1
|
Costa MDN, Silva TA, Guimarães DSPSF, Ricci-Azevedo R, Teixeira FR, Silveira LR, Gomes MD, Faça VM, de Oliveira EB, Calado RT, Silva RN. The recombinant L-lysine α-oxidase from the fungus Trichoderma harzianum promotes apoptosis and necrosis of leukemia CD34 + hematopoietic cells. Microb Cell Fact 2024; 23:51. [PMID: 38355518 PMCID: PMC10865671 DOI: 10.1186/s12934-024-02315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.
Collapse
Affiliation(s)
- Mariana do Nascimento Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Aparecido Silva
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Rafael Ricci-Azevedo
- Department of Cell Biology and Molecular and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Roberti Teixeira
- Department of Genetics and Evolution, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Leonardo Reis Silveira
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcelo Damário Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vítor Marcel Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Brandt de Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Abd El-Rahman AA, El-Shafei SMA, Shehab GMG, Mansour L, Abuelsaad ASA, Gad RA. Assessment of Biochemical and Neuroactivities of Cultural Filtrate from Trichoderma harzianum in Adjusting Electrolytes and Neurotransmitters in Hippocampus of Epileptic Rats. Life (Basel) 2023; 13:1815. [PMID: 37763219 PMCID: PMC10533195 DOI: 10.3390/life13091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Epilepsy is a serious chronic neurological disorder, which is accompanied by recurrent seizures. Repeated seizures cause physical injuries and neuronal dysfunction and may be a risk of cancer and vascular diseases. However, many antiepileptic drugs (AEDs) have side effects of mood alteration or neurocognitive function, a reduction in neuron excitation, and the inhibition of normal activity. Therefore, the present study aimed to evaluate the effect of secondary metabolites of Trichoderma harzianum cultural filtrate (ThCF) when adjusting different electrolytes and neurotransmitters in the hippocampus of epileptic rats. METHODS Cytotoxicity of ThCF against LS-174T cancer cells was assessed using a sulforhodamine B (SRB) assay. Quantitative estimation for some neurotransmitters, electrolytes in sera or homogenate of hippocampi tissues, and mRNA gene expression for ion or voltage gates was assessed by quantitative Real-Time PCR. RESULTS Treatment with ThCF reduces the proliferative percentage of LS-174T cells in a concentration-dependent manner. ThCF administration improves hyponatremia, hyperkalemia, and hypocalcemia in the sera of the epilepticus model. ThCF rebalances the elevated levels of many neurotransmitters and reduces the release of GABA and acetylcholine-esterase. Also, treatments with ThCF ameliorate the downregulation of mRNA gene expression for some gate receptors in hippocampal homogenate tissues and recorded a highly significant elevation in the expression of SCN1A, CACNA1S, and NMDA. CONCLUSION Secondary metabolites of Trichoderma (ThCF) have cytotoxic activity against LS-174T (colorectal cancer cell line) and anxiolytic-like activity through a GABAergic mechanism of action and an increase in GABA as inhibitory amino acid in the selected brain regions and reduced levels of NMDA and DOPA. The present data suggested that ThCF may inhibit intracellular calcium accumulation by triggering the NAADP-mediated Ca2+ signaling pathway. Therefore, the present results suggested further studies on the molecular pathway for each metabolite of ThCF, e.g., 6-pentyl-α-pyrone (6-PP), harzianic acid (HA), and hydrophobin, as an alternative drug to mitigate the side effects of AEDs.
Collapse
Affiliation(s)
- Atef A. Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Sally M. A. El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Gaber M. G. Shehab
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Rania A. Gad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, NAHDA University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
3
|
Costa MN, Silva RN. Cytotoxic activity of l-lysine alpha-oxidase against leukemia cells. Semin Cancer Biol 2022; 86:590-599. [PMID: 34606983 DOI: 10.1016/j.semcancer.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/27/2023]
Abstract
Cancer cells exhibit higher proliferation rates than normal cells, and as a consequence, a higher nutritional demand for metabolites such as amino acids. Such cells demonstrate high expression of amino acid transporters and are significantly dependent on the external uptake of amino acids. Moreover, some types of cancer cells exhibit oncogenic mutations that render them auxotrophic to certain amino acids. This metabolic difference between tumor and normal cells has been explored for developing anticancer drugs. Enzymes capable of depleting certain amino acids in the bloodstream can be employed to inhibit the proliferation of cancer cells and promote cell death. Certain microbial enzymes, such as l-asparaginase and l-amino acid oxidases, have been studied for this purpose. In this paper, we discuss the role of l-asparaginase, the only enzyme currently used as a chemotherapeutic agent. We also review the studies on a new potential antineoplastic agent, l-lysine α-oxidase, an enzyme of l-amino acid oxidase family.
Collapse
Affiliation(s)
- Mariana N Costa
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
4
|
Monoclonal Antibody Functionalized, and L-lysine α-Oxidase Loaded PEGylated-Chitosan Nanoparticle for HER2/Neu Targeted Breast Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050927. [PMID: 35631513 PMCID: PMC9146122 DOI: 10.3390/pharmaceutics14050927] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Breast cancer is one of the dominant cancers that threaten human beings worldwide. Moreover, the treatment of HER2+ breast cancer is challenging due to heterogeneity. The L-lysine α-oxidase (LO) enzyme is a well-known antitumor enzyme, but its clinical utility has been limited due to side effects, decreased stability, and inability to target tumor cells. To overcome the clinical challenges in delivery of LO enzymes and improve HER2+ breast cancer therapeutics, the present study developed the dual stimuli responsive nanocarrier system (CS-LO-PEG-HER NPs) for pH sensitive and HER2/neu targeted breast cancer therapy. Abstract Herein, we designed a nanocarrier to deliver the LO specifically to HER2+ breast cancer (BC) cells, where functionalization of mAb (anti-HER2+) with PEGylated chitosan enabled it to target the HER2+ BC cells. Taking advantage of overexpression of HER2+ in cancer cells, our nanocarrier (CS-LO-PEG-HER NPs) exhibited promising potency and selectivity against HER2+ BC cells (BT474). The CS-LO-PEG-HER NPs demonstrated the cytotoxicity in BT474 cells by promoting reactive oxygen species, mitochondrial membrane potential loss, and nucleus damage. The biocompatibility of CS-LO-PEG-HER NPs was evidenced by the hemolysis assay and H & E staining of major organs. The CS-LO-PEG-HER NPs showed anticancer potency against the BT474-xenograft tumor-bearing mice, as evident by the reduction of tumor size and cell density. These results indicate that CS-LO-PEG-HER NPs are biocompatible with mice while inhibiting tumor growth through alter the oxidative stress. Overall, this work provides a promising approach for the delivery of LO for good therapeutic effect in combination with mAb.
