.00728] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 11/23/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a low-abundance Gram-negative oral pathobiont that is highly associated with a silent but aggressive orphan disease that results in periodontitis and tooth loss in adolescents of African heritage. For the most part Aa conducts its business by utilizing strategies allowing it to conceal itself below the radar of the host mucosal immune defense system. A great deal of misinformation has been conveyed with respect to Aa biology in health and disease. The purpose of this review is to present misconceptions about Aa and the strategies that it uses to colonize, survive, and evade the host. In the process Aa manages to undermine host mucosal defenses and contribute to disease initiation. This review will present clinical observational, molecular, and interventional studies that illustrate genetic, phenotypic, and biogeographical tactics that have been recently clarified and demonstrate how Aa survives and suppresses host mucosal defenses to take part in disease pathogenesis. At one point in time Aa was considered to be the causative agent of Localized Aggressive Periodontitis. Currently, it is most accurate to look at Aa as a community activist and necessary partner of a pathogenic consortium that suppresses the initial host response so as to encourage overgrowth of its partners. The data for Aa's activist role stems from molecular genetic studies complemented by experimental animal investigations that demonstrate how Aa establishes a habitat (housing), nutritional sustenance in that habitat (food), and biogeographical mobilization and/or relocation from its initial habitat (transportation). In this manner Aa can transfer to a protected but vulnerable domain (pocket or sulcus) where its community activism is most useful. Aa's “strategy” includes obtaining housing, food, and transportation at no cost to its partners challenging the economic theory that “there ain't no such thing as a free lunch.” This “strategy” illustrates how co-evolution can promote Aa's survival, on one hand, and overgrowth of community members, on the other, which can result in local host dysbiosis and susceptibility to infection.
Collapse
Affiliation(s)
- Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Amey G Patil
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Senthil K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
11
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
12
|
Brown AC, Boesze-Battaglia K, Balashova NV, Mas Gómez N, Speicher K, Tang HY, Duszyk ME, Lally ET. Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS One 2018; 13:e0205871. [PMID: 30335797 PMCID: PMC6193665 DOI: 10.1371/journal.pone.0205871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Collapse
Affiliation(s)
- Angela C. Brown
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nataliya V. Balashova
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nestor Mas Gómez
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kaye Speicher
- Wistar Institute, Philadelphia, PA, United States of America
| | - Hsin-Yao Tang
- Wistar Institute, Philadelphia, PA, United States of America
| | - Margaret E. Duszyk
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Edward T. Lally
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Teng YTA. Protective and Destructive Immunity in the Periodontium: Part 2—T-cell-mediated Immunity in the Periodontium. J Dent Res 2016; 85:209-19. [PMID: 16498066 DOI: 10.1177/154405910608500302] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Based on the results of recent research in the field and Part 1 of this article (in this issue), the present paper will discuss the protective and destructive aspects of the T-cell-mediated adaptive immunity associated with the bacterial virulent factors or antigenic determinants during periodontal pathogenesis. Attention will be focused on: (i) osteoimmunology and periodontal disease; (ii) some molecular techniques developed and applied to identify critical microbial virulence factors or antigens associated with host immunity (with Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis as the model species); and (iii) summarizing the identified virulence factors/antigens associated with periodontal immunity. Thus, further understanding of the molecular mechanisms of the host’s T-cell-mediated immune responses and the critical microbial antigens related to disease pathogenesis will facilitate the development of novel therapeutics or protocols for future periodontal treatments. Abbreviations used in the paper are as follows: A. actinomycetemcomitans ( Aa), Actinobacillus actinomycetemcomitans; Ab, antibody; DC, dendritic cells; mAb, monoclonal antibody; pAb, polyclonal antibody; OC, osteoclast; PAMP, pathogen-associated molecular patterns; P. gingivalis ( Pg), Porphyromonas gingivalis; RANK, receptor activator of NF-κB; RANKL, receptor activator of NF-κB ligand; OPG, osteoprotegerin; TCR, T-cell-receptors; TLR, Toll-like receptors.
Collapse
Affiliation(s)
- Y-T A Teng
- Laboratory of Molecular Microbial Immunity, Eastman Department of Dentistry, Eastman Dental Center, Box-683, 625 Elmwood Ave., Rochester, NY 14620, USA.