Collapse
|
5
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
6
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals (Basel) 2021; 14:1070. [PMID: 34832852 PMCID: PMC8618108 DOI: 10.3390/ph14111070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
L-lysine α-oxidase (LO), one of L-amino acid oxidases, deaminates L-lysine with the yield of H2O2, ammonia, and α-keto-ε-aminocaproate. Multiple in vitro and in vivo studies have reported cytotoxic, antitumor, antimetastatic, and antitumor activity of LO. Unlike asparaginase, LO has a dual mechanism of action: depletion of L-lysine and formation of H2O2, both targeting tumor growth. Prominent results were obtained on murine and human tumor models, including human colon cancer xenografts HCT 116, LS174T, and T47D with maximum T/C 12, 37, and 36%, respectively. The data obtained from human cancer xenografts in immunodeficient mice confirm the potential of LO as an agent for colon cancer treatment. In this review, we discuss recently discovered molecular mechanisms of biological action and the potential of LO as anticancer enzyme.
Collapse
Affiliation(s)
- Elena V. Lukasheva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
| | - Gulalek Babayeva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Saida Sh. Karshieva
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya Street 10/8, 119121 Moscow, Russia;
| | - Vadim S. Pokrovsky
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya Street 6, 117198 Moscow, Russia; (E.V.L.); (G.B.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Kashirskoe Shosse 24, 115478 Moscow, Russia;
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 1 Olimpiisky Prospect, 354340 Sochi, Russia
| |
Collapse
|
8
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
9
|
Brito LF, Irla M, Nærdal I, Le SB, Delépine B, Heux S, Brautaset T. Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Bacillus methanolicus. Front Bioeng Biotechnol 2021; 9:686319. [PMID: 34262896 PMCID: PMC8274714 DOI: 10.3389/fbioe.2021.686319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
The use of methanol as carbon source for biotechnological processes has recently attracted great interest due to its relatively low price, high abundance, high purity, and the fact that it is a non-food raw material. In this study, methanol-based production of 5-aminovalerate (5AVA) was established using recombinant Bacillus methanolicus strains. 5AVA is a building block of polyamides and a candidate to become the C5 platform chemical for the production of, among others, δ-valerolactam, 5-hydroxy-valerate, glutarate, and 1,5-pentanediol. In this study, we test five different 5AVA biosynthesis pathways, whereof two directly convert L-lysine to 5AVA and three use cadaverine as an intermediate. The conversion of L-lysine to 5AVA employs lysine 2-monooxygenase (DavB) and 5-aminovaleramidase (DavA), encoded by the well-known Pseudomonas putida cluster davBA, among others, or lysine α-oxidase (RaiP) in the presence of hydrogen peroxide. Cadaverine is converted either to γ-glutamine-cadaverine by glutamine synthetase (SpuI) or to 5-aminopentanal through activity of putrescine oxidase (Puo) or putrescine transaminase (PatA). Our efforts resulted in proof-of-concept 5AVA production from methanol at 50°C, enabled by two pathways out of the five tested with the highest titer of 0.02 g l-1. To our knowledge, this is the first report of 5AVA production from methanol in methylotrophic bacteria, and the recombinant strains and knowledge generated should represent a valuable basis for further improved 5AVA production from methanol.
Collapse
Affiliation(s)
- Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingemar Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Simone Balzer Le
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Baudoin Delépine
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Stéphanie Heux
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
10
|
Yano Y, Matsuo S, Ito N, Tamura T, Kusakabe H, Inagaki K, Imada K. A new l-arginine oxidase engineered from l-glutamate oxidase. Protein Sci 2021; 30:1044-1055. [PMID: 33764624 DOI: 10.1002/pro.4070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/08/2022]
Abstract
The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l-Glutamate oxidase (LGOX) from Streptomyces sp. X-119-6 catalyzes the oxidative deamination of l-glutamate to produce 2-ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l-glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l-glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l-arginine. The oxidative deamination activity of LGOX to l-arginine is higher than that of l-arginine oxidase form from Pseudomonas sp. TPU 7192. X-ray crystal structure analysis revealed that the guanidino group of l-arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild-type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l-arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l-arginine by LGOX R305E, is proportional to the concentration of l-arginine in a range from 0 to 100 μM. The linear relationship is maintained around 1 μM of l-arginine. Thus, LGOX R305E is suitable for the determination of l-arginine.
Collapse
Affiliation(s)
- Yoshika Yano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shinsaku Matsuo
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Nanako Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
11
|
Kitagawa M, Ito N, Matsumoto Y, Saito M, Tamura T, Kusakabe H, Inagaki K, Imada K. Structural basis of enzyme activity regulation by the propeptide of l-lysine α-oxidase precursor from Trichoderma viride. JOURNAL OF STRUCTURAL BIOLOGY-X 2021; 5:100044. [PMID: 33554108 PMCID: PMC7844570 DOI: 10.1016/j.yjsbx.2021.100044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/04/2022]
Abstract
The suppression mechanism of activity by propeptide remains unclear for most LAAOs. The crystal structures of the LysOX precursor (prLysOX) have been determined. The propeptide indirectly changes the active site structure to suppress the activity. prLysOX can adopt another conformation similar to mature LysOX. prLysOX is able to be activated without proteolytic processing.
Harmuful proteins are usually synthesized as inactive precursors and are activated by proteolytic processing. l-Amino acid oxidase (LAAO) is a flavoenzyme that catalyzes the oxidative deamination of l-amino acid to produce a 2-oxo acid with ammonia and highly toxic hydrogen peroxide and, therefore, is expressed as a precursor. The LAAO precursor shows significant variation in size and the cleavage pattern for activation. However, the molecular mechanism of how the propeptide suppresses the enzyme activity remains unclear except for deaminating/decarboxylating Pseudomonasl-phenylalanine oxidase (PAO), which has a short N-terminal propeptide composed of 14 residues. Here we show the inactivation mechanism of the l-lysine oxidase (LysOX) precursor (prLysOX), which has a long N-terminal propeptide composed of 77 residues, based on the crystal structure at 1.97 Å resolution. The propeptide of prLysOX indirectly changes the active site structure to inhibit the enzyme activity. prLysOX retains weak enzymatic activity with strict specificity for l-lysine and shows raised activity in acidic conditions. The structures of prLysOX crystals that soaked in a solution with various concentrations of l-lysine have revealed that prLysOX can adopt two conformations; one is the inhibitory form, and the other is very similar to mature LysOX. The propeptide region of the latter form is disordered, and l-lysine is bound to the latter form. These results indicate that prLysOX uses a different strategy from PAO to suppress the enzyme activity and suggest that prLysOX can be activated quickly in response to the environmental change without proteolytic processing.