| |
Collapse
|
14
|
Velusamy SK, Sampathkumar V, Godboley D, Fine DH. Profound Effects of Aggregatibacter actinomycetemcomitans Leukotoxin Mutation on Adherence Properties Are Clarified in in vitro Experiments. PLoS One 2016; 11:e0151361. [PMID: 26977924 PMCID: PMC4792451 DOI: 10.1371/journal.pone.0151361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/27/2016] [Indexed: 02/02/2023] Open
Abstract
Leukotoxin (Ltx) is a prominent virulence factor produced by Aggregatibacter actinomycetemcomitans, an oral microorganism highly associated with aggressive periodontitis. Ltx compromises host responsiveness by altering the viability of neutrophils, lymphocytes, and macrophages. Previously, we developed a Rhesus (Rh) monkey colonization model designed to determine the effect of virulence gene mutations on colonization of A. actinomycetemcomitans. Unexpectedly, an A. actinomycetemcomitans leukotoxin (ltxA) mutant (RhAa-VS2) failed to colonize in the Rh model. No previous literature suggested that Ltx was associated with A. actinomycetemcomitans binding to tooth surfaces. These results led us to explore the broad effects of the ltxA mutation in vitro. Results indicated that LtxA activity was completely abolished in RhAa-VS2 strain, while complementation significantly (P<0.0001) restored leukotoxicity compared to RhAa-VS2 strain. RT-PCR analysis of ltx gene expression ruled out polar effects. Furthermore, binding of RhAa-VS2 to salivary-coated hydroxyapatite (SHA) was significantly decreased (P<0.0001) compared to wild type RhAa3 strain. Real time RT-PCR analysis of the genes related to SHA binding in RhAa-VS2 showed that genes related to binding were downregulated [rcpA (P = 0.018), rcpB (P = 0.02), tadA (P = 0.002)] as compared to wild type RhAa3. RhAa-VS2 also exhibited decreased biofilm depth (P = 0.008) and exo-polysaccharide production (P<0.0001). Buccal epithelial cell (BEC) binding of RhAa-VS2 was unaffected. Complementation with ltxA restored binding to SHA (P<0.002) but had no effect on biofilm formation when compared to RhAa3. In conclusion, mutation of ltxA diminished hard tissue binding in vitro, which helps explain the previous in vivo failure of a ltxA knockout to colonize the Rh oral cavity. These results suggest that; 1) one specific gene knockout (in this case ltxA) could affect other seemingly unrelated genes (such as rcpA, rcpB tadA etc), and 2) some caution should be used when interpreting the effect attributed to targeted gene mutations when seen in a competitive in vivo environment.
Collapse
Affiliation(s)
- Senthil Kumar Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark, New Jersey, United States of America
| | - Vandana Sampathkumar
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark, New Jersey, United States of America
| | - Dipti Godboley
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark, New Jersey, United States of America
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
15
|
Virulence of Aggregatibacter actinomycetemcomitans serotypes and DGGE subtypes isolated from chronic adult periodontitis in Thailand. Anaerobe 2015; 36:60-4. [DOI: 10.1016/j.anaerobe.2015.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022]
|
16
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
17
|
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:526-37. [PMID: 26523409 DOI: 10.1016/j.bbamem.2015.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
18
|
Kieselbach T, Zijnge V, Granström E, Oscarsson J. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles. PLoS One 2015; 10:e0138591. [PMID: 26381655 PMCID: PMC4575117 DOI: 10.1371/journal.pone.0138591] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/01/2015] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs) released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT) and leukotoxin (LtxA) into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs). To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.
Collapse
Affiliation(s)
| | - Vincent Zijnge
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
19
|
Smith KP, Fields JG, Voogt RD, Deng B, Lam YW, Mintz KP. Alteration in abundance of specific membrane proteins of Aggregatibacter actinomycetemcomitans is attributed to deletion of the inner membrane protein MorC. Proteomics 2015; 15:1859-67. [PMID: 25684173 DOI: 10.1002/pmic.201400505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an important pathogen in the etiology of human periodontal and systemic diseases. Inactivation of the gene coding for the inner membrane protein, morphogenesis protein C (MorC), results in pleotropic effects pertaining to the membrane structure and function of this bacterium. The role of this protein in membrane biogenesis is unknown. To begin to understand the role of this conserved protein, stable isotope dimethyl labeling in conjunction with MS was used to quantitatively analyze differences in the membrane proteomes of the isogenic mutant and wild-type strain. A total of 613 proteins were quantified and 601 of these proteins were found to be equal in abundance between the two strains. The remaining 12 proteins were found in lesser (10) or greater (2) abundance in the membrane preparation of the mutant strain compared with the wild-type strain. The 12 proteins were ascribed functions associated with protein quality control systems, oxidative stress responses, and protein secretion. The potential relationship between these proteins and the phenotypes of the MorC mutant strain is discussed.
Collapse
Affiliation(s)
- Kenneth P Smith
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Julia G Fields
- Department of Biology, University of Vermont, Burlington, VT, USA.,Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT, USA
| | - Richard D Voogt
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, USA.,Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT, USA
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT, USA.,Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, VT, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| |
Collapse
|
20
|
Smith KP, Fields JG, Voogt RD, Deng B, Lam YW, Mintz KP. The cell envelope proteome of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2014; 30:97-110. [PMID: 25055881 DOI: 10.1111/omi.12074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
The cell envelope of gram-negative bacteria serves a critical role in maintenance of cellular homeostasis, resistance to external stress, and host-pathogen interactions. Envelope protein composition is influenced by the physiological and environmental demands placed on the bacterium. In this study, we report a comprehensive compilation of cell envelope proteins from the periodontal and systemic pathogen Aggregatibacter actinomycetemcomitans VT1169, an afimbriated serotype b strain. The urea-extracted membrane proteins were identified by mass spectrometry-based shotgun proteomics. The membrane proteome, isolated from actively growing bacteria under normal laboratory conditions, included 648 proteins representing 27% of the predicted open reading frames in the genome. Bioinformatic analyses were used to annotate and predict the cellular location and function of the proteins. Surface adhesins, porins, lipoproteins, numerous influx and efflux pumps, multiple sugar, amino acid and iron transporters, and components of the type I, II and V secretion systems were identified. Periplasmic space and cytoplasmic proteins with chaperone function were also identified. A total of 107 proteins with unknown function were associated with the cell envelope. Orthologs of a subset of these uncharacterized proteins are present in other bacterial genomes, whereas others are found exclusively in A. actinomycetemcomitans. This knowledge will contribute to elucidating the role of cell envelope proteins in bacterial growth and survival in the oral cavity.
Collapse
Affiliation(s)
- K P Smith
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | |
Collapse
|
21
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
22
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
23
|
Schreiner H, Li Y, Cline J, Tsiagbe VK, Fine DH. A comparison of Aggregatibacter actinomycetemcomitans (Aa) virulence traits in a rat model for periodontal disease. PLoS One 2013; 8:e69382. [PMID: 23936002 PMCID: PMC3720274 DOI: 10.1371/journal.pone.0069382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Our aim was to explore the effects of Cytolethal Distending toxin (Cdt) in a well established rat model of periodontal disease where leukotoxin (LtxA) was thought to have no known effect. In vitro studies, were used to assess CdtB activity using Aa Leukotoxin as a negative control. These studies showed that both CdtB and LtxA (unexpectedly) exerted significant effects on CD4+ T cells. As a result we decided to compare the effects of these two prominent Aa virulence factors on bone loss using our rat model of Aa-induced periodontitis. In this model, Aa strains, mutant in cdtB and ltxA, were compared to their parent non-mutant strains and evaluated for colonization, antibody response to Aa, bone loss and disease. We found that bone loss/disease caused by the ltxA mutant strain, in which cdtB was expressed, was significantly less (p<0.05) than that due to the wild type strain. On the other hand, the disease caused by cdtB mutant strain, in which ltxA was expressed, was not significantly different from the wild type strain. This data indicates that Aa LtxA exerts a greater effect on bone loss than Cdt in this rat model of periodontal disease and supports the utility of this model to dissect specific virulence factors as they relate to immunopathology in studies of Aa-induced disease.
Collapse
Affiliation(s)
- Helen Schreiner
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, New Jersey Dental School, Newark, New Jersey, United States of America.
| | | | | | | | | |
Collapse
|
24
|
Brown AC, Balashova NV, Epand RM, Epand RF, Bragin A, Kachlany SC, Walters MJ, Du Y, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J Biol Chem 2013; 288:23607-21. [PMID: 23792963 DOI: 10.1074/jbc.m113.486654] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its β2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol. Here, the interaction of LtxA with cholesterol was measured using surface plasmon resonance and differential scanning calorimetry. The binding of LtxA to phospholipid bilayers increased by 4 orders of magnitude in the presence of 40% cholesterol relative to the absence of cholesterol. The affinity was specific to cholesterol and required an intact secondary structure. LtxA contains two cholesterol recognition/amino acid consensus (CRAC) sites; CRAC(336) ((333)LEEYSKR(339)) is highly conserved among RTX toxins, whereas CRAC(503) ((501)VDYLK(505)) is unique to LtxA. A peptide corresponding to CRAC(336) inhibited the ability of LtxA to kill Jurkat (Jn.9) cells. Although peptides corresponding to both CRAC(336) and CRAC(503) bind cholesterol, only CRAC(336) competitively inhibited LtxA binding to this sterol. A panel of full-length LtxA CRAC mutants demonstrated that an intact CRAC(336) site was essential for LtxA cytotoxicity. The conservation of CRAC(336) among RTX toxins suggests that this mechanism may be conserved among RTX toxins.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Ultrastructural analysis of the rugose cell envelope of a member of the Pasteurellaceae family. J Bacteriol 2013; 195:1680-8. [PMID: 23378507 DOI: 10.1128/jb.02149-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial membranes serve as selective environmental barriers and contain determinants required for bacterial colonization and survival. Cell envelopes of Gram-negative bacteria consist of an outer and an inner membrane separated by a periplasmic space. Most Gram-negative bacteria display a smooth outer surface (e.g., Enterobacteriaceae), whereas members of the Pasteurellaceae and Moraxellaceae families show convoluted surfaces. Aggregatibacter actinomycetemcomitans, an oral pathogen representative of the Pasteurellaceae family, displays a convoluted membrane morphology. This phenotype is associated with the presence of morphogenesis protein C (MorC). Inactivation of the morC gene results in a smooth membrane appearance when visualized by two-dimensional (2D) electron microscopy. In this study, 3D electron microscopy and atomic force microscopy of whole-mount bacterial preparations as well as 3D electron microscopy of ultrathin sections of high-pressure frozen and freeze-substituted specimens were used to characterize the membranes of both wild-type and morC mutant strains of A. actinomycetemcomitans. Our results show that the mutant strain contains fewer convolutions than the wild-type bacterium, which exhibits a higher curvature of the outer membrane and a periplasmic space with 2-fold larger volume/area ratio than the mutant bacterium. The inner membrane of both strains has a smooth appearance and shows connections with the outer membrane, as revealed by visualization and segmentation of 3D tomograms. The present studies and the availability of genetically modified organisms with altered outer membrane morphology make A. actinomycetemcomitans a model organism for examining membrane remodeling and its implications in antibiotic resistance and virulence in the Pasteurellaceae and Moraxellaceae bacterial families.