Collapse
Affiliation(s)
- Masaki Kitagawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nanako Ito
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Matsumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Masaya Saito
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
12
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
13
|
Oike K, Gröger H. Process properties of an l-amino acid oxidase from Hebeloma cylindrosporum for the synthesis of phenylpyruvic acid from l-phenylalanine. J Biotechnol 2020; 323:203-207. [PMID: 32653636 DOI: 10.1016/j.jbiotec.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
The biocatalytic oxidation of amino acids represents an attractive approach towards the synthesis of α-keto acids, which are interest for various industrial applications. As l-amino acids are readily available from fermentation processes, these natural amino acids can serve as substrates in combination with an l-amino acid oxidase. Besides an aqueous phase as reaction medium, a further advantage of such a process is the utilization of air as oxidation agent. In this study, we studied the organic-synthetic properties of a literature-known recombinant l-amino acid oxidase from the fungus Hebeloma cylindrosporum with respect to its suitability to catalyze the formation of α-keto acids exemplified for the synthesis of phenylpyruvic acid starting from l-phenylalanine as a substrate. In our study the enzyme displayed a reasonable operational stability in the reaction system and as well as promising applicability data with respect to substrate and product inhibition. In a biotransformation, 20 mM of substrate were converted after 4 h reaction. The formation of undesired by-products was suppressed using a commercially available catalase enzyme.
Collapse
Affiliation(s)
- Keiko Oike
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
14
|
Guerrieri A, Ciriello R, Bianco G, De Gennaro F, Frascaro S. Allosteric Enzyme-Based Biosensors-Kinetic Behaviours of Immobilised L-Lysine-α-Oxidase from Trichoderma viride: pH Influence and Allosteric Properties. BIOSENSORS 2020; 10:E145. [PMID: 33080859 PMCID: PMC7603024 DOI: 10.3390/bios10100145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/04/2022]
Abstract
The present study describes the kinetics of L-lysine-α-oxidase (LO) from Trichoderma viride immobilised by co-crosslinking onto the surface of a Pt electrode. The resulting amperometric biosensor was able to analyse L-lysine, thus permitting a simple but thorough study of the kinetics of the immobilised enzyme. The kinetic study evidenced that LO behaves in an allosteric fashion and that cooperativity is strongly pH-dependent. Not less important, experimental evidence shows that cooperativity is also dependent on substrate concentration at high pH and behaves as predicted by the Monod-Wyman-Changeux model for allosteric enzymes. According to this model, the existence of two different conformational states of the enzyme was postulated, which differ in Lys species landing on LO to form the enzyme-substrate complex. Considerations about the influence of the peculiar LO kinetics on biosensor operations and extracorporeal reactor devices will be discussed as well. Not less important, the present study also shows the effectiveness of using immobilised enzymes and amperometric biosensors not only for substrate analysis, but also as a convenient tool for enzyme kinetic studies.
Collapse
Affiliation(s)
- Antonio Guerrieri
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.C.); (G.B.)
| | - Rosanna Ciriello
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.C.); (G.B.)
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.C.); (G.B.)
| | | | - Silvio Frascaro
- RBM S.P.A.—Istituto di Ricerche Biomediche “A. Marxer”, Via Ribes 1, 10010 Colleretto Giacosa (To), Italy;
| |
Collapse
|
15
|
Kondo H, Kitagawa M, Matsumoto Y, Saito M, Amano M, Sugiyama S, Tamura T, Kusakabe H, Inagaki K, Imada K. Structural basis of strict substrate recognition of l-lysine α-oxidase from Trichoderma viride. Protein Sci 2020; 29:2213-2225. [PMID: 32894626 DOI: 10.1002/pro.3946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/07/2022]
Abstract
l-Lysine oxidase (LysOX) is a FAD-dependent homodimeric enzyme that catalyzes the oxidative deamination of l-lysine to produce α-keto-ε-aminocaproate with ammonia and hydrogen peroxide. LysOX shows strict substrate specificity for l-lysine, whereas most l-amino acid oxidases (LAAOs) exhibit broad substrate specificity for l-amino acids. Previous studies of LysOX showed that overall structural similarity to the well-studied snake venom LAAOs. However, the molecular mechanism of strict specificity for l-lysine was still unclear. We here determined the structure of LysOX in complex with l-lysine at 1.7 Å resolution. The structure revealed that the hydrogen bonding network formed by D212, D315, and A440 with two water molecules is responsible for the recognition of the side chain amino group. In addition, a narrow hole formed by five hydrophobic residues in the active site contributes to strict substrate specificity. Mutation studies demonstrated that D212 and D315 are essential for l-lysine recognition, and the D212A/D315A double mutant LysOX showed different substrate specificity from LysOX. Moreover, the structural basis of the substrate specificity change has also been revealed by the structural analysis of the mutant variant and its substrate complexes. These results clearly explain the molecular mechanism of the strict specificity of LysOX and suggest that LysOX is a potential candidate for a template to design LAAOs specific to other l-amino acids.
Collapse
Affiliation(s)
- Hiroki Kondo
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Masaki Kitagawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yuya Matsumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Masaya Saito
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Marie Amano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shigeru Sugiyama
- Faculty of Science and Technology, Kochi University, Kochi, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Chepikova OE, Malin D, Strekalova E, Lukasheva EV, Zamyatnin AA, Cryns VL. Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells. Breast Cancer Res Treat 2020; 183:549-564. [PMID: 32696316 DOI: 10.1007/s10549-020-05801-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/11/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Transformed cells are vulnerable to depletion of certain amino acids. Lysine oxidase (LO) catalyzes the oxidative deamination of lysine, resulting in lysine depletion and hydrogen peroxide production. Although LO has broad antitumor activity in preclinical models, the cytotoxic mechanisms of LO are poorly understood. METHODS Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control media, lysine-free media or control media supplemented with LO and examined for cell viability, caspase activation, induction of reactive oxygen species (ROS) and antioxidant signaling. To determine the role of nuclear factor erythroid 2-related factor 2 (NRF2) and thioredoxin reductase-1 (TXNRD1) in LO-induced cell death, NRF2 and TXNRD1 were individually silenced by RNAi. Additionally, the pan-TXNRD inhibitor auranofin was used in combination with LO. RESULTS LO activates caspase-independent cell death that is suppressed by necroptosis and ferroptosis inhibitors, which are inactive against lysine depletion, pointing to fundamental differences between LO and lysine depletion. LO rapidly induces ROS with a return to baseline levels within 24 h that coincides temporally with induction of TXNRD activity, the rate-limiting enzyme in the thioredoxin antioxidant pathway. ROS induction is required for LO-mediated cell death and NRF2-dependent induction of TXNRD1. Silencing NRF2 or TXNRD1 enhances the cytotoxicity of LO. The pan-TXNRD inhibitor auranofin is synergistic with LO against transformed breast epithelial cells, but not untransformed cells, underscoring the tumor-selectivity of this strategy. CONCLUSIONS LO exposes a redox vulnerability of TNBC cells to TXNRD inhibition by rendering tumor cells dependent on the thioredoxin antioxidant pathway for survival.