Collapse
|
27
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
28
|
Brown AC, Boesze-Battaglia K, Du Y, Stefano FP, Kieba IR, Epand RF, Kakalis L, Yeagle PL, Epand RM, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin cytotoxicity occurs through bilayer destabilization. Cell Microbiol 2012; 14:869-81. [PMID: 22309134 DOI: 10.1111/j.1462-5822.2012.01762.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while (31) P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization.
Collapse
Affiliation(s)
- Angela C Brown
- Department of Pathology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tang G, Kawai T, Komatsuzawa H, Mintz KP. Lipopolysaccharides mediate leukotoxin secretion in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:70-82. [PMID: 22394466 DOI: 10.1111/j.2041-1014.2011.00632.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported that lipopolysaccharide (LPS) -related sugars are associated with the glycosylation of the collagen adhesin EmaA, a virulence determinant of Aggregatibacter actinomycetemcomitans. In this study, the role of LPS in the secretion of other virulence factors was investigated. The secretion of the epithelial adhesin Aae, the immunoglobulin Fc receptor Omp34 and leukotoxin were examined in a mutant strain with inactivated TDP-4-keto-6-deoxy-d-glucose 3,5-epimerase (rmlC), which resulted in altered O-antigen polysaccharides (O-PS) of LPS. The secretion of Aae and Omp34 was not affected. However, the leukotoxin secretion, which is mediated by the TolC-dependent type I secretion system, was altered in the rmlC mutant. The amount of secreted leukotoxin in the bacterial growth medium was reduced nine-fold, with a concurrent four-fold increase of the membrane-bound toxin in the mutant compared with the wild-type strain. The altered leukotoxin secretion pattern was restored to the wild-type by complementation of the rmlC gene in trans. Examination of the ltxA mRNA levels indicated that the leukotoxin secretion was post-transcriptionally regulated in the modified O-PS containing strain. The mutant strain also showed increased resistance to vancomycin, an antibiotic dependent on TolC for internalization, indicating that TolC was affected. Overexpression of TolC in the rmlC mutant resulted in an increased TolC level in the outer membrane but did not restore the leukotoxin secretion profile to the wild-type phenotype. The data suggest that O-PS mediate leukotoxin secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- G Tang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
30
|
Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 2011; 80:31-42. [PMID: 22025516 DOI: 10.1128/iai.06069-11] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.
Collapse
|
31
|
Predicting genetic traits and epitope analysis of apxIVA in Actinobacillus pleuropneumoniae. J Microbiol 2011; 49:462-8. [DOI: 10.1007/s12275-011-0449-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
|
32
|
Johansson A. Aggregatibacter actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host inflammatory response. Toxins (Basel) 2011; 3:242-59. [PMID: 22069708 PMCID: PMC3202821 DOI: 10.3390/toxins3030242] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans has been described as a member of the indigenous oral microbiota of humans, and is involved in the pathology of periodontitis and various non-oral infections. This bacterium selectively kills human leukocytes through expression of leukotoxin, a large pore-forming protein that belongs to the Repeat in Toxin (RTX) family. The specificity of the toxin is related to its prerequisite for a specific target cell receptor, LFA-1, which is solely expressed on leukocytes. The leukotoxin causes death of different leukocyte populations in a variety of ways. It activates a rapid release of lysosomal enzymes and MMPs from neutrophils and causes apoptosis in lymphocytes. In the monocytes/macrophages, the toxin activates caspase-1, a cysteine proteinase, which causes a proinflammatory response by the activation and secretion of IL-1β and IL-18. A specific clone (JP2) of A. actinomycetemcomitans with enhanced leukotoxin expression significantly correlates to disease onset in infected individuals. Taken together, the mechanisms by which this toxin kills leukocytes are closely related to the pathogenic mechanisms of inflammatory disorders, such as periodontitis. Therapeutic strategies targeting the cellular and molecular inflammatory host response in periodontal diseases might be a future treatment alternative.