Collapse
Affiliation(s)
- Olga E Chepikova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA
| | - Elena V Lukasheva
- Peoples' Friendship, University of Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, MFCB 4144, 1685 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
17
|
Sabotič J, Brzin J, Erjavec J, Dreo T, Tušek Žnidarič M, Ravnikar M, Kos J. L-Amino Acid Oxidases From Mushrooms Show Antibacterial Activity Against the Phytopathogen Ralstonia solanacearum. Front Microbiol 2020; 11:977. [PMID: 32508788 PMCID: PMC7248570 DOI: 10.3389/fmicb.2020.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanaceraum is the quarantine plant pathogenic bacterium that causes bacterial wilt in over 200 host plants, which include economically important crops such as potato, tomato, tobacco, banana, and ginger. Alternative biological methods of disease control that can be used in integrated pest management are extensively studied. In search of new proteins with antibacterial activity against R. solanacearum, we identified L-amino acid oxidases (LAOs) from fruiting bodies of Amanita phalloides (ApLAO) and Infundibulicybe geotropa (CgLAO). We describe an optimized isolation procedure for their biochemical characterization, and show that they are dimeric proteins with estimated monomer molecular masses of 72 and 66 kDa, respectively, with isoelectric point of pH 6.5. They have broad substrate specificities for hydrophobic and charged amino acids, with highest Km for L-Leu, and broad pH optima at pH 5 and pH 6, respectively. An enzyme with similar properties is also characterized from the mycelia of I. geotropa (CgmycLAO). Fractionated aqueous extracts of 15 species of mushrooms show that LAO activity against L-Leu correlates with antibacterial activity. We confirm that the LAO activities mediate the antibacterial actions of ApLAO, CgLAO, and CgmycLAO. Their antibacterial activities are greater against Gram-negative versus Gram-positive bacteria, with inhibition of growth rate, prolongation of lag-phase, and decreased endpoint biomass. In Gram-positive bacteria, they mainly prolong the lag phase. These in vitro antibacterial activities of CgLAO and CgmycLAO are confirmed in vivo in tomato plants, while ApLAO has no effect on disease progression in planta. Transmission electron microscopy shows morphological changes of R. solanacearum upon LAO treatments. Finally, broad specificity of the antibacterial activities of these purified LAOs were seen for in vitro screening against 14 phytopathogenic bacteria. Therefore, these fungal LAOs show great potential as new biological phytoprotective agents and show the fruiting bodies of higher fungi to be a valuable source of antimicrobials with unique features.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jože Brzin
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jana Erjavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tanja Dreo
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Isobe K, Matsui D, Asano Y. Comparative review of the recent enzymatic methods used for selective assay of l-lysine. Anal Biochem 2019; 584:113335. [DOI: 10.1016/j.ab.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/25/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
19
|
Pokrovsky VS, Chepikova OE, Davydov DZ, Zamyatnin AA, Lukashev AN, Lukasheva EV. Amino Acid Degrading Enzymes and their Application in Cancer Therapy. Curr Med Chem 2019; 26:446-464. [PMID: 28990519 DOI: 10.2174/0929867324666171006132729] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Amino acids are essential components in various biochemical pathways. The deprivation of certain amino acids is an antimetabolite strategy for the treatment of amino acid-dependent cancers which exploits the compromised metabolism of malignant cells. Several studies have focused on the development and preclinical and clinical evaluation of amino acid degrading enzymes, namely L-asparaginase, L-methionine γ-lyase, L-arginine deiminase, L-lysine α-oxidase. Further research into cancer cell metabolism may therefore define possible targets for controlling tumor growth. OBJECTIVE The purpose of this review was to summarize recent progress in the relationship between amino acids metabolism and cancer therapy, with a particular focus on Lasparagine, L-methionine, L-arginine and L-lysine degrading enzymes and their formulations, which have been successfully used in the treatment of several types of cancer. METHODS We carried out a structured search among literature regarding to amino acid degrading enzymes. The main aspects of search were in vitro and in vivo studies, clinical trials concerning application of these enzymes in oncology. RESULTS Most published research are on the subject of L-asparaginase properties and it's use for cancer treatment. L-arginine deiminase has shown promising results in a phase II trial in advanced melanoma and hepatocellular carcinoma. Other enzymes, in particular Lmethionine γ-lyase and L-lysine α-oxidase, were effective in vitro and in vivo. CONCLUSION The findings of this review revealed that therapy based on amino acid depletion may have the potential application for cancer treatment but further clinical investigations are required to provide the efficacy and safety of these agents.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- Blokhin Cancer Research Center, Moscow, Russian Federation.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russian Federation.,People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| | - Olga E Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Belozersky Institute of Physico- Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander N Lukashev
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Elena V Lukasheva
- People's Friendship University, Russia (RUDN University), Moscow, Russian Federation
| |
Collapse
|
20
|
A novel approach for the selective analysis of l-lysine in untreated human serum by a co-crosslinked l-lysine–α-oxidase/overoxidized polypyrrole bilayer based amperometric biosensor. Bioelectrochemistry 2018; 124:47-56. [DOI: 10.1016/j.bioelechem.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022]
|
21
|
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. ACTA ACUST UNITED AC 2018; 45:719-734. [DOI: 10.1007/s10295-018-2030-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Abstract
l-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like l-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.
Collapse
|
22
|
Higher fungi are a rich source of L-amino acid oxidases. 3 Biotech 2017; 7:230. [PMID: 28685478 DOI: 10.1007/s13205-017-0813-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 10/19/2022] Open
Abstract
L-Amino acid oxidases (LAO) are widely distributed enzymes but those from snake venoms have been studied the most. We describe a method for in-gel detection of LAO activities based on H2O2 detection by a horseradish peroxidase-coupled reaction using o-phenylenediamine. Complex substrates and single L-amino acids were used successfully for screening LAO activities in higher fungi using crude aqueous extracts of fruiting bodies of 22 basidiomycetes and 1 ascomycete. Half of these samples exhibited one to two bands of LAO activities with mostly broad substrate specificities and a variety of apparent molecular masses ranging from 25 to 200 kDa that were generally more active at pH 5.5 than at pH 8.0. Mushrooms are shown to be a rich source of LAOs that could find use in various medical and biotechnological applications.
Collapse
|
23
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
24
|
Kaçar C, Erden PE, Kılıç E. Graphene/Poly(vinylferrocene) Composite Based Amperometric Biosensor for L-lysine Determination. ELECTROANAL 2017. [DOI: 10.1002/elan.201700207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ceren Kaçar
- Ankara University; Faculty of Science, Department of Chemistry, Tandoğan; 06100 Ankara Turkey
| | - Pınar Esra Erden
- Ankara University; Faculty of Science, Department of Chemistry, Tandoğan; 06100 Ankara Turkey
| | - Esma Kılıç
- Ankara University; Faculty of Science, Department of Chemistry, Tandoğan; 06100 Ankara Turkey
| |
Collapse
|
25
|
Krupyanko VI, Medentsev AG, Lukasheva EV, Arinbasarova AY. Kinetic characteristics of L-lysine α- oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D: Substrate specificity and allosteric effects. Biochem Biophys Rep 2017; 9:9-12. [PMID: 29114579 PMCID: PMC5632708 DOI: 10.1016/j.bbrep.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 11/23/2022] Open
Abstract
The present work aims to investigate the kinetic characteristics of homodimer enzyme L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D, taking into account allosteric effects. The enzyme was first shown to reveal positive cooperativeness, h=2.05±0.15. Using additional opportunities of Hill coefficient the value of the Michaelis-Menten constant has been estimated, Km=1.015∙10-5М, indicating high strength of substrate binding to the active site of each subunit. High selectivity and absolute L-stereospecificity of the enzyme were shown. The inhibition of L-lysine conversion by non-cleavable lysine analogs as well as the reaction product was found out to take place. These effects have been evaluated only as the inhibition coefficients (%). A more detailed study of these inhibition effects was complicated because of the cooperativeness of enzyme subunits mentioned above. The kinetic scheme of L-lysine α-oxidase was proposed involving parallel-subsequent action of each of two subunits in the catalytic act. We think that the results obtained will be useful for studying the kinetic properties of other multi-subunit enzymes and improve understanding of the mechanisms of their action.
Collapse
Affiliation(s)
- Vladimir I. Krupyanko
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| | - Alexander G. Medentsev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | | - Anna Yu. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Pushchino, Russia
| |
Collapse
|
26
|
Amperometric L-lysine enzyme electrodes based on carbon nanotube/redox polymer and graphene/carbon nanotube/redox polymer composites. Anal Bioanal Chem 2017; 409:2873-2883. [DOI: 10.1007/s00216-017-0232-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 11/26/2022]
|
27
|
Trichodermin induces c-Jun N-terminal kinase-dependent apoptosis caused by mitotic arrest and DNA damage in human p53-mutated pancreatic cancer cells and xenografts. Cancer Lett 2016; 388:249-261. [PMID: 27965041 DOI: 10.1016/j.canlet.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is an aggressive malignancy, which generally responds poorly to chemotherapy. In this study, trichodermin, an endophytic fungal metabolite from Nalanthamala psidii, was identified as a potent and selective antitumor agent in human pancreatic cancer. Trichodermin exhibited antiproliferative effects against pancreatic cancer cells, especially p53-mutated cells (MIA PaCa-2 and BxPC-3) rather than normal pancreatic epithelial cells. We found that trichodermin induced caspase-dependent and mitochondrial intrinsic apoptosis. Trichodermin also increased apoptosis through mitotic arrest by activating Cdc2/cyclin B1 complex activity. Moreover, trichodermin promoted the activation of c-Jun N-terminal kinase (JNK), and inhibition of JNK by its inhibitor, shRNA, or siRNA significantly reversed trichodermin-mediated caspase-dependent apoptosis. Trichodermin triggered DNA damage stress to activate p53 function for executing apoptosis in p53-mutated cells. Importantly, we demonstrated that trichodermin with efficacy similar to gemcitabine, profoundly suppressed tumor growth through inducing intratumoral DNA damage and JNK activation in orthotopic pancreatic cancer model. Based on these findings, trichodermin is a potential therapeutic agent worthy of further development into a clinical trial candidate for treating cancer, especially the mutant p53 pancreatic cancer.
Collapse
|
28
|
Engineering Corynebacterium glutamicum for fast production of l-lysine and l-pipecolic acid. Appl Microbiol Biotechnol 2016; 100:8075-90. [DOI: 10.1007/s00253-016-7682-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022]
|
29
|
Selective Determination of Lysine in Dry-Cured Meats Using a Sensor Based on Lysine-α-Oxidase Immobilised on a Nylon Membrane. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0425-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Zhao L, Jiang J, Zhu Z, Liao Z, Yao X, Yang Y, Cao Y, Jiang Y. Lysine enhances the effect of amphotericin B against Candida albicans in vitro. Acta Biochim Biophys Sin (Shanghai) 2016; 48:182-93. [PMID: 26711896 DOI: 10.1093/abbs/gmv125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/18/2015] [Indexed: 01/11/2023] Open
Abstract
Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus and has been used for >50 years in the treatment of acute systemic fungal infections. In the present study, we demonstrated that lysine, an essential amino acid, could enhance the effect of AmB against Candida albicans in vitro, although lysine itself did not exert a fungicidal effect. In addition, the combination of AmB with lysine could provide an enhanced action against Candida parapsilosis and Cryptococcus neoformans compared with AmB alone. Lysine could also enhance the antifungal effect of caspofungin or nystatin. An enhanced effect of the combination of lysine with AmB was observed for the prevention of biofilm and hypha formation. Furthermore, our results demonstrated that lysine-mediated oxidative damage, such as the generation of endogenous reactive oxygen species, may be the mechanism underlying the enhancing effect of lysine on AmB. Our results also showed that CaMCA1 gene plays an important role in increasing the sensitivity of C. albicans cells upon AmB treatment. Using AmB together with lysine may be a promising strategy for the therapy of disseminated candidiasis.