Collapse
Affiliation(s)
- Anders Johansson
- Department of Odontology, Umea University, SE-901 87 Umea, Sweden.
| |
Collapse
|
33
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Effects of Catechin Gallate on Bactericidal Action and Leukotoxic Activity of Aggregatibacter actinomycetemcomitans. ACTA ACUST UNITED AC 2011. [DOI: 10.5466/ijoms.10.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Kuboniwa M, Inaba H, Amano A. Genotyping to distinguish microbial pathogenicity in periodontitis. Periodontol 2000 2010; 54:136-59. [DOI: 10.1111/j.1600-0757.2010.00352.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 2010; 89:561-70. [PMID: 20200418 DOI: 10.1177/0022034510363682] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that colonizes the human oral cavity and is the causative agent for localized aggressive periodontitis (LAP), an aggressive form of periodontal disease that occurs in adolescents. A. actinomycetemcomitans secretes a protein toxin, leukotoxin (LtxA), which helps the bacterium evade the host immune response during infection. LtxA is a membrane-active toxin that specifically targets white blood cells (WBCs). In this review, we discuss recent developments in this field, including the identification and characterization of genes and proteins involved in secretion, regulation of LtxA, biosynthesis, newly described activities of LtxA, and how LtxA may be used as a therapy for the treatment of diseases.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA.
| |
Collapse
|
37
|
Prevalence and distribution of serotype-specific genotypes of Aggregatibacter actinomycetemcomitans in chronic periodontitis Brazilian subjects. Arch Oral Biol 2010; 55:242-8. [DOI: 10.1016/j.archoralbio.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/05/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
|
38
|
Kisiela DI, Aulik NA, Atapattu DN, Czuprynski CJ. N-terminal region of Mannheimia haemolytica leukotoxin serves as a mitochondrial targeting signal in mammalian cells. Cell Microbiol 2010; 12:976-87. [PMID: 20109159 DOI: 10.1111/j.1462-5822.2010.01445.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mannheimia haemolytica leukotoxin (LktA) is a member of the RTX toxin family that specifically kills ruminant leukocytes. Previous studies have shown that LktA induces apoptosis in susceptible cells via a caspase-9-dependent pathway that involves binding of LktA to mitochondria. In this study, using the bioinformatics tool MitoProt II we identified an N-terminal amino acid sequence of LktA that represents a mitochondrial targeting signal (MTS). We show that expression of this sequence, as a GFP fusion protein within mammalian cells, directs GFP to mitochondria. By immunoprecipitation we demonstrate that LktA interacts with the Tom22 and Tom40 components of the translocase of the outer mitochondrial membrane (TOM), which suggests that import of this toxin into mitochondria involves a classical import pathway for endogenous proteins. We also analysed the amino acid sequences of other RTX toxins and found a MTS in the N-terminal region of Actinobacillus pleuropneumoniae ApxII and enterohaemorrhagic Escherichia coli EhxA, but not in A. pleuropneumoniae ApxI, ApxIII, Aggregatibacter actinomycetemcomitans LtxA or the haemolysin (HlyA) from uropathogenic strains of E. coli. These findings provide a new evidence for the importance of the N-terminal region in addressing certain RTX toxins to mitochondria.
Collapse
Affiliation(s)
- Dagmara I Kisiela
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
39
|
Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene 2009; 443:42-7. [PMID: 19450669 DOI: 10.1016/j.gene.2009.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 11/21/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a human pathogen that produces the RTX toxin (repeats in toxin), leukotoxin (LtxA). Based on other RTX toxin systems, the product of ltxC, the first gene of the ltx operon, is predicted to be involved in fatty acid modification of LtxA. To determine the function of ltxC in A. actinomycetemcomitans, we generated an ltxC mutation in the highly leukotoxic strain JP2N using random mutagenesis. The toxin from the ltxC mutant (LtxA(ltxC)) was expressed and secreted into the cell culture supernatant but could not lyse human leukocytes or erythrocytes. Mass spectrometric analysis of LtxA(ltxC) and LtxA from strain JP2N (LtxA(wt)) revealed two peptides that differed and this data suggests that two internal lysine residues of LtxA from the wild-type strain are modified. In blocking experiments, pre-treatment of cells with LtxA(ltxC) was unable to prevent LtxA(wt) from killing cells. Furthermore, in contrast to LtxA(wt), LtxA(ltxC) did not cause an increase in intracellular calcium levels in human leukocytes. Taken together, our data show that ltxC is required for full activity and modification of LtxA in A. actinomycetemcomitans and that modification is important for initial binding of toxin to host cells, as defined by an increase in intracellular calcium levels.
Collapse
|
40
|
Vanden Bergh PG, Zecchinon LL, Fett T, Desmecht D. Probing of Actinobacillus pleuropneumoniae ApxIIIA toxin-dependent cytotoxicity towards mammalian peripheral blood mononucleated cells. BMC Res Notes 2008; 1:121. [PMID: 19046441 PMCID: PMC2612674 DOI: 10.1186/1756-0500-1-121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/01/2008] [Indexed: 11/24/2022] Open
Abstract
Background Actinobacillus pleuropneumoniae, the causative bacterial agent of porcine pleuropneumonia, produces Apx toxins which belong to RTX toxin family and are recognized as the major virulence factors. So far, their target receptor(s) has not been identified and the disease cytopathogenesis remains poorly understood. Production of an active Apx toxin and characterization of its toxic activity constitute the premises necessary to the description of its interaction with a potential receptor. From this point of view, we produced an active recombinant ApxIIIA toxin in order to characterize its toxicity on peripheral blood mononucleated cells (PBMCs) isolated from several species. Findings Toxin preparation exercises a strong cytotoxic action on porcine PBMCs which is directly related to recombinant ApxIIIA since preincubation with polymyxin B does not modify the cytotoxicity rate while preincubation with a monospecific polyclonal antiserum directed against ApxIIIA does. The cell death process triggered by ApxIIIA is extremely fast, the maximum rate of toxicity being already reached after 20 minutes of incubation. Moreover, ApxIIIA cytotoxicity is species-specific because llama, human, dog, rat and mouse PBMCs are resistant. Interestingly, bovine and caprine PBMCs are slightly sensitive to ApxIIIA toxin too. Finally, ApxIIIA cytotoxicity is cell type-specific as porcine epithelial cells are resistant. Conclusion We have produced an active recombinant ApxIIIA toxin and characterized its specific cytotoxicity on porcine PBMCs which will allow us to get new insights on porcine pleuropneumonia pathogenesis in the future.
Collapse
Affiliation(s)
- Philippe Gac Vanden Bergh
- Pathology Department, Faculty of Veterinary Medicine, University of Liege, Colonster Boulevard 20 B43, B-4000 Liege, Belgium.
| | | | | | | |
Collapse
|
41
|
Inoue T, Fukui K, Ohta H. LEUKOTOXIN PRODUCTION BY ACTINOBACILLUS ACTINOMYCETEMCOMITANS. TOXIN REV 2008. [DOI: 10.1080/15569540500320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis. Infect Immun 2008; 76:3561-8. [PMID: 18541661 DOI: 10.1128/iai.01687-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.
Collapse
|
43
|
Schaeffer LM, Schmidt ML, Demuth DR. Induction of Aggregatibacter actinomycetemcomitans leukotoxin expression by IS1301 and orfA. MICROBIOLOGY-SGM 2008; 154:528-538. [PMID: 18227257 DOI: 10.1099/mic.0.2007/012195-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most Aggregatibacter actinomycetemcomitans strains express relatively low levels of leukotoxin, encoded by the orfA-ltxCABD operon. However, several strains isolated from patients with localized aggressive periodontitis are hyperleukotoxic and transcribe the ltx operon at high levels. These strains possess a copy of IS1301 in the ltx promoter and previous studies have suggested that the presence of the insertion sequence increases ltx transcription by uncoupling a cis-acting negative regulator of ltx expression from the basal elements of the ltx promoter. However, we now report that replacing IS1301 with an equal length of random sequence has little effect on transcriptional activity of the ltx promoter, suggesting that the physical displacement of the negative regulatory element does not contribute to the hyperleukotoxic phenotype of IS1301-containing strains. Instead, we show that a -10-like element upstream of the transposase ORF of IS1301 is required for increased transcriptional activity of the ltx promoter. Site-specific mutation of the -10 sequence, or reversing the orientation of IS1301 relative to the basal ltx promoter elements, reduced transcriptional activity to levels exhibited by the native ltx promoter. However, no increase in transcription was observed when IS1301 was recombinantly inserted into a ltx promoter that contained a truncated copy of orfA, suggesting that an intact orfA may also be required for IS1301-mediated induction of ltxCABD. Therefore, to determine if orfA functions as a regulator of ltx expression, three independent ltx-promoter-lacZ-reporter constructs containing frameshift mutations in orfA were analysed. Each exhibited significantly lower expression of beta-galactosidase than the control reporter with intact orfA. In addition, OrfA protein was shown, by mobility shift electrophoresis, to interact with the ltx promoter at or downstream of the -35 sequence. These results suggest that a potential transposase promoter and the OrfA polypeptide may modulate leukotoxin expression in hyperleukotoxic A. actinomycetemcomitans strains containing IS1301.