Collapse
Affiliation(s)
- Liuya Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China Pharmacy Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchen Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zebin Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiangwen Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yingying Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Mar Drugs 2015; 13:7403-18. [PMID: 26694422 PMCID: PMC4699246 DOI: 10.3390/md13127073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
Amino acid oxidases (AAOs) catalyze the oxidative deamination of amino acids releasing ammonium and hydrogen peroxide. Several kinds of these enzymes have been reported. Depending on the amino acid isomer used as a substrate, it is possible to differentiate between l-amino acid oxidases and d-amino acid oxidases. Both use FAD as cofactor and oxidize the amino acid in the alpha position releasing the corresponding keto acid. Recently, a novel class of AAOs has been described that does not contain FAD as cofactor, but a quinone generated by post-translational modification of residues in the same protein. These proteins are named as LodA-like proteins, after the first member of this group described, LodA, a lysine epsilon oxidase synthesized by the marine bacterium Marinomonas mediterranea. In this review, a phylogenetic analysis of all the enzymes described with AAO activity has been performed. It is shown that it is possible to recognize different groups of these enzymes and those containing the quinone cofactor are clearly differentiated. In marine bacteria, particularly in the genus Pseudoalteromonas, most of the proteins described as antimicrobial because of their capacity to generate hydrogen peroxide belong to the group of LodA-like proteins.
Collapse
Affiliation(s)
- Jonatan C Campillo-Brocal
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Patricia Lucas-Elío
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Antonio Sanchez-Amat
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
32
|
Abd El-Rahman AAEM, El-Shafei SMAEA, Ivanova EV, Fattakhova AN, Pankova AV, El-Shafei MAEA, El-Morsi EMAEF, Alimova FK. Cytotoxicity of Trichoderma spp. cultural filtrate against human cervical and breast cancer cell lines. Asian Pac J Cancer Prev 2015; 15:7229-34. [PMID: 25227819 DOI: 10.7314/apjcp.2014.15.17.7229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Trichoderma spp. are known as a rich source of secondary metabolites with biological activity belonging to a variety of classes of chemical compounds. These fungi also are well known for their ability to produce a wide range of antibiotic substances and to parasitize other fungi. In search for new substances, which might act as anticancer agents, the overall objective of this study was to investigate the cytotoxic effects of Trichoderma harzianum and Trichoderma asperellum cultural filtrates against human cervical and breast cancer cell lines (HeLa and MCF-7 cells respectively). To achieve this objective, cells were exposed to 20, 40, 60, 80 and 100 mg/ ml of both T. harzianum cultural filtrate (ThCF) and T. asperellum cultural filtrate (TaCF) for 24h, then the cell viability and the cytotoxic responses were assessed by using trypan blue and 3-(4,5-dimethylthiazol-2yl)- 2,5-biphenyl tetrazolium bromide (MTT) assays. Morphological changes in cells were investigated by phase contrast inverted microscopy. The results showed that ThCF and TaCF significantly reduce the cell viability, have cytotoxic effects and alter the cellular morphology of HeLa and MCF-7 cells in a concentration dependent manner. A concentration of 80 and 100mg/ml of ThCF resulted in a sharp decline in the cell viability percent of HeLa and MCF-7 respectively (25.2%, 26.5%) which was recorded by trypan blue assay. The half-maximal inhibitory concentrations (IC50) of ThCF and TaCF in HeLa and MCF-7 were recorded as 16.6, 12.0, 19.6 and 0.70 mg/ml respectively by MTT assay. These results revealed that ThCF and TaCF have a substantial ability to reduce the viability and proliferation of human cervical and breast cancer cells.
Collapse
|
33
|
New enzymatic methods for selective assay of l-lysine using an l-lysine specific decarboxylase/oxidase from Burkholderia sp. AIU 395. J Biosci Bioeng 2015; 119:369-74. [DOI: 10.1016/j.jbiosc.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
|
34
|
Amano M, Mizuguchi H, Sano T, Kondo H, Shinyashiki K, Inagaki J, Tamura T, Kawaguchi T, Kusakabe H, Imada K, Inagaki K. Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine α-oxidase from Trichoderma viride. J Biochem 2015; 157:549-59. [PMID: 25648943 DOI: 10.1093/jb/mvv012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
L-Lysine α-oxidase (LysOX) from Trichoderma viride is a homodimeric 112 kDa flavoenzyme that catalyzes the oxidative deamination of L-lysine to form α-keto-ε-aminocaproate. LysOX severely inhibited growth of cancer cells but showed relatively low cytotoxicity for normal cells. We have determined the cDNA nucleotide sequence encoding LysOX from T. viride. The full-length cDNA consists of 2,119 bp and encodes a possible signal peptide (Met1-Arg77) and the mature protein (Ala78-Ile617). The LysOX gene have been cloned and heterologously expressed in Streptomyces lividans TK24 with the enzyme activity up to 9.8 U/ml. The enzymatic properties of the purified recombinant LysOX, such as substrate specificity and thermal stability, are same as those of native LysOX. The crystal structure of LysOX at 1.9 Å resolution revealed that the overall structure is similar to that of snake venom L-amino acid oxidase (LAAO), and the residues involved in the interaction with the amino or carboxy group of the substrate are structurally conserved. However, the entrance and the inner surface structures of the funnel to the active site, as well as the residues involved in the substrate side-chain recognition, are distinct from LAAOs. These structural differences well explain the unique substrate specificity of LysOX.
Collapse
Affiliation(s)
- Marie Amano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Haruka Mizuguchi
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Tadahisa Sano
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Hiroki Kondo
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Kengo Shinyashiki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Junko Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Tatsuya Kawaguchi
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Hitoshi Kusakabe
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Katsumi Imada
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; and Enzyme Sensor Co., Ltd., Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
35
|
Ciriello R, Cataldi TR, Crispo F, Guerrieri A. Quantification of l-lysine in cheese by a novel amperometric biosensor. Food Chem 2015; 169:13-9. [DOI: 10.1016/j.foodchem.2014.07.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
36
|
Tani Y, Miyake R, Yukami R, Dekishima Y, China H, Saito S, Kawabata H, Mihara H. Functional expression of L-lysine α-oxidase from Scomber japonicus in Escherichia coli for one-pot synthesis of L-pipecolic acid from DL-lysine. Appl Microbiol Biotechnol 2014; 99:5045-54. [PMID: 25547835 DOI: 10.1007/s00253-014-6308-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 11/24/2022]
Abstract
L-Pipecolic acid is a key component of biologically active molecules and a pharmaceutically important chiral building block. It can be stereoselectively produced from L-lysine by a two-step bioconversion involving L-lysine α-oxidase and ∆(1)-piperideine-2-carboxylae (Pip2C) reductase. In this study, we focused on an L-lysine α-oxidase from Scomber japonicus that was originally identified as an apoptosis-inducing protein (AIP) and applied the enzyme to one-pot fermentation of L-pipecolic acid in Escherichia coli. A synthetic gene coding for an AIP was expressed in E. coli, and the recombinant enzyme was purified and characterized. The purified enzyme was determined to be a homodimer with a molecular mass of 133.9 kDa. The enzyme essentially exhibited the same substrate specificity as the native enzyme. Optimal temperature and pH for the enzymatic reaction were 70 °C and 7.4, respectively. The enzyme was stable below 60 °C and at a pH range of 5.5-7.5 but was markedly inhibited by Co(2+). To establish a one-pot fermentation system for the synthesis of optically pure L-pipecolic acid from DL-lysine, an E. coli strain carrying a plasmid encoding AIP, Pip2C reductase from Pseudomonas putida, lysine racemase from P. putida, and glucose dehydrogenase from Bacillus subtilis was constructed. The one-pot process produced 45.1 g/L of L-pipecolic acid (87.4 % yield from DL-lysine) after a 46-h reaction with high optical purity (>99.9 % enantiomeric excess).