Collapse
Affiliation(s)
- Lyndsay M Schaeffer
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - M Lee Schmidt
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | - Donald R Demuth
- Department of Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| |
Collapse
|
44
|
Scotter AJ, Guo M, Tomczak MM, Daley ME, Campbell RL, Oko RJ, Bateman DA, Chakrabartty A, Sykes BD, Davies PL. Metal ion-dependent, reversible, protein filament formation by designed beta-roll polypeptides. BMC STRUCTURAL BIOLOGY 2007; 7:63. [PMID: 17908326 PMCID: PMC2174480 DOI: 10.1186/1472-6807-7-63] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 10/01/2007] [Indexed: 12/28/2022]
Abstract
BACKGROUND A right-handed, calcium-dependent beta-roll structure found in secreted proteases and repeat-in-toxin proteins was used as a template for the design of minimal, soluble, monomeric polypeptides that would fold in the presence of Ca2+. Two polypeptides were synthesised to contain two and four metal-binding sites, respectively, and exploit stacked tryptophan pairs to stabilise the fold and report on the conformational state of the polypeptide. RESULTS Initial analysis of the two polypeptides in the presence of calcium suggested the polypeptides were disordered. The addition of lanthanum to these peptides caused aggregation. Upon further study by right angle light scattering and electron microscopy, the aggregates were identified as ordered protein filaments that required lanthanum to polymerize. These filaments could be disassembled by the addition of a chelating agent. A simple head-to-tail model is proposed for filament formation that explains the metal ion-dependency. The model is supported by the capping of one of the polypeptides with biotin, which disrupts filament formation and provides the ability to control the average length of the filaments. CONCLUSION Metal ion-dependent, reversible protein filament formation is demonstrated for two designed polypeptides. The polypeptides form filaments that are approximately 3 nm in diameter and several hundred nm in length. They are not amyloid-like in nature as demonstrated by their behaviour in the presence of congo red and thioflavin T. A capping strategy allows for the control of filament length and for potential applications including the "decoration" of a protein filament with various functional moieties.
Collapse
Affiliation(s)
- Andrew J Scotter
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Meng Guo
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Medical Biophysics, University of Toronto, ON, M5G 2M9, Canada
- Ontario Cancer Institute, University of Toronto, ON, M5G 2M9, Canada
| | - Melanie M Tomczak
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Margaret E Daley
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, 6G 2H7, Canada
| | - Robert L Campbell
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Richard J Oko
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - David A Bateman
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Medical Biophysics, University of Toronto, ON, M5G 2M9, Canada
- Ontario Cancer Institute, University of Toronto, ON, M5G 2M9, Canada
| | - Avijit Chakrabartty
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Medical Biophysics, University of Toronto, ON, M5G 2M9, Canada
- Ontario Cancer Institute, University of Toronto, ON, M5G 2M9, Canada
| | - Brian D Sykes
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, 6G 2H7, Canada
| | - Peter L Davies
- Protein Engineering Network Centres of Excellence, 750 Heritage Medical Research Centre, Edmonton, AB, T6G 2S2, Canada
- Department of Biochemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
45
|
Bhattacharjee MK, Fine DH, Figurski DH. tfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2007; 399:53-64. [PMID: 17561357 PMCID: PMC2080652 DOI: 10.1016/j.gene.2007.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 12/16/2022]
Abstract
tfoX (sxy) is a regulatory gene needed to turn on competence genes. Aggregatibacter (Actinobacillus) actinomycetemcomitans has a tfoX gene that is important for transformation. We cloned this gene on an IncQ plasmid downstream of the inducible tac promoter. When this plasmid was resident in cells of A. actinomycetemcomitans and tfoX was induced, the cells became competent for transformation. Several strains of A. actinomycetemcomitans, including different serotypes, as well as rough (adherent) and isogenic smooth (nonadherent) forms were tested. Only our two serotype f strains failed to be transformed. With the other strains, we could easily get transformants with extrachromosomal plasmid DNA when closed circular, replicative plasmid carrying an uptake signal sequence (USS) was used. When a replicative plasmid carrying a USS and cloned DNA from the chromosome of A. actinomycetemcomitans was linearized by digestion with a restriction endonuclease or when genomic DNA was used directly, the outcome was allelic exchange. To facilitate allelic exchange, we constructed a suicide plasmid (pMB78) that does not replicate in A. actinomycetemcomitans and carries a region with two inverted copies of a USS. This vector gave allelic exchange in the presence of cloned and induced tfoX easily and without digestion. Using transposon insertions in cloned katA DNA, we found that as little as 78 bp of homology at one of the ends was sufficient for that end to participate in allelic exchange. The cloning and induction of tfoX makes it possible to transform nearly any strain of A. actinomycetemcomitans, and allelic exchange has proven to be important for site-directed mutagenesis.
Collapse
Affiliation(s)
- Mrinal K Bhattacharjee
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
46
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
47
|
Crosby JA, Kachlany SC. TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2006; 388:83-92. [PMID: 17116373 PMCID: PMC1831674 DOI: 10.1016/j.gene.2006.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an oral bacterium that causes localized aggressive periodontitis (LAP) and extra-oral infections such as sub-acute infective endocarditis. As part of its array of virulence factors, A. actinomycetemcomitans produces leukotoxin (LtxA), a member of the RTX family of toxins. LtxA kills human leukocytes and we have recently shown that the toxin is required for beta-hemolysis by A. actinomycetemcomitans on solid medium. In other RTX toxin-producing bacteria, an outer membrane channel-forming protein, TolC, is required for toxin secretion and drug export. We have identified an ORF in A. actinomycetemcomitans that encodes a putative protein having predicted structural properties similar to TolC. Inactivation of this ORF resulted in a mutant that was no longer beta-hemolytic and did not secrete LtxA. This mutant was significantly more sensitive to antimicrobial agents compared to the wild type strain and was unable to export the antimicrobial agent berberine. Thus, this ORF was named tdeA for "toxin and drug export". Examination of the DNA sequence surrounding tdeA revealed two upstream ORFs that encode proteins similar to the drug efflux proteins, MacA and MacB. Inactivation of macB in A. actinomycetemcomitans did not alter the drug sensitivity profile or the hemolytic activity of the mutant. The genes macA, macB and tdeA are organized as an operon and are constitutively expressed as a single transcript. These results show that A. actinomycetemcomitans indeed requires a TolC-like protein for LtxA secretion and that this protein, TdeA, also functions as part of a drug efflux system.
Collapse
Affiliation(s)
| | - Scott C. Kachlany
- *Correspondence to: Scott C. Kachlany, Department of Oral Biology, University of Medicine and Dentistry of NJ, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, 973.972.3057 (office) 973.972.0045 (fax)
| |
Collapse
|
48
|
Balashova NV, Diaz R, Balashov SV, Crosby JA, Kachlany SC. Regulation of Aggregatibacter (Actinobacillus) actinomycetemcomitans leukotoxin secretion by iron. J Bacteriol 2006; 188:8658-61. [PMID: 17041062 PMCID: PMC1698250 DOI: 10.1128/jb.01253-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative oral and systemic pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans produces a leukotoxin (LtxA) that is a member of the RTX (repeats in toxin) family of secreted bacterial toxins. We have recently shown that LtxA has the ability to lyse erythrocytes, which results in a beta-hemolytic phenotype on Columbia blood agar. To determine if LtxA is regulated by iron, we examined beta-hemolysis under iron-rich and iron-limiting conditions. Beta-hemolysis was suppressed in the presence of FeCl3. In contrast, strong beta-hemolysis occurred in the presence of the iron chelator deferoxamine. We found that secretion of LtxA was completely inhibited by free iron, but expression of ltxA was not regulated by iron. Free chromium, cobalt, and magnesium did not affect LtxA secretion. Other LtxA-associated genes were not regulated by iron. Thus, iron appears to play an important role in the regulation of LtxA secretion in A. actinomycetemcomitans in a manner independent of gene regulation.
Collapse
Affiliation(s)
- Nataliya V Balashova
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
49
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
50
|
Fong KP, Pacheco CMF, Otis LL, Baranwal S, Kieba IR, Harrison G, Hersh EV, Boesze-Battaglia K, Lally ET. Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol 2006; 8:1753-67. [PMID: 16827908 PMCID: PMC3404838 DOI: 10.1111/j.1462-5822.2006.00746.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinobacillus actinomycetemcomitans produces a leukotoxin (Ltx) that kills leukocyte function-associated antigen-1 (LFA-1)-bearing cells from man, the Great Apes and Old World monkeys. The unique specificity of Ltx for the beta2 integrin, LFA-1, suggests it is capable of providing insight into the pathogenic mechanisms of Ltx and other RTX toxins. Using the Jurkat T cell line and an LFA-1-deficient Jurkat mutant (Jbeta2.7) as models, we found the initial effect of Ltx is to elevate cytosolic Ca2+ [Ca2+]c, an event that is independent of the Ltx/LFA-1 interaction. [Ca2+]c increases initiate a series of events that involve the activation of calpain, talin cleavage, mobilization to, and subsequent clustering of, LFA-1 in cholesterol and sphingolipid-rich regions of the plasma membrane known as lipid rafts. The association of Ltx and LFA-1 within lipid rafts is essential for cell lysis. Jbeta2.7 cells fail to accumulate Ltx in their raft fractions and are not killed, while cholesterol depletion experiments demonstrate the necessity of raft integrity for Ltx function. We propose that toxin-induced Ca2+ fluxes mobilize LFA-1 to lipid rafts where it associates with Ltx. These findings suggest that Ltx utilizes the raft to stimulate an integrin signalling pathway that leads to apoptosis of target cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Edward T. Lally
- For correspondence. ; Tel. (+1) 215 898 5913; Fax (+1) 215 573 2050
| |
Collapse
|