Collapse
Affiliation(s)
- Yasushi Tani
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tani Y, Omatsu K, Saito S, Miyake R, Kawabata H, Ueda M, Mihara H. Heterologous expression of l-lysine α-oxidase from Scomber japonicus in Pichia pastoris and functional characterization of the recombinant enzyme. J Biochem 2014; 157:201-10. [PMID: 25359785 DOI: 10.1093/jb/mvu064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fish have a complex self-defense mechanism against microbial invasion. Recently, l-lysine α-oxidases have been identified from a number of fish species as a novel type of antibacterial protein in the integument. These enzymes exhibit strict substrate specificity for l-lysine, but the underlying mechanisms and details of their catalytic properties remain unknown. In this study, a synthetic gene coding for Scomber japonicus l-lysine α-oxidase, originally termed AIP (for apoptosis-inducing protein), was expressed in Pichia pastoris, and the recombinant enzyme (rAIP) was purified and characterized. rAIP exhibited essentially the same substrate specificity as the native enzyme, catalyzing the oxidative deamination of l-lysine as an exclusive substrate. rAIP was N-glycosylated and remained active over a wide range of pH, with an optimal pH of 7.5. The enzyme was stable in the pH range from 4.5 to 10.0 and was thermally stable up to 60°C. A molecular modelling of rAIP and a comparative structure/sequence analysis with homologous enzymes indicate that Asp(220) and Asp(320) are the substrate-binding residues that are likely to confer exclusive substrate specificity for l-lysine on the fish enzymes.
Collapse
Affiliation(s)
- Yasushi Tani
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Koichiro Omatsu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Shigeki Saito
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Ryoma Miyake
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Hiroshi Kawabata
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Makoto Ueda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Hisaaki Mihara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; R-GIRO, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Mitsubishi Chemical Group Science and Technology Research Center, Inc., Yokohama, Kanagawa 227-8502, Japan; and API Corporation, Yokohama, Kanagawa 227-8502, Japan
| |
Collapse
|
38
|
Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Sci Rep 2014; 4:5657. [PMID: 25012259 PMCID: PMC4093655 DOI: 10.1038/srep05657] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/11/2014] [Indexed: 12/23/2022] Open
Abstract
5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate.
Collapse
Affiliation(s)
- Pan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Haiwei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Mandong Hu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| | - Ping Xu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China [2]
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, People's Republic of China
| |
Collapse
|
39
|
Characterization of a novel l-amino acid oxidase with protein oxidizing activity from Penicillium steckii AIU 027. J Biosci Bioeng 2014; 117:690-5. [DOI: 10.1016/j.jbiosc.2013.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 11/17/2022]
|
40
|
Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395. J Biosci Bioeng 2014; 118:496-501. [PMID: 24863180 DOI: 10.1016/j.jbiosc.2014.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 11/23/2022]
Abstract
A novel enzyme, which catalyzed decarboxylation of l-lysine into cadaverine with release of carbon dioxide and oxidative deamination of l-lysine into l-2-aminoadipic 5-semialdehyde with release of ammonia and hydrogen peroxide, was found from a newly isolated Burkholderia sp. AIU 395. The enzyme was specific to l-lysine and did not exhibit enzyme activities for other l-amino acids, l-lysine derivatives, d-amino acids, and amines. The apparent Km values for l-lysine in the oxidation and decarboxylation reactions were estimated to be 0.44 mM and 0.84 mM, respectively. The molecular mass was estimated to be 150 kDa, which was composed of two identical subunits with molecular mass of 76.5 kDa. The enzyme contained one mol of pyridoxal 5'-phosphate per subunit as a prosthetic group. The enzyme exhibiting decarboxylase and oxidase activities for l-lysine was first reported here, while the deduced amino acid sequence was homologous to that of putative lysine decarboxylases from the genus Burkholderia.
Collapse
|
41
|
Pollegioni L, Motta P, Molla G. L-amino acid oxidase as biocatalyst: a dream too far? Appl Microbiol Biotechnol 2014; 97:9323-41. [PMID: 24077723 DOI: 10.1007/s00253-013-5230-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022]
Abstract
L-amino acid oxidase (LAAO) is a flavoenzyme containing non-covalently bound flavin adenine dinucleotide, which catalyzes the stereospecific oxidative deamination of l-amino acids to α-keto acids and also produces ammonia and hydrogen peroxide via an imino acid intermediate. LAAOs purified from snake venoms are the best-studied members of this family of enzymes, although a number of LAAOs from bacterial and fungal sources have been also reported. From a biochemical point of view, LAAOs from different sources are distinguished by molecular mass, substrate specificity, post-translational modifications and regulation. In analogy to the well-known biotechnological applications of d-amino acid oxidase, important results are expected from the availability of suitable LAAOs; however, these expectations have not been fulfilled yet because none of the "true" LAAOs has successfully been expressed as a recombinant protein in prokaryotic hosts, such as Escherichia coli. In enzyme biotechnology, recombinant production of a protein is mandatory both for the production of large amounts of the catalyst and to improve its biochemical properties by protein engineering. As an alternative, flavoenzymes active on specific l-amino acids have been identified, e.g., l-aspartate oxidase, l-lysine oxidase, l-phenylalanine oxidase, etc. According to presently available information, amino acid oxidases with "narrow" or "strict" substrate specificity represent as good candidates to obtain an enzyme more suitable for biotechnological applications by enlarging their substrate specificity by means of protein engineering.
Collapse
|
42
|
Characterization and application of aminoamide-oxidizing enzyme from Aspergillus carbonarius AIU 205. J Biosci Bioeng 2014; 117:263-8. [DOI: 10.1016/j.jbiosc.2013.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/22/2022]
|
43
|
Matsui D, Im DH, Sugawara A, Fukuta Y, Fushinobu S, Isobe K, Asano Y. Mutational and crystallographic analysis of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities. FEBS Open Bio 2014; 4:220-8. [PMID: 24693490 PMCID: PMC3970082 DOI: 10.1016/j.fob.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 10/31/2022] Open
Abstract
In this study, it was shown for the first time that l-amino acid oxidase of Pseudomonas sp. AIU813, renamed as l-amino acid oxidase/monooxygenase (l-AAO/MOG), exhibits l-lysine 2-monooxygenase as well as oxidase activity. l-Lysine oxidase activity of l-AAO/MOG was increased in a p-chloromercuribenzoate (p-CMB) concentration-dependent manner to a final level that was five fold higher than that of the non-treated enzyme. In order to explain the effects of modification by the sulfhydryl reagent, saturation mutagenesis studies were carried out on five cysteine residues, and we succeeded in identifying l-AAO/MOG C254I mutant enzyme, which showed five-times higher specific activity of oxidase activity than that of wild type. The monooxygenase activity shown by the C254I variant was decreased significantly. Moreover, we also determined a high-resolution three-dimensional structure of l-AAO/MOG to provide a structural basis for its biochemical characteristics. The key residue for the activity conversion of l-AAO/MOG, Cys-254, is located near the aromatic cage (Trp-418, Phe-473, and Trp-516). Although the location of Cys-254 indicates that it is not directly involved in the substrate binding, the chemical modification by p-CMB or C254I mutation would have a significant impact on the substrate binding via the side chain of Trp-516. It is suggested that a slight difference of the binding position of a substrate can dictate the activity of this type of enzyme as oxidase or monooxygenase.
Collapse
Key Words
- 4-AA, 4-aminoantipyrine
- CHCA, α-Cyano-4-hydroxycinnamic acid
- Crystallography
- FMOs, flavin monooxygenases
- Flavin monooxygenases
- Flavin-containing monoamine oxidase family
- LB, Luria–Bertani
- LGOX, l-glutamate oxidase
- MAO, flavin-containing monoamine oxidase
- PAO, l-phenylalanine oxidase
- Saturation mutagenesis
- TFA, trifluoroacetic acid
- TMO, l-tryptophan 2-monooxygenase
- TOOS, N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline
- amid, amide hydrolase gene
- l-AAO, l-amino acid oxidase
- l-AAO/MOG, l-amino acid oxidase/monooxygenase
- l-Amino acid oxidase/monooxygenase
- laao/mog, l-amino acid oxidase/monooxygenase gene
- p-CMB, p-chloromercuribenzoate
Collapse
Affiliation(s)
- Daisuke Matsui
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan ; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu,Toyama 939-0398, Japan
| | - Do-Hyun Im
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Asami Sugawara
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | - Yasuhisa Fukuta
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinya Fushinobu
- Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu,Toyama 939-0398, Japan ; Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiyasu Isobe
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan ; Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu,Toyama 939-0398, Japan
| |
Collapse
|
44
|
El-Sayed AS, Shindia AA, Zaher YA. Purification and characterization of L-amino acid oxidase from the solid-state grown cultures of Aspergillus oryzae ASH. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261713060143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Bregier-Jarzebowska R, Gasowska A, Lomozik L. Interactions of histone amino acid: lysine with copper(II) ions and adenosine 5′-triphosphate as well as in a metal-free system. J COORD CHEM 2014. [DOI: 10.1080/00958972.2013.878457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - A. Gasowska
- Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - L. Lomozik
- Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
46
|
L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 2013; 98:1507-15. [PMID: 24352734 DOI: 10.1007/s00253-013-5444-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
Abstract
L-Amino acid oxidases (LAAOs), which catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids and ammonia, are flavin adenine dinucleotide-containing homodimeric proteins. L-Amino acid oxidases are widely distributed in diverse organisms and have a range of properties. Because expressing LAAOs as recombinant proteins in heterologous hosts is difficult, their biotechnological applications have not been thoroughly advanced. LAAOs are thought to contribute to amino acid catabolism, enhance iron acquisition, display antimicrobial activity, and catalyze keto acid production, among other roles. Here, we review the types, properties, structures, biological functions, heterologous expression, and applications of LAAOs obtained from microbial sources. We expect this review to increase interest in LAAO studies.
Collapse
|
47
|
Isobe K, Sasaki T, Aigami Y, Yamada M, Kishino S, Ogawa J. Characterization of a new enzyme oxidizing ω-amino group of aminocarboxyric acid, aminoalcohols and amines from Phialemonium sp. AIU 274. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
A novel amperometric biosensor based on a co-crosslinked l-lysine-α-oxidase/overoxidized polypyrrole bilayer for the highly selective determination of l-lysine. Anal Chim Acta 2013; 795:52-9. [DOI: 10.1016/j.aca.2013.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022]
|
49
|
Campillo-Brocal JC, Lucas-Elio P, Sanchez-Amat A. Identification in Marinomonas mediterranea of a novel quinoprotein with glycine oxidase activity. Microbiologyopen 2013; 2:684-94. [PMID: 23873697 PMCID: PMC3948610 DOI: 10.1002/mbo3.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 12/02/2022] Open
Abstract
A novel enzyme with lysine-epsilon oxidase activity was previously described in the marine bacterium Marinomonas mediterranea. This enzyme differs from other l-amino acid oxidases in not being a flavoprotein but containing a quinone cofactor. It is encoded by an operon with two genes lodA and lodB. The first one codes for the oxidase, while the second one encodes a protein required for the expression of the former. Genome sequencing of M. mediterranea has revealed that it contains two additional operons encoding proteins with sequence similarity to LodA. In this study, it is shown that the product of one of such genes, Marme_1655, encodes a protein with glycine oxidase activity. This activity shows important differences in terms of substrate range and sensitivity to inhibitors to other glycine oxidases previously described which are flavoproteins synthesized by Bacillus. The results presented in this study indicate that the products of the genes with different degrees of similarity to lodA detected in bacterial genomes could constitute a reservoir of different oxidases.
Collapse
|
50
|
Chauhan N, Narang J, Sunny, Pundir C. Immobilization of lysine oxidase on a gold–platinum nanoparticles modified Au electrode for detection of lysine. Enzyme Microb Technol 2013; 52:265-71. [DOI: 10.1016/j.enzmictec.2013.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
|